ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
Revision: 1.48
Committed: Thu Aug 13 02:59:42 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.47: +10 -5 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     AnyEvent::MP - multi-processing/message-passing framework
4    
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP;
8    
9 root 1.22 $NODE # contains this node's noderef
10     NODE # returns this node's noderef
11     NODE $port # returns the noderef of the port
12 root 1.2
13 root 1.38 $SELF # receiving/own port id in rcv callbacks
14    
15 root 1.48 # initialise the node so it can send/receive messages
16     initialise_node; # -OR-
17     initialise_node "localhost:4040"; # -OR-
18     initialise_node "slave/", "localhost:4040"
19    
20 root 1.38 # ports are message endpoints
21    
22     # sending messages
23 root 1.2 snd $port, type => data...;
24 root 1.38 snd $port, @msg;
25     snd @msg_with_first_element_being_a_port;
26 root 1.2
27 root 1.48 # creating/using miniports
28 root 1.38 my $miniport = port { my @msg = @_; 0 };
29 root 1.22
30 root 1.48 # creating/using full ports
31 root 1.38 my $port = port;
32     rcv $port, smartmatch => $cb->(@msg);
33     rcv $port, ping => sub { snd $_[0], "pong"; 0 };
34     rcv $port, pong => sub { warn "pong received\n"; 0 };
35 root 1.2
36     # more, smarter, matches (_any_ is exported by this module)
37     rcv $port, [child_died => $pid] => sub { ...
38     rcv $port, [_any_, _any_, 3] => sub { .. $_[2] is 3
39    
40 root 1.48 # create a port on another node
41     my $port = spawn $node, $initfunc, @initdata;
42    
43 root 1.35 # monitoring
44     mon $port, $cb->(@msg) # callback is invoked on death
45     mon $port, $otherport # kill otherport on abnormal death
46     mon $port, $otherport, @msg # send message on death
47    
48 root 1.45 =head1 CURRENT STATUS
49    
50     AnyEvent::MP - stable API, should work
51     AnyEvent::MP::Intro - outdated
52     AnyEvent::MP::Kernel - WIP
53     AnyEvent::MP::Transport - mostly stable
54    
55     stay tuned.
56    
57 root 1.1 =head1 DESCRIPTION
58    
59 root 1.2 This module (-family) implements a simple message passing framework.
60    
61     Despite its simplicity, you can securely message other processes running
62     on the same or other hosts.
63    
64 root 1.23 For an introduction to this module family, see the L<AnyEvent::MP::Intro>
65     manual page.
66    
67     At the moment, this module family is severly broken and underdocumented,
68 root 1.21 so do not use. This was uploaded mainly to reserve the CPAN namespace -
69 root 1.45 stay tuned!
70 root 1.6
71 root 1.2 =head1 CONCEPTS
72    
73     =over 4
74    
75     =item port
76    
77 root 1.29 A port is something you can send messages to (with the C<snd> function).
78    
79     Some ports allow you to register C<rcv> handlers that can match specific
80     messages. All C<rcv> handlers will receive messages they match, messages
81     will not be queued.
82 root 1.2
83 root 1.3 =item port id - C<noderef#portname>
84 root 1.2
85 root 1.29 A port id is normaly the concatenation of a noderef, a hash-mark (C<#>) as
86     separator, and a port name (a printable string of unspecified format). An
87 root 1.30 exception is the the node port, whose ID is identical to its node
88 root 1.29 reference.
89 root 1.2
90     =item node
91    
92     A node is a single process containing at least one port - the node
93 root 1.29 port. You can send messages to node ports to find existing ports or to
94     create new ports, among other things.
95 root 1.2
96 root 1.29 Nodes are either private (single-process only), slaves (connected to a
97     master node only) or public nodes (connectable from unrelated nodes).
98 root 1.2
99 root 1.5 =item noderef - C<host:port,host:port...>, C<id@noderef>, C<id>
100 root 1.2
101 root 1.29 A node reference is a string that either simply identifies the node (for
102     private and slave nodes), or contains a recipe on how to reach a given
103 root 1.2 node (for public nodes).
