ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
Revision: 1.106
Committed: Wed Dec 9 14:00:49 2009 UTC (14 years, 5 months ago) by root
Branch: MAIN
CVS Tags: rel-1_24
Changes since 1.105: +1 -1 lines
Log Message:
1.24

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.89 AnyEvent::MP - erlang-style multi-processing/message-passing framework
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP;
8    
9 root 1.75 $NODE # contains this node's node ID
10     NODE # returns this node's node ID
11 root 1.2
12 root 1.38 $SELF # receiving/own port id in rcv callbacks
13    
14 root 1.48 # initialise the node so it can send/receive messages
15 root 1.72 configure;
16 root 1.48
17 root 1.75 # ports are message destinations
18 root 1.38
19     # sending messages
20 root 1.2 snd $port, type => data...;
21 root 1.38 snd $port, @msg;
22     snd @msg_with_first_element_being_a_port;
23 root 1.2
24 root 1.50 # creating/using ports, the simple way
25 root 1.73 my $simple_port = port { my @msg = @_ };
26 root 1.22
27 root 1.52 # creating/using ports, tagged message matching
28 root 1.38 my $port = port;
29 root 1.73 rcv $port, ping => sub { snd $_[0], "pong" };
30     rcv $port, pong => sub { warn "pong received\n" };
31 root 1.2
32 root 1.48 # create a port on another node
33     my $port = spawn $node, $initfunc, @initdata;
34    
35 root 1.101 # destroy a prot again
36     kil $port; # "normal" kill
37     kil $port, my_error => "everything is broken"; # error kill
38    
39 root 1.35 # monitoring
40 root 1.90 mon $localport, $cb->(@msg) # callback is invoked on death
41     mon $localport, $otherport # kill otherport on abnormal death
42     mon $localport, $otherport, @msg # send message on death
43 root 1.35
44 root 1.101 # temporarily execute code in port context
45     peval $port, sub { die "kill the port!" };
46    
47     # execute callbacks in $SELF port context
48     my $timer = AE::timer 1, 0, psub {
49     die "kill the port, delayed";
50     };
51    
52 root 1.45 =head1 CURRENT STATUS
53    
54 root 1.71 bin/aemp - stable.
55     AnyEvent::MP - stable API, should work.
56 elmex 1.77 AnyEvent::MP::Intro - explains most concepts.
57 root 1.88 AnyEvent::MP::Kernel - mostly stable API.
58     AnyEvent::MP::Global - stable API.
59 root 1.45
60 root 1.1 =head1 DESCRIPTION
61    
62 root 1.2 This module (-family) implements a simple message passing framework.
63    
64     Despite its simplicity, you can securely message other processes running
65 root 1.67 on the same or other hosts, and you can supervise entities remotely.
66 root 1.2
67 root 1.23 For an introduction to this module family, see the L<AnyEvent::MP::Intro>
68 root 1.67 manual page and the examples under F<eg/>.
69 root 1.23
70 root 1.2 =head1 CONCEPTS
71    
72     =over 4
73    
74     =item port
75    
76 root 1.79 Not to be confused with a TCP port, a "port" is something you can send
77     messages to (with the C<snd> function).
78 root 1.29
79 root 1.53 Ports allow you to register C<rcv> handlers that can match all or just
80 root 1.64 some messages. Messages send to ports will not be queued, regardless of
81     anything was listening for them or not.
82 root 1.2
83 root 1.67 =item port ID - C<nodeid#portname>
84 root 1.2
85 root 1.67 A port ID is the concatenation of a node ID, a hash-mark (C<#>) as
86     separator, and a port name (a printable string of unspecified format).
87 root 1.2
88     =item node
89    
90 root 1.53 A node is a single process containing at least one port - the node port,
91 root 1.67 which enables nodes to manage each other remotely, and to create new
92 root 1.53 ports.
93 root 1.2
94 root 1.67 Nodes are either public (have one or more listening ports) or private
95     (no listening ports). Private nodes cannot talk to other private nodes
96     currently.
97 root 1.2
98 root 1.84 =item node ID - C<[A-Z_][a-zA-Z0-9_\-.:]*>
99 root 1.2
100 root 1.64 A node ID is a string that uniquely identifies the node within a
101     network. Depending on the configuration used, node IDs can look like a
102     hostname, a hostname and a port, or a random string. AnyEvent::MP itself
103     doesn't interpret node IDs in any way.
104    
105     =item binds - C<ip:port>
106    
107     Nodes can only talk to each other by creating some kind of connection to
108     each other. To do this, nodes should listen on one or more local transport
109     endpoints - binds. Currently, only standard C<ip:port> specifications can
110     be used, which specify TCP ports to listen on.
111    
112 root 1.83 =item seed nodes
113 root 1.64
114     When a node starts, it knows nothing about the network. To teach the node
115     about the network it first has to contact some other node within the
116     network. This node is called a seed.
