ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
Revision: 1.49
Committed: Thu Aug 13 15:29:58 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.48: +39 -21 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     AnyEvent::MP - multi-processing/message-passing framework
4    
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP;
8    
9 root 1.22 $NODE # contains this node's noderef
10     NODE # returns this node's noderef
11     NODE $port # returns the noderef of the port
12 root 1.2
13 root 1.38 $SELF # receiving/own port id in rcv callbacks
14    
15 root 1.48 # initialise the node so it can send/receive messages
16     initialise_node; # -OR-
17     initialise_node "localhost:4040"; # -OR-
18     initialise_node "slave/", "localhost:4040"
19    
20 root 1.38 # ports are message endpoints
21    
22     # sending messages
23 root 1.2 snd $port, type => data...;
24 root 1.38 snd $port, @msg;
25     snd @msg_with_first_element_being_a_port;
26 root 1.2
27 root 1.48 # creating/using miniports
28 root 1.38 my $miniport = port { my @msg = @_; 0 };
29 root 1.22
30 root 1.48 # creating/using full ports
31 root 1.38 my $port = port;
32     rcv $port, smartmatch => $cb->(@msg);
33     rcv $port, ping => sub { snd $_[0], "pong"; 0 };
34     rcv $port, pong => sub { warn "pong received\n"; 0 };
35 root 1.2
36     # more, smarter, matches (_any_ is exported by this module)
37     rcv $port, [child_died => $pid] => sub { ...
38     rcv $port, [_any_, _any_, 3] => sub { .. $_[2] is 3
39    
40 root 1.48 # create a port on another node
41     my $port = spawn $node, $initfunc, @initdata;
42    
43 root 1.35 # monitoring
44     mon $port, $cb->(@msg) # callback is invoked on death
45     mon $port, $otherport # kill otherport on abnormal death
46     mon $port, $otherport, @msg # send message on death
47    
48 root 1.45 =head1 CURRENT STATUS
49    
50     AnyEvent::MP - stable API, should work
51     AnyEvent::MP::Intro - outdated
52     AnyEvent::MP::Kernel - WIP
53     AnyEvent::MP::Transport - mostly stable
54    
55     stay tuned.
56    
57 root 1.1 =head1 DESCRIPTION
58    
59 root 1.2 This module (-family) implements a simple message passing framework.
60    
61     Despite its simplicity, you can securely message other processes running
62     on the same or other hosts.
63    
64 root 1.23 For an introduction to this module family, see the L<AnyEvent::MP::Intro>
65     manual page.
66    
67     At the moment, this module family is severly broken and underdocumented,
68 root 1.21 so do not use. This was uploaded mainly to reserve the CPAN namespace -
69 root 1.45 stay tuned!
70 root 1.6
71 root 1.2 =head1 CONCEPTS
72    
73     =over 4
74    
75     =item port
76    
77 root 1.29 A port is something you can send messages to (with the C<snd> function).
78    
79     Some ports allow you to register C<rcv> handlers that can match specific
80     messages. All C<rcv> handlers will receive messages they match, messages
81     will not be queued.
82 root 1.2
83 root 1.3 =item port id - C<noderef#portname>
84 root 1.2
85 root 1.29 A port id is normaly the concatenation of a noderef, a hash-mark (C<#>) as
86     separator, and a port name (a printable string of unspecified format). An
87 root 1.30 exception is the the node port, whose ID is identical to its node
88 root 1.29 reference.
89 root 1.2
90     =item node
91    
92     A node is a single process containing at least one port - the node
93 root 1.29 port. You can send messages to node ports to find existing ports or to
94     create new ports, among other things.
95 root 1.2
96 root 1.29 Nodes are either private (single-process only), slaves (connected to a
97     master node only) or public nodes (connectable from unrelated nodes).
98 root 1.2
99 root 1.5 =item noderef - C<host:port,host:port...>, C<id@noderef>, C<id>
100 root 1.2
101 root 1.29 A node reference is a string that either simply identifies the node (for
102     private and slave nodes), or contains a recipe on how to reach a given
103 root 1.2 node (for public nodes).
104    
105 root 1.29 This recipe is simply a comma-separated list of C<address:port> pairs (for
106     TCP/IP, other protocols might look different).
107    
108     Node references come in two flavours: resolved (containing only numerical
109     addresses) or unresolved (where hostnames are used instead of addresses).
110    
111     Before using an unresolved node reference in a message you first have to
112     resolve it.