104    
105 root 1.29 This recipe is simply a comma-separated list of C<address:port> pairs (for
106     TCP/IP, other protocols might look different).
107    
108     Node references come in two flavours: resolved (containing only numerical
109     addresses) or unresolved (where hostnames are used instead of addresses).
110    
111     Before using an unresolved node reference in a message you first have to
112     resolve it.
113    
114 root 1.2 =back
115    
116 root 1.3 =head1 VARIABLES/FUNCTIONS
117 root 1.2
118     =over 4
119    
120 root 1.1 =cut
121    
122     package AnyEvent::MP;
123    
124 root 1.44 use AnyEvent::MP::Kernel;
125 root 1.2
126 root 1.1 use common::sense;
127    
128 root 1.2 use Carp ();
129    
130 root 1.1 use AE ();
131    
132 root 1.2 use base "Exporter";
133    
134 root 1.44 our $VERSION = $AnyEvent::MP::Kernel::VERSION;
135 root 1.43
136 root 1.8 our @EXPORT = qw(
137 root 1.22 NODE $NODE *SELF node_of _any_
138 root 1.31 resolve_node initialise_node
139 root 1.38 snd rcv mon kil reg psub spawn
140 root 1.22 port
141 root 1.8 );
142 root 1.2
143 root 1.22 our $SELF;
144    
145     sub _self_die() {
146     my $msg = $@;
147     $msg =~ s/\n+$// unless ref $msg;
148     kil $SELF, die => $msg;
149     }
150    
151     =item $thisnode = NODE / $NODE
152    
153     The C<NODE> function returns, and the C<$NODE> variable contains
154     the noderef of the local node. The value is initialised by a call
155     to C<become_public> or C<become_slave>, after which all local port
156     identifiers become invalid.
157    
158 root 1.33 =item $noderef = node_of $port
159 root 1.22
160     Extracts and returns the noderef from a portid or a noderef.
161    
162 root 1.34 =item initialise_node $noderef, $seednode, $seednode...
163    
164     =item initialise_node "slave/", $master, $master...
165    
166     Before a node can talk to other nodes on the network it has to initialise
167     itself - the minimum a node needs to know is it's own name, and optionally
168     it should know the noderefs of some other nodes in the network.
169    
170     This function initialises a node - it must be called exactly once (or
171     never) before calling other AnyEvent::MP functions.
172    
173     All arguments are noderefs, which can be either resolved or unresolved.
174    
175     There are two types of networked nodes, public nodes and slave nodes:
176    
177     =over 4
178    
179     =item public nodes
180    
181     For public nodes, C<$noderef> must either be a (possibly unresolved)
182     noderef, in which case it will be resolved, or C<undef> (or missing), in
183     which case the noderef will be guessed.
184    
185     Afterwards, the node will bind itself on all endpoints and try to connect
186     to all additional C<$seednodes> that are specified. Seednodes are optional
187     and can be used to quickly bootstrap the node into an existing network.
188    
189     =item slave nodes
190    
191     When the C<$noderef> is the special string C<slave/>, then the node will
192     become a slave node. Slave nodes cannot be contacted from outside and will
193     route most of their traffic to the master node that they attach to.
194    
195     At least one additional noderef is required: The node will try to connect
196     to all of them and will become a slave attached to the first node it can
197     successfully connect to.
198    
199     =back
200    
201     This function will block until all nodes have been resolved and, for slave
202     nodes, until it has successfully established a connection to a master
203     server.
204    
205     Example: become a public node listening on the default node.
206    
207     initialise_node;
208    
209     Example: become a public node, and try to contact some well-known master
210     servers to become part of the network.
211    
212     initialise_node undef, "master1", "master2";
213    
214     Example: become a public node listening on port C<4041>.
215    
216     initialise_node 4041;
217    
218     Example: become a public node, only visible on localhost port 4044.
219    
220     initialise_node "locahost:4044";
221    
222     Example: become a slave node to any of the specified master servers.
223    
224     initialise_node "slave/", "master1", "192.168.13.17", "mp.example.net";
225    
226 root 1.29 =item $cv = resolve_node $noderef
227    
228     Takes an unresolved node reference that may contain hostnames and
229     abbreviated IDs, resolves all of them and returns a resolved node
230     reference.