117    
118 root 1.83 Apart from the fact that other nodes know them as seed nodes and they have
119     to have fixed listening addresses, seed nodes are perfectly normal nodes -
120     any node can function as a seed node for others.
121    
122     In addition to discovering the network, seed nodes are also used to
123     maintain the network and to connect nodes that otherwise would have
124 root 1.86 trouble connecting. They form the backbone of an AnyEvent::MP network.
125 root 1.83
126     Seed nodes are expected to be long-running, and at least one seed node
127 root 1.85 should always be available. They should also be relatively responsive - a
128     seed node that blocks for long periods will slow down everybody else.
129 root 1.83
130     =item seeds - C<host:port>
131    
132     Seeds are transport endpoint(s) (usually a hostname/IP address and a
133 elmex 1.96 TCP port) of nodes that should be used as seed nodes.
134 root 1.29
135 root 1.83 The nodes listening on those endpoints are expected to be long-running,
136     and at least one of those should always be available. When nodes run out
137     of connections (e.g. due to a network error), they try to re-establish
138     connections to some seednodes again to join the network.
139 root 1.67
140 root 1.2 =back
141    
142 root 1.3 =head1 VARIABLES/FUNCTIONS
143 root 1.2
144     =over 4
145    
146 root 1.1 =cut
147    
148     package AnyEvent::MP;
149    
150 root 1.44 use AnyEvent::MP::Kernel;
151 root 1.2
152 root 1.1 use common::sense;
153    
154 root 1.2 use Carp ();
155    
156 root 1.1 use AE ();
157    
158 root 1.2 use base "Exporter";
159    
160 root 1.106 our $VERSION = 1.24;
161 root 1.43
162 root 1.8 our @EXPORT = qw(
163 root 1.59 NODE $NODE *SELF node_of after
164 root 1.72 configure
165 root 1.101 snd rcv mon mon_guard kil psub peval spawn cal
166 root 1.22 port
167 root 1.8 );
168 root 1.2
169 root 1.22 our $SELF;
170    
171     sub _self_die() {
172     my $msg = $@;
173     $msg =~ s/\n+$// unless ref $msg;
174     kil $SELF, die => $msg;
175     }
176    
177     =item $thisnode = NODE / $NODE
178    
179 root 1.67 The C<NODE> function returns, and the C<$NODE> variable contains, the node
180 root 1.64 ID of the node running in the current process. This value is initialised by
181 root 1.72 a call to C<configure>.
182 root 1.22
183 root 1.63 =item $nodeid = node_of $port
184 root 1.22
185 root 1.67 Extracts and returns the node ID from a port ID or a node ID.
186 root 1.34
187 root 1.78 =item configure $profile, key => value...
188    
189 root 1.72 =item configure key => value...
190 root 1.34
191 root 1.64 Before a node can talk to other nodes on the network (i.e. enter
192 root 1.72 "distributed mode") it has to configure itself - the minimum a node needs
193 root 1.64 to know is its own name, and optionally it should know the addresses of
194     some other nodes in the network to discover other nodes.
195 root 1.34
196 root 1.72 This function configures a node - it must be called exactly once (or
197 root 1.34 never) before calling other AnyEvent::MP functions.
198    
199 root 1.72 =over 4
200    
201     =item step 1, gathering configuration from profiles
202    
203     The function first looks up a profile in the aemp configuration (see the
204     L<aemp> commandline utility). The profile name can be specified via the
205 root 1.78 named C<profile> parameter or can simply be the first parameter). If it is
206     missing, then the nodename (F<uname -n>) will be used as profile name.
207 root 1.34
208 root 1.72 The profile data is then gathered as follows:
209 root 1.69
210 elmex 1.77 First, all remaining key => value pairs (all of which are conveniently
211 root 1.72 undocumented at the moment) will be interpreted as configuration
212     data. Then they will be overwritten by any values specified in the global
213     default configuration (see the F<aemp> utility), then the chain of
214     profiles chosen by the profile name (and any C<parent> attributes).
215    
216     That means that the values specified in the profile have highest priority
217     and the values specified directly via C<configure> have lowest priority,
218     and can only be used to specify defaults.
219 root 1.49
220 root 1.64 If the profile specifies a node ID, then this will become the node ID of
221     this process. If not, then the profile name will be used as node ID. The
222     special node ID of C<anon/> will be replaced by a random node ID.
223    
224 root 1.72 =item step 2, bind listener sockets
225    
226 root 1.64 The next step is to look up the binds in the profile, followed by binding
227     aemp protocol listeners on all binds specified (it is possible and valid
228     to have no binds, meaning that the node cannot be contacted form the
229     outside. This means the node cannot talk to other nodes that also have no
230     binds, but it can still talk to all "normal" nodes).