113    
114 root 1.2 =back
115    
116 root 1.3 =head1 VARIABLES/FUNCTIONS
117 root 1.2
118     =over 4
119    
120 root 1.1 =cut
121    
122     package AnyEvent::MP;
123    
124 root 1.44 use AnyEvent::MP::Kernel;
125 root 1.2
126 root 1.1 use common::sense;
127    
128 root 1.2 use Carp ();
129    
130 root 1.1 use AE ();
131    
132 root 1.2 use base "Exporter";
133    
134 root 1.44 our $VERSION = $AnyEvent::MP::Kernel::VERSION;
135 root 1.43
136 root 1.8 our @EXPORT = qw(
137 root 1.22 NODE $NODE *SELF node_of _any_
138 root 1.31 resolve_node initialise_node
139 root 1.38 snd rcv mon kil reg psub spawn
140 root 1.22 port
141 root 1.8 );
142 root 1.2
143 root 1.22 our $SELF;
144    
145     sub _self_die() {
146     my $msg = $@;
147     $msg =~ s/\n+$// unless ref $msg;
148     kil $SELF, die => $msg;
149     }
150    
151     =item $thisnode = NODE / $NODE
152    
153     The C<NODE> function returns, and the C<$NODE> variable contains
154     the noderef of the local node. The value is initialised by a call
155     to C<become_public> or C<become_slave>, after which all local port
156     identifiers become invalid.
157    
158 root 1.33 =item $noderef = node_of $port
159 root 1.22
160     Extracts and returns the noderef from a portid or a noderef.
161    
162 root 1.34 =item initialise_node $noderef, $seednode, $seednode...
163    
164     =item initialise_node "slave/", $master, $master...
165    
166     Before a node can talk to other nodes on the network it has to initialise
167     itself - the minimum a node needs to know is it's own name, and optionally
168     it should know the noderefs of some other nodes in the network.
169    
170     This function initialises a node - it must be called exactly once (or
171     never) before calling other AnyEvent::MP functions.
172    
173 root 1.49 All arguments (optionally except for the first) are noderefs, which can be
174     either resolved or unresolved.
175    
176     The first argument will be looked up in the configuration database first
177     (if it is C<undef> then the current nodename will be used instead) to find
178     the relevant configuration profile (see L<aemp>). If none is found then
179     the default configuration is used. The configuration supplies additional
180     seed/master nodes and can override the actual noderef.
181 root 1.34
182     There are two types of networked nodes, public nodes and slave nodes:
183    
184     =over 4
185    
186     =item public nodes
187    
188 root 1.49 For public nodes, C<$noderef> (supplied either directly to
189     C<initialise_node> or indirectly via a profile or the nodename) must be a
190     noderef (possibly unresolved, in which case it will be resolved).
191    
192     After resolving, the node will bind itself on all endpoints and try to
193     connect to all additional C<$seednodes> that are specified. Seednodes are
194     optional and can be used to quickly bootstrap the node into an existing
195     network.
196 root 1.34
197     =item slave nodes
198    
199 root 1.49 When the C<$noderef> (either as given or overriden by the config file)
200     is the special string C<slave/>, then the node will become a slave
201     node. Slave nodes cannot be contacted from outside and will route most of
202     their traffic to the master node that they attach to.
203    
204     At least one additional noderef is required (either by specifying it
205     directly or because it is part of the configuration profile): The node
206     will try to connect to all of them and will become a slave attached to the
207     first node it can successfully connect to.
208 root 1.34
209     =back
210    
211     This function will block until all nodes have been resolved and, for slave
212     nodes, until it has successfully established a connection to a master
213     server.
214    
215 root 1.49 Example: become a public node listening on the guessed noderef, or the one
216     specified via C<aemp> for the current node. This should be the most common
217     form of invocation for "daemon"-type nodes.
218 root 1.34
219     initialise_node;
220    
221 root 1.49 Example: become a slave node to any of the the seednodes specified via
222     C<aemp>. This form is often used for commandline clients.
223    
224     initialise_node "slave/";
225    
226     Example: become a slave node to any of the specified master servers. This
227     form is also often used for commandline clients.
228    
229     initialise_node "slave/", "master1", "192.168.13.17", "mp.example.net";
230    
231 root 1.34 Example: become a public node, and try to contact some well-known master
232     servers to become part of the network.
233    
234     initialise_node undef, "master1", "master2";
235    
236     Example: become a public node listening on port C<4041>.
237    
238     initialise_node 4041;
239    
240     Example: become a public node, only visible on localhost port 4044.
241    
242 root 1.49 initialise_node "localhost:4044";
243 root 1.34
244 root 1.29 =item $cv = resolve_node $noderef
245    
246     Takes an unresolved node reference that may contain hostnames and
247     abbreviated IDs, resolves all of them and returns a resolved node
248     reference.
249    
250     In addition to C<address:port> pairs allowed in resolved noderefs, the
251     following forms are supported:
252    
253     =over 4
254    
255     =item the empty string
256    
257     An empty-string component gets resolved as if the default port (4040) was
258     specified.
259    
260     =item naked port numbers (e.g. C<1234>)
261    
262     These are resolved by prepending the local nodename and a colon, to be
263     further resolved.
264    
265     =item hostnames (e.g. C<localhost:1234>, C<localhost>)
266    
267     These are resolved by using AnyEvent::DNS to resolve them, optionally
268     looking up SRV records for the C<aemp=4040> port, if no port was
269     specified.
270    
271     =back
272    
273 root 1.22 =item $SELF
274    
275     Contains the current port id while executing C<rcv> callbacks or C<psub>
276     blocks.