231    
232     In addition to C<address:port> pairs allowed in resolved noderefs, the
233     following forms are supported:
234    
235     =over 4
236    
237     =item the empty string
238    
239     An empty-string component gets resolved as if the default port (4040) was
240     specified.
241    
242     =item naked port numbers (e.g. C<1234>)
243    
244     These are resolved by prepending the local nodename and a colon, to be
245     further resolved.
246    
247     =item hostnames (e.g. C<localhost:1234>, C<localhost>)
248    
249     These are resolved by using AnyEvent::DNS to resolve them, optionally
250     looking up SRV records for the C<aemp=4040> port, if no port was
251     specified.
252    
253     =back
254    
255 root 1.22 =item $SELF
256    
257     Contains the current port id while executing C<rcv> callbacks or C<psub>
258     blocks.
259 root 1.3
260 root 1.22 =item SELF, %SELF, @SELF...
261    
262     Due to some quirks in how perl exports variables, it is impossible to
263     just export C<$SELF>, all the symbols called C<SELF> are exported by this
264     module, but only C<$SELF> is currently used.
265 root 1.3
266 root 1.33 =item snd $port, type => @data
267 root 1.3
268 root 1.33 =item snd $port, @msg
269 root 1.3
270 root 1.8 Send the given message to the given port ID, which can identify either
271     a local or a remote port, and can be either a string or soemthignt hat
272     stringifies a sa port ID (such as a port object :).
273    
274     While the message can be about anything, it is highly recommended to use a
275     string as first element (a portid, or some word that indicates a request
276     type etc.).
277 root 1.3
278     The message data effectively becomes read-only after a call to this
279     function: modifying any argument is not allowed and can cause many
280     problems.
281    
282     The type of data you can transfer depends on the transport protocol: when
283     JSON is used, then only strings, numbers and arrays and hashes consisting
284     of those are allowed (no objects). When Storable is used, then anything
285     that Storable can serialise and deserialise is allowed, and for the local
286     node, anything can be passed.
287    
288 root 1.22 =item $local_port = port
289 root 1.2
290 root 1.31 Create a new local port object that can be used either as a pattern
291     matching port ("full port") or a single-callback port ("miniport"),
292     depending on how C<rcv> callbacks are bound to the object.
293 root 1.3
294 root 1.33 =item $port = port { my @msg = @_; $finished }
295 root 1.10
296 root 1.33 Creates a "miniport", that is, a very lightweight port without any pattern
297     matching behind it, and returns its ID. Semantically the same as creating
298     a port and calling C<rcv $port, $callback> on it.
299 root 1.15
300     The block will be called for every message received on the port. When the
301     callback returns a true value its job is considered "done" and the port
302     will be destroyed. Otherwise it will stay alive.
303    
304 root 1.17 The message will be passed as-is, no extra argument (i.e. no port id) will
305 root 1.15 be passed to the callback.
306    
307     If you need the local port id in the callback, this works nicely:
308    
309 root 1.31 my $port; $port = port {
310 root 1.15 snd $otherport, reply => $port;
311     };
312 root 1.10
313     =cut
314    
315 root 1.33 sub rcv($@);
316    
317 root 1.22 sub port(;&) {
318     my $id = "$UNIQ." . $ID++;
319     my $port = "$NODE#$id";
320    
321     if (@_) {
322 root 1.33 rcv $port, shift;
323 root 1.22 } else {
324 root 1.33 $PORT{$id} = sub { }; # nop
325 root 1.22 }
326 root 1.10
327 root 1.22 $port
328 root 1.10 }
329    
330 root 1.33 =item reg $port, $name
331 root 1.8
332 root 1.36 =item reg $name
333    
334     Registers the given port (or C<$SELF><<< if missing) under the name
335     C<$name>. If the name already exists it is replaced.
336 root 1.8
337 root 1.22 A port can only be registered under one well known name.