231    
232 root 1.70 If the profile does not specify a binds list, then a default of C<*> is
233 root 1.72 used, meaning the node will bind on a dynamically-assigned port on every
234     local IP address it finds.
235    
236     =item step 3, connect to seed nodes
237 root 1.64
238 root 1.72 As the last step, the seeds list from the profile is passed to the
239 root 1.64 L<AnyEvent::MP::Global> module, which will then use it to keep
240 root 1.72 connectivity with at least one node at any point in time.
241 root 1.64
242 root 1.72 =back
243    
244 root 1.87 Example: become a distributed node using the local node name as profile.
245 root 1.72 This should be the most common form of invocation for "daemon"-type nodes.
246 root 1.34
247 root 1.72 configure
248 root 1.34
249 root 1.64 Example: become an anonymous node. This form is often used for commandline
250     clients.
251 root 1.34
252 root 1.72 configure nodeid => "anon/";
253    
254     Example: configure a node using a profile called seed, which si suitable
255     for a seed node as it binds on all local addresses on a fixed port (4040,
256     customary for aemp).
257    
258     # use the aemp commandline utility
259 root 1.74 # aemp profile seed nodeid anon/ binds '*:4040'
260 root 1.72
261     # then use it
262     configure profile => "seed";
263 root 1.34
264 root 1.72 # or simply use aemp from the shell again:
265     # aemp run profile seed
266 root 1.34
267 root 1.72 # or provide a nicer-to-remember nodeid
268     # aemp run profile seed nodeid "$(hostname)"
269 root 1.34
270 root 1.22 =item $SELF
271    
272     Contains the current port id while executing C<rcv> callbacks or C<psub>
273     blocks.
274 root 1.3
275 root 1.67 =item *SELF, SELF, %SELF, @SELF...
276 root 1.22
277     Due to some quirks in how perl exports variables, it is impossible to
278 root 1.67 just export C<$SELF>, all the symbols named C<SELF> are exported by this
279 root 1.22 module, but only C<$SELF> is currently used.
280 root 1.3
281 root 1.33 =item snd $port, type => @data
282 root 1.3
283 root 1.33 =item snd $port, @msg
284 root 1.3
285 root 1.67 Send the given message to the given port, which can identify either a
286     local or a remote port, and must be a port ID.
287 root 1.8
288 root 1.67 While the message can be almost anything, it is highly recommended to
289     use a string as first element (a port ID, or some word that indicates a
290     request type etc.) and to consist if only simple perl values (scalars,
291     arrays, hashes) - if you think you need to pass an object, think again.
292    
293     The message data logically becomes read-only after a call to this
294     function: modifying any argument (or values referenced by them) is
295     forbidden, as there can be considerable time between the call to C<snd>
296     and the time the message is actually being serialised - in fact, it might
297     never be copied as within the same process it is simply handed to the
298     receiving port.
299 root 1.3
300     The type of data you can transfer depends on the transport protocol: when
301     JSON is used, then only strings, numbers and arrays and hashes consisting
302     of those are allowed (no objects). When Storable is used, then anything
303     that Storable can serialise and deserialise is allowed, and for the local
304 root 1.67 node, anything can be passed. Best rely only on the common denominator of
305     these.
306 root 1.3
307 root 1.22 =item $local_port = port
308 root 1.2
309 root 1.50 Create a new local port object and returns its port ID. Initially it has
310     no callbacks set and will throw an error when it receives messages.
311 root 1.10
312 root 1.50 =item $local_port = port { my @msg = @_ }
313 root 1.15
314 root 1.50 Creates a new local port, and returns its ID. Semantically the same as
315     creating a port and calling C<rcv $port, $callback> on it.
316 root 1.15
317 root 1.50 The block will be called for every message received on the port, with the
318     global variable C<$SELF> set to the port ID. Runtime errors will cause the
319     port to be C<kil>ed. The message will be passed as-is, no extra argument
320     (i.e. no port ID) will be passed to the callback.
321 root 1.15
322 root 1.50 If you want to stop/destroy the port, simply C<kil> it:
323 root 1.15
324 root 1.50 my $port = port {
325     my @msg = @_;
326     ...
327     kil $SELF;
328 root 1.15 };
329 root 1.10
330     =cut
331    
332 root 1.33 sub rcv($@);
333    
334 root 1.50 sub _kilme {
335     die "received message on port without callback";
336     }
337    
338 root 1.22 sub port(;&) {
339     my $id = "$UNIQ." . $ID++;
340     my $port = "$NODE#$id";
341    
342 root 1.50 rcv $port, shift || \&_kilme;
343 root 1.10
344 root 1.22 $port
345 root 1.10 }
346    
347 root 1.50 =item rcv $local_port, $callback->(@msg)
348 root 1.31
349 root 1.50 Replaces the default callback on the specified port. There is no way to
350     remove the default callback: use C<sub { }> to disable it, or better
351     C<kil> the port when it is no longer needed.
352 root 1.3
353 root 1.33 The global C<$SELF> (exported by this module) contains C<$port> while
354 root 1.50 executing the callback. Runtime errors during callback execution will
355     result in the port being C<kil>ed.