338 root 1.8
339 root 1.22 A port automatically becomes unregistered when it is killed.
340 root 1.8
341     =cut
342    
343 root 1.22 sub reg(@) {
344 root 1.36 my $port = @_ > 1 ? shift : $SELF || Carp::croak 'reg: called with one argument only, but $SELF not set,';
345 root 1.8
346 root 1.36 $REG{$_[0]} = $port;
347 root 1.22 }
348 root 1.18
349 root 1.33 =item rcv $port, $callback->(@msg)
350 root 1.31
351 root 1.33 Replaces the callback on the specified miniport (after converting it to
352     one if required).
353 root 1.31
354 root 1.33 =item rcv $port, tagstring => $callback->(@msg), ...
355 root 1.3
356 root 1.33 =item rcv $port, $smartmatch => $callback->(@msg), ...
357 root 1.3
358 root 1.33 =item rcv $port, [$smartmatch...] => $callback->(@msg), ...
359 root 1.3
360 root 1.32 Register callbacks to be called on matching messages on the given full
361 root 1.36 port (after converting it to one if required) and return the port.
362 root 1.3
363     The callback has to return a true value when its work is done, after
364     which is will be removed, or a false value in which case it will stay
365     registered.
366    
367 root 1.33 The global C<$SELF> (exported by this module) contains C<$port> while
368 root 1.22 executing the callback.
369    
370 root 1.38 Runtime errors during callback execution will result in the port being
371 root 1.22 C<kil>ed.
372    
373 root 1.3 If the match is an array reference, then it will be matched against the
374     first elements of the message, otherwise only the first element is being
375     matched.
376    
377     Any element in the match that is specified as C<_any_> (a function
378     exported by this module) matches any single element of the message.
379    
380     While not required, it is highly recommended that the first matching
381     element is a string identifying the message. The one-string-only match is
382     also the most efficient match (by far).
383    
384 root 1.36 Example: create a port and bind receivers on it in one go.
385    
386     my $port = rcv port,
387     msg1 => sub { ...; 0 },
388     msg2 => sub { ...; 0 },
389     ;
390    
391     Example: create a port, bind receivers and send it in a message elsewhere
392     in one go:
393    
394     snd $otherport, reply =>
395     rcv port,
396     msg1 => sub { ...; 0 },
397     ...
398     ;
399    
400 root 1.3 =cut
401    
402     sub rcv($@) {
403 root 1.33 my $port = shift;
404     my ($noderef, $portid) = split /#/, $port, 2;
405 root 1.3
406 root 1.22 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
407 root 1.33 or Carp::croak "$port: rcv can only be called on local ports, caught";
408 root 1.22
409 root 1.33 if (@_ == 1) {
410     my $cb = shift;
411     delete $PORT_DATA{$portid};
412     $PORT{$portid} = sub {
413     local $SELF = $port;
414     eval {
415     &$cb
416     and kil $port;
417     };
418     _self_die if $@;
419     };
420     } else {
421     my $self = $PORT_DATA{$portid} ||= do {
422     my $self = bless {
423     id => $port,
424     }, "AnyEvent::MP::Port";
425    
426     $PORT{$portid} = sub {
427     local $SELF = $port;
428    
429     eval {
430     for (@{ $self->{rc0}{$_[0]} }) {
431     $_ && &{$_->[0]}
432     && undef $_;
433     }
434    
435     for (@{ $self->{rcv}{$_[0]} }) {
436     $_ && [@_[1 .. @{$_->[1]}]] ~~ $_->[1]
437     && &{$_->[0]}
438     && undef $_;
439     }
440    
441     for (@{ $self->{any} }) {
442     $_ && [@_[0 .. $#{$_->[1]}]] ~~ $_->[1]
443     && &{$_->[0]}
444     && undef $_;
445     }
446     };
447     _self_die if $@;
448     };
449    
450     $self
451     };
452 root 1.22
453 root 1.33 "AnyEvent::MP::Port" eq ref $self
454     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
455 root 1.22
456 root 1.33 while (@_) {
457     my ($match, $cb) = splice @_, 0, 2;
458    