356 root 1.22
357 root 1.50 The default callback received all messages not matched by a more specific
358     C<tag> match.
359 root 1.22
360 root 1.50 =item rcv $local_port, tag => $callback->(@msg_without_tag), ...
361 root 1.3
362 root 1.54 Register (or replace) callbacks to be called on messages starting with the
363     given tag on the given port (and return the port), or unregister it (when
364     C<$callback> is C<$undef> or missing). There can only be one callback
365     registered for each tag.
366 root 1.3
367 root 1.50 The original message will be passed to the callback, after the first
368     element (the tag) has been removed. The callback will use the same
369     environment as the default callback (see above).
370 root 1.3
371 root 1.36 Example: create a port and bind receivers on it in one go.
372    
373     my $port = rcv port,
374 root 1.50 msg1 => sub { ... },
375     msg2 => sub { ... },
376 root 1.36 ;
377    
378     Example: create a port, bind receivers and send it in a message elsewhere
379     in one go:
380    
381     snd $otherport, reply =>
382     rcv port,
383 root 1.50 msg1 => sub { ... },
384 root 1.36 ...
385     ;
386    
387 root 1.54 Example: temporarily register a rcv callback for a tag matching some port
388 root 1.102 (e.g. for an rpc reply) and unregister it after a message was received.
389 root 1.54
390     rcv $port, $otherport => sub {
391     my @reply = @_;
392    
393     rcv $SELF, $otherport;
394     };
395    
396 root 1.3 =cut
397    
398     sub rcv($@) {
399 root 1.33 my $port = shift;
400 root 1.75 my ($nodeid, $portid) = split /#/, $port, 2;
401 root 1.3
402 root 1.75 $NODE{$nodeid} == $NODE{""}
403 root 1.33 or Carp::croak "$port: rcv can only be called on local ports, caught";
404 root 1.22
405 root 1.50 while (@_) {
406     if (ref $_[0]) {
407     if (my $self = $PORT_DATA{$portid}) {
408     "AnyEvent::MP::Port" eq ref $self
409     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
410 root 1.33
411 root 1.103 $self->[0] = shift;
412 root 1.50 } else {
413     my $cb = shift;
414     $PORT{$portid} = sub {
415     local $SELF = $port;
416     eval { &$cb }; _self_die if $@;
417     };
418     }
419     } elsif (defined $_[0]) {
420     my $self = $PORT_DATA{$portid} ||= do {
421 root 1.103 my $self = bless [$PORT{$portid} || sub { }, { }, $port], "AnyEvent::MP::Port";
422 root 1.50
423     $PORT{$portid} = sub {
424     local $SELF = $port;
425    
426     if (my $cb = $self->[1]{$_[0]}) {
427     shift;
428     eval { &$cb }; _self_die if $@;
429     } else {
430     &{ $self->[0] };
431 root 1.33 }
432     };
433 root 1.50
434     $self
435 root 1.33 };
436    
437 root 1.50 "AnyEvent::MP::Port" eq ref $self
438     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
439 root 1.22
440 root 1.50 my ($tag, $cb) = splice @_, 0, 2;
441 root 1.33
442 root 1.50 if (defined $cb) {
443     $self->[1]{$tag} = $cb;
444 root 1.33 } else {
445 root 1.50 delete $self->[1]{$tag};
446 root 1.33 }
447 root 1.22 }
448 root 1.3 }
449 root 1.31
450 root 1.33 $port
451 root 1.2 }
452    
453 root 1.101 =item peval $port, $coderef[, @args]
454    
455     Evaluates the given C<$codref> within the contetx of C<$port>, that is,
456     when the code throews an exception the C<$port> will be killed.
457    
458     Any remaining args will be passed to the callback. Any return values will
459     be returned to the caller.
460    
461     This is useful when you temporarily want to execute code in the context of
462     a port.