459     if (!ref $match) {
460     push @{ $self->{rc0}{$match} }, [$cb];
461     } elsif (("ARRAY" eq ref $match && !ref $match->[0])) {
462     my ($type, @match) = @$match;
463     @match
464     ? push @{ $self->{rcv}{$match->[0]} }, [$cb, \@match]
465     : push @{ $self->{rc0}{$match->[0]} }, [$cb];
466     } else {
467     push @{ $self->{any} }, [$cb, $match];
468     }
469 root 1.22 }
470 root 1.3 }
471 root 1.31
472 root 1.33 $port
473 root 1.2 }
474    
475 root 1.22 =item $closure = psub { BLOCK }
476 root 1.2
477 root 1.22 Remembers C<$SELF> and creates a closure out of the BLOCK. When the
478     closure is executed, sets up the environment in the same way as in C<rcv>
479     callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
480    
481     This is useful when you register callbacks from C<rcv> callbacks:
482    
483     rcv delayed_reply => sub {
484     my ($delay, @reply) = @_;
485     my $timer = AE::timer $delay, 0, psub {
486     snd @reply, $SELF;
487     };
488     };
489 root 1.3
490 root 1.8 =cut
491 root 1.3
492 root 1.22 sub psub(&) {
493     my $cb = shift;
494 root 1.3
495 root 1.22 my $port = $SELF
496     or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
497 root 1.1
498 root 1.22 sub {
499     local $SELF = $port;
500 root 1.2
501 root 1.22 if (wantarray) {
502     my @res = eval { &$cb };
503     _self_die if $@;
504     @res
505     } else {
506     my $res = eval { &$cb };
507     _self_die if $@;
508     $res
509     }
510     }
511 root 1.2 }
512    
513 root 1.33 =item $guard = mon $port, $cb->(@reason)
514 root 1.32
515 root 1.36 =item $guard = mon $port, $rcvport
516    
517     =item $guard = mon $port
518 root 1.32
519 root 1.36 =item $guard = mon $port, $rcvport, @msg
520 root 1.32
521 root 1.42 Monitor the given port and do something when the port is killed or
522     messages to it were lost, and optionally return a guard that can be used
523     to stop monitoring again.
524    
525     C<mon> effectively guarantees that, in the absence of hardware failures,
526     that after starting the monitor, either all messages sent to the port
527     will arrive, or the monitoring action will be invoked after possible
528     message loss has been detected. No messages will be lost "in between"
529     (after the first lost message no further messages will be received by the
530     port). After the monitoring action was invoked, further messages might get
531     delivered again.
532 root 1.32
533 root 1.36 In the first form (callback), the callback is simply called with any
534     number of C<@reason> elements (no @reason means that the port was deleted
535 root 1.32 "normally"). Note also that I<< the callback B<must> never die >>, so use
536     C<eval> if unsure.
537    
538 root 1.43 In the second form (another port given), the other port (C<$rcvport>)
539 root 1.36 will be C<kil>'ed with C<@reason>, iff a @reason was specified, i.e. on
540     "normal" kils nothing happens, while under all other conditions, the other
541     port is killed with the same reason.
542 root 1.32
543 root 1.36 The third form (kill self) is the same as the second form, except that
544     C<$rvport> defaults to C<$SELF>.
545    
546     In the last form (message), a message of the form C<@msg, @reason> will be
547     C<snd>.
548 root 1.32
549 root 1.37 As a rule of thumb, monitoring requests should always monitor a port from
550     a local port (or callback). The reason is that kill messages might get
551     lost, just like any other message. Another less obvious reason is that
552     even monitoring requests can get lost (for exmaple, when the connection
553     to the other node goes down permanently). When monitoring a port locally
554     these problems do not exist.
555    
556 root 1.32 Example: call a given callback when C<$port> is killed.
557    
558     mon $port, sub { warn "port died because of <@_>\n" };
559    
560     Example: kill ourselves when C<$port> is killed abnormally.
561    
562 root 1.36 mon $port;
563 root 1.32
564 root 1.36 Example: send us a restart message when another C<$port> is killed.
565 root 1.32
566     mon $port, $self => "restart";
567    
568     =cut
569    
570     sub mon {
571     my ($noderef, $port) = split /#/, shift, 2;
572    
573     my $node = $NODE{$noderef} || add_node $noderef;
574    
575 root 1.41 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
576 root 1.32
577     unless (ref $cb) {
578     if (@_) {
579     # send a kill info message
580 root 1.41 my (@msg) = ($cb, @_);
581 root 1.32 $cb = sub { snd @msg, @_ };
582     } else {
583     # simply kill other port
584     my $port = $cb;
585     $cb = sub { kil $port, @_ if @_ };
586     }
587     }
588    
589     $node->monitor ($port, $cb);
590    
591     defined wantarray
592     and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
593     }
594    
595     =item $guard = mon_guard $port, $ref, $ref...
596    
597     Monitors the given C<$port> and keeps the passed references. When the port
598     is killed, the references will be freed.
599    
600     Optionally returns a guard that will stop the monitoring.
601    
602     This function is useful when you create e.g. timers or other watchers and
603     want to free them when the port gets killed:
604    
605     $port->rcv (start => sub {
606     my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
607     undef $timer if 0.9 < rand;
608     });
609     });
610    
611     =cut
612    
613     sub mon_guard {
614     my ($port, @refs) = @_;
615    
616 root 1.36 #TODO: mon-less form?
617    
618 root 1.32 mon $port, sub { 0 && @refs }
619     }
620    
621 root 1.33 =item kil $port[, @reason]
622 root 1.32
623     Kill the specified port with the given C<@reason>.
624    
625     If no C<@reason> is specified, then the port is killed "normally" (linked
626     ports will not be kileld, or even notified).
627    
628     Otherwise, linked ports get killed with the same reason (second form of
629     C<mon>, see below).
630    
631     Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
632     will be reported as reason C<< die => $@ >>.
633    
634     Transport/communication errors are reported as C<< transport_error =>
635     $message >>.
636    
637 root 1.38 =cut
638    
639     =item $port = spawn $node, $initfunc[, @initdata]
640    
641     Creates a port on the node C<$node> (which can also be a port ID, in which
642     case it's the node where that port resides).
643    
644     The port ID of the newly created port is return immediately, and it is
645     permissible to immediately start sending messages or monitor the port.
646    
647     After the port has been created, the init function is
648 root 1.39 called. This function must be a fully-qualified function name
649 root 1.40 (e.g. C<MyApp::Chat::Server::init>). To specify a function in the main
650     program, use C<::name>.
651 root 1.38
652     If the function doesn't exist, then the node tries to C<require>
653     the package, then the package above the package and so on (e.g.
654     C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
655     exists or it runs out of package names.
656    
657     The init function is then called with the newly-created port as context
658     object (C<$SELF>) and the C<@initdata> values as arguments.
659    
660     A common idiom is to pass your own port, monitor the spawned port, and
661     in the init function, monitor the original port. This two-way monitoring
662     ensures that both ports get cleaned up when there is a problem.
663    
664     Example: spawn a chat server port on C<$othernode>.
665    
666     # this node, executed from within a port context:
667     my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
668     mon $server;
669    
670     # init function on C<$othernode>
671     sub connect {
672     my ($srcport) = @_;
673    
674     mon $srcport;
675    
676     rcv $SELF, sub {
677     ...