463    
464     Example: create a port and run some initialisation code in it's context.
465    
466     my $port = port { ... };
467    
468     peval $port, sub {
469     init
470     or die "unable to init";
471     };
472    
473     =cut
474    
475     sub peval($$) {
476     local $SELF = shift;
477     my $cb = shift;
478    
479     if (wantarray) {
480     my @res = eval { &$cb };
481     _self_die if $@;
482     @res
483     } else {
484     my $res = eval { &$cb };
485     _self_die if $@;
486     $res
487     }
488     }
489    
490 root 1.22 =item $closure = psub { BLOCK }
491 root 1.2
492 root 1.22 Remembers C<$SELF> and creates a closure out of the BLOCK. When the
493     closure is executed, sets up the environment in the same way as in C<rcv>
494     callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
495    
496 root 1.101 The effect is basically as if it returned C<< sub { peval $SELF, sub {
497     BLOCK } } >>.
498    
499 root 1.22 This is useful when you register callbacks from C<rcv> callbacks:
500    
501     rcv delayed_reply => sub {
502     my ($delay, @reply) = @_;
503     my $timer = AE::timer $delay, 0, psub {
504     snd @reply, $SELF;
505     };
506     };
507 root 1.3
508 root 1.8 =cut
509 root 1.3
510 root 1.22 sub psub(&) {
511     my $cb = shift;
512 root 1.3
513 root 1.22 my $port = $SELF
514     or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
515 root 1.1
516 root 1.22 sub {
517     local $SELF = $port;
518 root 1.2
519 root 1.22 if (wantarray) {
520     my @res = eval { &$cb };
521     _self_die if $@;
522     @res
523     } else {
524     my $res = eval { &$cb };
525     _self_die if $@;
526     $res
527     }
528     }
529 root 1.2 }
530    
531 root 1.67 =item $guard = mon $port, $cb->(@reason) # call $cb when $port dies
532 root 1.32
533 root 1.67 =item $guard = mon $port, $rcvport # kill $rcvport when $port dies
534 root 1.36
535 root 1.67 =item $guard = mon $port # kill $SELF when $port dies
536 root 1.32
537 root 1.67 =item $guard = mon $port, $rcvport, @msg # send a message when $port dies
538 root 1.32
539 root 1.42 Monitor the given port and do something when the port is killed or
540     messages to it were lost, and optionally return a guard that can be used
541     to stop monitoring again.
542    
543 root 1.36 In the first form (callback), the callback is simply called with any
544     number of C<@reason> elements (no @reason means that the port was deleted
545 root 1.32 "normally"). Note also that I<< the callback B<must> never die >>, so use
546     C<eval> if unsure.
547    
548 root 1.43 In the second form (another port given), the other port (C<$rcvport>)
549 elmex 1.77 will be C<kil>'ed with C<@reason>, if a @reason was specified, i.e. on
550 root 1.36 "normal" kils nothing happens, while under all other conditions, the other
551     port is killed with the same reason.
552 root 1.32
553 root 1.36 The third form (kill self) is the same as the second form, except that
554     C<$rvport> defaults to C<$SELF>.
555    
556     In the last form (message), a message of the form C<@msg, @reason> will be
557     C<snd>.
558 root 1.32
559 root 1.79 Monitoring-actions are one-shot: once messages are lost (and a monitoring
560     alert was raised), they are removed and will not trigger again.
561    
562 root 1.37 As a rule of thumb, monitoring requests should always monitor a port from
563     a local port (or callback). The reason is that kill messages might get
564     lost, just like any other message. Another less obvious reason is that
565 elmex 1.77 even monitoring requests can get lost (for example, when the connection
566 root 1.37 to the other node goes down permanently). When monitoring a port locally
567     these problems do not exist.
568    
569 root 1.79 C<mon> effectively guarantees that, in the absence of hardware failures,
570     after starting the monitor, either all messages sent to the port will
571     arrive, or the monitoring action will be invoked after possible message
572     loss has been detected. No messages will be lost "in between" (after
573     the first lost message no further messages will be received by the
574     port). After the monitoring action was invoked, further messages might get
575     delivered again.
576    
577     Inter-host-connection timeouts and monitoring depend on the transport
578     used. The only transport currently implemented is TCP, and AnyEvent::MP
579     relies on TCP to detect node-downs (this can take 10-15 minutes on a
580 elmex 1.96 non-idle connection, and usually around two hours for idle connections).
581 root 1.79
582     This means that monitoring is good for program errors and cleaning up
583     stuff eventually, but they are no replacement for a timeout when you need
584     to ensure some maximum latency.
585    
586 root 1.32 Example: call a given callback when C<$port> is killed.
587    
588     mon $port, sub { warn "port died because of <@_>\n" };
589    
590     Example: kill ourselves when C<$port> is killed abnormally.
591    
592 root 1.36 mon $port;
593 root 1.32
594 root 1.36 Example: send us a restart message when another C<$port> is killed.
595 root 1.32
596     mon $port, $self => "restart";
597    
598     =cut
599    
600     sub mon {
601 root 1.75 my ($nodeid, $port) = split /#/, shift, 2;
602 root 1.32
603 root 1.75 my $node = $NODE{$nodeid} || add_node $nodeid;
604 root 1.32
605 root 1.41 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
606 root 1.32
607     unless (ref $cb) {
608     if (@_) {
609     # send a kill info message
610 root 1.41 my (@msg) = ($cb, @_);
611 root 1.32 $cb = sub { snd @msg, @_ };
612     } else {
613     # simply kill other port
614     my $port = $cb;
615     $cb = sub { kil $port, @_ if @_ };
616     }
617     }
618    
619     $node->monitor ($port, $cb);
620    
621     defined wantarray
622 root 1.94 and ($cb += 0, AnyEvent::Util::guard { $node->unmonitor ($port, $cb) })
623 root 1.32 }
624    
625     =item $guard = mon_guard $port, $ref, $ref...