678     };
679     }
680    
681     =cut
682    
683     sub _spawn {
684     my $port = shift;
685     my $init = shift;
686    
687     local $SELF = "$NODE#$port";
688     eval {
689     &{ load_func $init }
690     };
691     _self_die if $@;
692     }
693    
694     sub spawn(@) {
695     my ($noderef, undef) = split /#/, shift, 2;
696    
697     my $id = "$RUNIQ." . $ID++;
698    
699 root 1.39 $_[0] =~ /::/
700     or Carp::croak "spawn init function must be a fully-qualified name, caught";
701    
702 root 1.38 ($NODE{$noderef} || add_node $noderef)
703     ->send (["", "AnyEvent::MP::_spawn" => $id, @_]);
704    
705     "$noderef#$id"
706     }
707    
708 root 1.8 =back
709    
710 root 1.4 =head1 NODE MESSAGES
711    
712 root 1.5 Nodes understand the following messages sent to them. Many of them take
713     arguments called C<@reply>, which will simply be used to compose a reply
714     message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
715     the remaining arguments are simply the message data.
716 root 1.4
717 root 1.29 While other messages exist, they are not public and subject to change.
718    
719 root 1.4 =over 4
720    
721     =cut
722    
723 root 1.22 =item lookup => $name, @reply
724 root 1.3
725 root 1.8 Replies with the port ID of the specified well-known port, or C<undef>.
726 root 1.3
727 root 1.7 =item devnull => ...
728    
729     Generic data sink/CPU heat conversion.
730    
731 root 1.4 =item relay => $port, @msg
732    
733     Simply forwards the message to the given port.
734    
735     =item eval => $string[ @reply]
736    
737     Evaluates the given string. If C<@reply> is given, then a message of the
738 root 1.5 form C<@reply, $@, @evalres> is sent.
739    
740     Example: crash another node.
741    
742     snd $othernode, eval => "exit";
743 root 1.4
744     =item time => @reply
745    
746     Replies the the current node time to C<@reply>.
747    
748 root 1.5 Example: tell the current node to send the current time to C<$myport> in a
749     C<timereply> message.
750    
751     snd $NODE, time => $myport, timereply => 1, 2;
752     # => snd $myport, timereply => 1, 2, <time>
753    
754 root 1.2 =back
755    
756 root 1.26 =head1 AnyEvent::MP vs. Distributed Erlang
757    
758 root 1.35 AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
759     == aemp node, Erlang process == aemp port), so many of the documents and
760     programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
761 root 1.27 sample:
762    
763 root 1.35 http://www.Erlang.se/doc/programming_rules.shtml
764     http://Erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
765     http://Erlang.org/download/Erlang-book-part1.pdf # chapters 5 and 6
766     http://Erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
767 root 1.27
768     Despite the similarities, there are also some important differences:
769 root 1.26
770     =over 4
771    
772     =item * Node references contain the recipe on how to contact them.
773    
774     Erlang relies on special naming and DNS to work everywhere in the
775     same way. AEMP relies on each node knowing it's own address(es), with
776     convenience functionality.
777    
778 root 1.27 This means that AEMP requires a less tightly controlled environment at the
779     cost of longer node references and a slightly higher management overhead.
780    
781 root 1.26 =item * Erlang uses processes and a mailbox, AEMP does not queue.
782    
783     Erlang uses processes that selctively receive messages, and therefore
784     needs a queue. AEMP is event based, queuing messages would serve no useful
785     purpose.
786    
787 root 1.35 (But see L<Coro::MP> for a more Erlang-like process model on top of AEMP).
788 root 1.26
789     =item * Erlang sends are synchronous, AEMP sends are asynchronous.
790    
791 root 1.35 Sending messages in Erlang is synchronous and blocks the process. AEMP
792 root 1.26 sends are immediate, connection establishment is handled in the
793     background.
794    
795     =item * Erlang can silently lose messages, AEMP cannot.
796    
797     Erlang makes few guarantees on messages delivery - messages can get lost
798     without any of the processes realising it (i.e. you send messages a, b,
799     and c, and the other side only receives messages a and c).
800    
801     AEMP guarantees correct ordering, and the guarantee that there are no
802     holes in the message sequence.
803    
804 root 1.35 =item * In Erlang, processes can be declared dead and later be found to be
805 root 1.26 alive.
806    
807 root 1.35 In Erlang it can happen that a monitored process is declared dead and
808 root 1.26 linked processes get killed, but later it turns out that the process is
809     still alive - and can receive messages.