626    
627     Monitors the given C<$port> and keeps the passed references. When the port
628     is killed, the references will be freed.
629    
630     Optionally returns a guard that will stop the monitoring.
631    
632     This function is useful when you create e.g. timers or other watchers and
633 root 1.67 want to free them when the port gets killed (note the use of C<psub>):
634 root 1.32
635     $port->rcv (start => sub {
636 root 1.67 my $timer; $timer = mon_guard $port, AE::timer 1, 1, psub {
637 root 1.32 undef $timer if 0.9 < rand;
638     });
639     });
640    
641     =cut
642    
643     sub mon_guard {
644     my ($port, @refs) = @_;
645    
646 root 1.36 #TODO: mon-less form?
647    
648 root 1.32 mon $port, sub { 0 && @refs }
649     }
650    
651 root 1.33 =item kil $port[, @reason]
652 root 1.32
653     Kill the specified port with the given C<@reason>.
654    
655 root 1.67 If no C<@reason> is specified, then the port is killed "normally" (ports
656     monitoring other ports will not necessarily die because a port dies
657     "normally").
658 root 1.32
659     Otherwise, linked ports get killed with the same reason (second form of
660 root 1.67 C<mon>, see above).
661 root 1.32
662     Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
663     will be reported as reason C<< die => $@ >>.
664    
665     Transport/communication errors are reported as C<< transport_error =>
666     $message >>.
667    
668 root 1.38 =cut
669    
670     =item $port = spawn $node, $initfunc[, @initdata]
671    
672     Creates a port on the node C<$node> (which can also be a port ID, in which
673     case it's the node where that port resides).
674    
675 root 1.67 The port ID of the newly created port is returned immediately, and it is
676     possible to immediately start sending messages or to monitor the port.
677 root 1.38
678 root 1.67 After the port has been created, the init function is called on the remote
679     node, in the same context as a C<rcv> callback. This function must be a
680     fully-qualified function name (e.g. C<MyApp::Chat::Server::init>). To
681     specify a function in the main program, use C<::name>.
682 root 1.38
683     If the function doesn't exist, then the node tries to C<require>
684     the package, then the package above the package and so on (e.g.
685     C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
686     exists or it runs out of package names.
687    
688     The init function is then called with the newly-created port as context
689 root 1.82 object (C<$SELF>) and the C<@initdata> values as arguments. It I<must>
690     call one of the C<rcv> functions to set callbacks on C<$SELF>, otherwise
691     the port might not get created.
692 root 1.38
693 root 1.67 A common idiom is to pass a local port, immediately monitor the spawned
694     port, and in the remote init function, immediately monitor the passed
695     local port. This two-way monitoring ensures that both ports get cleaned up
696     when there is a problem.
697 root 1.38
698 root 1.80 C<spawn> guarantees that the C<$initfunc> has no visible effects on the
699     caller before C<spawn> returns (by delaying invocation when spawn is
700     called for the local node).
701    
702 root 1.38 Example: spawn a chat server port on C<$othernode>.
703    
704     # this node, executed from within a port context:
705     my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
706     mon $server;
707    
708     # init function on C<$othernode>
709     sub connect {
710     my ($srcport) = @_;
711    
712     mon $srcport;
713    
714     rcv $SELF, sub {
715     ...
716     };
717     }
718    
719     =cut
720    
721     sub _spawn {
722     my $port = shift;
723     my $init = shift;
724    
725 root 1.82 # rcv will create the actual port
726 root 1.38 local $SELF = "$NODE#$port";
727     eval {
728     &{ load_func $init }
729     };
730     _self_die if $@;
731     }
732    
733     sub spawn(@) {
734 root 1.75 my ($nodeid, undef) = split /#/, shift, 2;
735 root 1.38
736     my $id = "$RUNIQ." . $ID++;
737    
738 root 1.39 $_[0] =~ /::/
739     or Carp::croak "spawn init function must be a fully-qualified name, caught";
740    
741 root 1.75 snd_to_func $nodeid, "AnyEvent::MP::_spawn" => $id, @_;
742 root 1.38
743 root 1.75 "$nodeid#$id"
744 root 1.38 }
745    
746 root 1.59 =item after $timeout, @msg
747    
748     =item after $timeout, $callback
749    
750     Either sends the given message, or call the given callback, after the
751     specified number of seconds.