810    
811     In AEMP, when port monitoring detects a port as dead, then that port will
812     eventually be killed - it cannot happen that a node detects a port as dead
813     and then later sends messages to it, finding it is still alive.
814    
815     =item * Erlang can send messages to the wrong port, AEMP does not.
816    
817 root 1.35 In Erlang it is quite possible that a node that restarts reuses a process
818 root 1.26 ID known to other nodes for a completely different process, causing
819     messages destined for that process to end up in an unrelated process.
820    
821     AEMP never reuses port IDs, so old messages or old port IDs floating
822     around in the network will not be sent to an unrelated port.
823    
824     =item * Erlang uses unprotected connections, AEMP uses secure
825     authentication and can use TLS.
826    
827     AEMP can use a proven protocol - SSL/TLS - to protect connections and
828     securely authenticate nodes.
829    
830 root 1.28 =item * The AEMP protocol is optimised for both text-based and binary
831     communications.
832    
833 root 1.35 The AEMP protocol, unlike the Erlang protocol, supports both
834 root 1.28 language-independent text-only protocols (good for debugging) and binary,
835     language-specific serialisers (e.g. Storable).
836    
837     It has also been carefully designed to be implementable in other languages
838     with a minimum of work while gracefully degrading fucntionality to make the
839     protocol simple.
840    
841 root 1.35 =item * AEMP has more flexible monitoring options than Erlang.
842    
843     In Erlang, you can chose to receive I<all> exit signals as messages
844     or I<none>, there is no in-between, so monitoring single processes is
845     difficult to implement. Monitoring in AEMP is more flexible than in
846     Erlang, as one can choose between automatic kill, exit message or callback
847     on a per-process basis.
848    
849 root 1.37 =item * Erlang tries to hide remote/local connections, AEMP does not.
850 root 1.35
851     Monitoring in Erlang is not an indicator of process death/crashes,
852 root 1.37 as linking is (except linking is unreliable in Erlang).
853    
854     In AEMP, you don't "look up" registered port names or send to named ports
855     that might or might not be persistent. Instead, you normally spawn a port
856     on the remote node. The init function monitors the you, and you monitor
857     the remote port. Since both monitors are local to the node, they are much
858     more reliable.
859    
860     This also saves round-trips and avoids sending messages to the wrong port
861     (hard to do in Erlang).
862 root 1.35
863 root 1.26 =back
864    
865 root 1.46 =head1 RATIONALE
866    
867     =over 4
868    
869     =item Why strings for ports and noderefs, why not objects?
870    
871     We considered "objects", but found that the actual number of methods
872     thatc an be called are very low. Since port IDs and noderefs travel over
873     the network frequently, the serialising/deserialising would add lots of
874     overhead, as well as having to keep a proxy object.
875    
876     Strings can easily be printed, easily serialised etc. and need no special
877     procedures to be "valid".
878    
879 root 1.47 And a a miniport consists of a single closure stored in a global hash - it
880     can't become much cheaper.
881    
882 root 1.46 =item Why favour JSON, why not real serialising format such as Storable?
883    
884     In fact, any AnyEvent::MP node will happily accept Storable as framing
885     format, but currently there is no way to make a node use Storable by
886     default.
887    
888     The default framing protocol is JSON because a) JSON::XS is many times
889     faster for small messages and b) most importantly, after years of
890     experience we found that object serialisation is causing more problems
891     than it gains: Just like function calls, objects simply do not travel
892     easily over the network, mostly because they will always be a copy, so you
893     always have to re-think your design.
894    
895     Keeping your messages simple, concentrating on data structures rather than
896     objects, will keep your messages clean, tidy and efficient.
897    
898     =back
899    
900 root 1.1 =head1 SEE ALSO
901    
902     L<AnyEvent>.
903    
904     =head1 AUTHOR
905    
906     Marc Lehmann <schmorp@schmorp.de>
907     http://home.schmorp.de/
908    
909     =cut
910    
911     1
912