752    
753 root 1.67 This is simply a utility function that comes in handy at times - the
754     AnyEvent::MP author is not convinced of the wisdom of having it, though,
755     so it may go away in the future.
756 root 1.59
757     =cut
758    
759     sub after($@) {
760     my ($timeout, @action) = @_;
761    
762     my $t; $t = AE::timer $timeout, 0, sub {
763     undef $t;
764     ref $action[0]
765     ? $action[0]()
766     : snd @action;
767     };
768     }
769    
770 root 1.87 =item cal $port, @msg, $callback[, $timeout]
771    
772     A simple form of RPC - sends a message to the given C<$port> with the
773     given contents (C<@msg>), but adds a reply port to the message.
774    
775     The reply port is created temporarily just for the purpose of receiving
776     the reply, and will be C<kil>ed when no longer needed.
777    
778     A reply message sent to the port is passed to the C<$callback> as-is.
779    
780     If an optional time-out (in seconds) is given and it is not C<undef>,
781     then the callback will be called without any arguments after the time-out
782     elapsed and the port is C<kil>ed.
783    
784 root 1.98 If no time-out is given (or it is C<undef>), then the local port will
785     monitor the remote port instead, so it eventually gets cleaned-up.
786 root 1.87
787     Currently this function returns the temporary port, but this "feature"
788     might go in future versions unless you can make a convincing case that
789     this is indeed useful for something.
790    
791     =cut
792    
793     sub cal(@) {
794     my $timeout = ref $_[-1] ? undef : pop;
795     my $cb = pop;
796    
797     my $port = port {
798     undef $timeout;
799     kil $SELF;
800     &$cb;
801     };
802    
803     if (defined $timeout) {
804     $timeout = AE::timer $timeout, 0, sub {
805     undef $timeout;
806     kil $port;
807     $cb->();
808     };
809     } else {
810     mon $_[0], sub {
811     kil $port;
812     $cb->();
813     };
814     }
815    
816     push @_, $port;
817     &snd;
818    
819     $port
820     }
821    
822 root 1.8 =back
823    
824 root 1.26 =head1 AnyEvent::MP vs. Distributed Erlang
825    
826 root 1.35 AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
827     == aemp node, Erlang process == aemp port), so many of the documents and
828     programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
829 root 1.27 sample:
830    
831 root 1.95 http://www.erlang.se/doc/programming_rules.shtml
832     http://erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
833     http://erlang.org/download/erlang-book-part1.pdf # chapters 5 and 6
834     http://erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
835 root 1.27
836     Despite the similarities, there are also some important differences:
837 root 1.26
838     =over 4
839    
840 root 1.65 =item * Node IDs are arbitrary strings in AEMP.
841 root 1.26
842 root 1.65 Erlang relies on special naming and DNS to work everywhere in the same
843     way. AEMP relies on each node somehow knowing its own address(es) (e.g. by
844 root 1.99 configuration or DNS), and possibly the addresses of some seed nodes, but
845     will otherwise discover other nodes (and their IDs) itself.
846 root 1.27
847 root 1.54 =item * Erlang has a "remote ports are like local ports" philosophy, AEMP
848 root 1.51 uses "local ports are like remote ports".
849    
850     The failure modes for local ports are quite different (runtime errors
851     only) then for remote ports - when a local port dies, you I<know> it dies,
852     when a connection to another node dies, you know nothing about the other
853     port.
854    
855     Erlang pretends remote ports are as reliable as local ports, even when
856     they are not.
857    
858     AEMP encourages a "treat remote ports differently" philosophy, with local
859     ports being the special case/exception, where transport errors cannot
860     occur.
861    
862 root 1.26 =item * Erlang uses processes and a mailbox, AEMP does not queue.
863    
864 root 1.51 Erlang uses processes that selectively receive messages, and therefore
865     needs a queue. AEMP is event based, queuing messages would serve no
866     useful purpose. For the same reason the pattern-matching abilities of
867     AnyEvent::MP are more limited, as there is little need to be able to
868 elmex 1.77 filter messages without dequeuing them.
869 root 1.26
870 root 1.35 (But see L<Coro::MP> for a more Erlang-like process model on top of AEMP).
871 root 1.26
872     =item * Erlang sends are synchronous, AEMP sends are asynchronous.
873    
874 root 1.51 Sending messages in Erlang is synchronous and blocks the process (and
875     so does not need a queue that can overflow). AEMP sends are immediate,
876     connection establishment is handled in the background.
877 root 1.26
878 root 1.51 =item * Erlang suffers from silent message loss, AEMP does not.
879 root 1.26
880 root 1.99 Erlang implements few guarantees on messages delivery - messages can get
881     lost without any of the processes realising it (i.e. you send messages a,
882     b, and c, and the other side only receives messages a and c).
883 root 1.26
884 root 1.66 AEMP guarantees correct ordering, and the guarantee that after one message
885     is lost, all following ones sent to the same port are lost as well, until
886     monitoring raises an error, so there are no silent "holes" in the message
887     sequence.
888 root 1.26
889     =item * Erlang can send messages to the wrong port, AEMP does not.
890    
891 root 1.51 In Erlang it is quite likely that a node that restarts reuses a process ID
892     known to other nodes for a completely different process, causing messages
893     destined for that process to end up in an unrelated process.
894 root 1.26
895     AEMP never reuses port IDs, so old messages or old port IDs floating
896     around in the network will not be sent to an unrelated port.
897    
898     =item * Erlang uses unprotected connections, AEMP uses secure
899     authentication and can use TLS.
900    
901 root 1.66 AEMP can use a proven protocol - TLS - to protect connections and
902 root 1.26 securely authenticate nodes.
903    
904 root 1.28 =item * The AEMP protocol is optimised for both text-based and binary
905     communications.
906    
907 root 1.66 The AEMP protocol, unlike the Erlang protocol, supports both programming
908     language independent text-only protocols (good for debugging) and binary,
909 root 1.67 language-specific serialisers (e.g. Storable). By default, unless TLS is
910     used, the protocol is actually completely text-based.
911 root 1.28
912     It has also been carefully designed to be implementable in other languages
913 root 1.66 with a minimum of work while gracefully degrading functionality to make the
914 root 1.28 protocol simple.
915    
916 root 1.35 =item * AEMP has more flexible monitoring options than Erlang.
917    
918     In Erlang, you can chose to receive I<all> exit signals as messages
919     or I<none>, there is no in-between, so monitoring single processes is
920     difficult to implement. Monitoring in AEMP is more flexible than in
921     Erlang, as one can choose between automatic kill, exit message or callback
922     on a per-process basis.
923    
924 root 1.37 =item * Erlang tries to hide remote/local connections, AEMP does not.
925 root 1.35
926 root 1.67 Monitoring in Erlang is not an indicator of process death/crashes, in the
927     same way as linking is (except linking is unreliable in Erlang).
928 root 1.37
929     In AEMP, you don't "look up" registered port names or send to named ports
930     that might or might not be persistent. Instead, you normally spawn a port
931 root 1.67 on the remote node. The init function monitors you, and you monitor the
932     remote port. Since both monitors are local to the node, they are much more
933     reliable (no need for C<spawn_link>).
934 root 1.37
935     This also saves round-trips and avoids sending messages to the wrong port
936     (hard to do in Erlang).
937 root 1.35
938 root 1.26 =back
939    
940 root 1.46 =head1 RATIONALE
941    
942     =over 4
943    
944 root 1.67 =item Why strings for port and node IDs, why not objects?
945 root 1.46
946     We considered "objects", but found that the actual number of methods
947 root 1.67 that can be called are quite low. Since port and node IDs travel over
948 root 1.46 the network frequently, the serialising/deserialising would add lots of
949 root 1.67 overhead, as well as having to keep a proxy object everywhere.
950 root 1.46
951     Strings can easily be printed, easily serialised etc. and need no special
952     procedures to be "valid".
953    
954 root 1.67 And as a result, a miniport consists of a single closure stored in a
955     global hash - it can't become much cheaper.
956 root 1.47
957 root 1.67 =item Why favour JSON, why not a real serialising format such as Storable?
958 root 1.46
959     In fact, any AnyEvent::MP node will happily accept Storable as framing
960     format, but currently there is no way to make a node use Storable by
961 root 1.67 default (although all nodes will accept it).
962 root 1.46
963     The default framing protocol is JSON because a) JSON::XS is many times
964     faster for small messages and b) most importantly, after years of
965     experience we found that object serialisation is causing more problems
966 root 1.67 than it solves: Just like function calls, objects simply do not travel
967 root 1.46 easily over the network, mostly because they will always be a copy, so you
968     always have to re-think your design.
969    
970     Keeping your messages simple, concentrating on data structures rather than
971     objects, will keep your messages clean, tidy and efficient.
972    
973     =back
974    
975 root 1.1 =head1 SEE ALSO
976    
977 root 1.68 L<AnyEvent::MP::Intro> - a gentle introduction.
978    
979     L<AnyEvent::MP::Kernel> - more, lower-level, stuff.
980    
981     L<AnyEvent::MP::Global> - network maintainance and port groups, to find
982     your applications.
983    
984 root 1.105 L<AnyEvent::MP::DataConn> - establish data connections between nodes.
985    
986 root 1.81 L<AnyEvent::MP::LogCatcher> - simple service to display log messages from
987     all nodes.
988    
989 root 1.1 L<AnyEvent>.
990    
991     =head1 AUTHOR
992    
993     Marc Lehmann <schmorp@schmorp.de>
994     http://home.schmorp.de/
995    
996     =cut
997    
998     1
999