277 root 1.3
278 root 1.22 =item SELF, %SELF, @SELF...
279    
280     Due to some quirks in how perl exports variables, it is impossible to
281     just export C<$SELF>, all the symbols called C<SELF> are exported by this
282     module, but only C<$SELF> is currently used.
283 root 1.3
284 root 1.33 =item snd $port, type => @data
285 root 1.3
286 root 1.33 =item snd $port, @msg
287 root 1.3
288 root 1.8 Send the given message to the given port ID, which can identify either
289     a local or a remote port, and can be either a string or soemthignt hat
290     stringifies a sa port ID (such as a port object :).
291    
292     While the message can be about anything, it is highly recommended to use a
293     string as first element (a portid, or some word that indicates a request
294     type etc.).
295 root 1.3
296     The message data effectively becomes read-only after a call to this
297     function: modifying any argument is not allowed and can cause many
298     problems.
299    
300     The type of data you can transfer depends on the transport protocol: when
301     JSON is used, then only strings, numbers and arrays and hashes consisting
302     of those are allowed (no objects). When Storable is used, then anything
303     that Storable can serialise and deserialise is allowed, and for the local
304     node, anything can be passed.
305    
306 root 1.22 =item $local_port = port
307 root 1.2
308 root 1.31 Create a new local port object that can be used either as a pattern
309     matching port ("full port") or a single-callback port ("miniport"),
310     depending on how C<rcv> callbacks are bound to the object.
311 root 1.3
312 root 1.33 =item $port = port { my @msg = @_; $finished }
313 root 1.10
314 root 1.33 Creates a "miniport", that is, a very lightweight port without any pattern
315     matching behind it, and returns its ID. Semantically the same as creating
316     a port and calling C<rcv $port, $callback> on it.
317 root 1.15
318     The block will be called for every message received on the port. When the
319     callback returns a true value its job is considered "done" and the port
320     will be destroyed. Otherwise it will stay alive.
321    
322 root 1.17 The message will be passed as-is, no extra argument (i.e. no port id) will
323 root 1.15 be passed to the callback.
324    
325     If you need the local port id in the callback, this works nicely:
326    
327 root 1.31 my $port; $port = port {
328 root 1.15 snd $otherport, reply => $port;
329     };
330 root 1.10
331     =cut
332    
333 root 1.33 sub rcv($@);
334    
335 root 1.22 sub port(;&) {
336     my $id = "$UNIQ." . $ID++;
337     my $port = "$NODE#$id";
338    
339     if (@_) {
340 root 1.33 rcv $port, shift;
341 root 1.22 } else {
342 root 1.33 $PORT{$id} = sub { }; # nop
343 root 1.22 }
344 root 1.10
345 root 1.22 $port
346 root 1.10 }
347    
348 root 1.33 =item reg $port, $name
349 root 1.8
350 root 1.36 =item reg $name
351    
352     Registers the given port (or C<$SELF><<< if missing) under the name
353     C<$name>. If the name already exists it is replaced.
354 root 1.8
355 root 1.22 A port can only be registered under one well known name.
356 root 1.8
357 root 1.22 A port automatically becomes unregistered when it is killed.
358 root 1.8
359     =cut
360    
361 root 1.22 sub reg(@) {
362 root 1.36 my $port = @_ > 1 ? shift : $SELF || Carp::croak 'reg: called with one argument only, but $SELF not set,';
363 root 1.8
364 root 1.36 $REG{$_[0]} = $port;
365 root 1.22 }
366 root 1.18
367 root 1.33 =item rcv $port, $callback->(@msg)
368 root 1.31
369 root 1.33 Replaces the callback on the specified miniport (after converting it to
370     one if required).
371 root 1.31
372 root 1.33 =item rcv $port, tagstring => $callback->(@msg), ...
373 root 1.3
374 root 1.33 =item rcv $port, $smartmatch => $callback->(@msg), ...
375 root 1.3
376 root 1.33 =item rcv $port, [$smartmatch...] => $callback->(@msg), ...
377 root 1.3
378 root 1.32 Register callbacks to be called on matching messages on the given full
379 root 1.36 port (after converting it to one if required) and return the port.
380 root 1.3
381     The callback has to return a true value when its work is done, after
382     which is will be removed, or a false value in which case it will stay
383     registered.
384    
385 root 1.33 The global C<$SELF> (exported by this module) contains C<$port> while
386 root 1.22 executing the callback.
387    
388 root 1.38 Runtime errors during callback execution will result in the port being
389 root 1.22 C<kil>ed.
390    
391 root 1.3 If the match is an array reference, then it will be matched against the
392     first elements of the message, otherwise only the first element is being
393     matched.
394    
395     Any element in the match that is specified as C<_any_> (a function
396     exported by this module) matches any single element of the message.
397    
398     While not required, it is highly recommended that the first matching
399     element is a string identifying the message. The one-string-only match is
400     also the most efficient match (by far).
401    
402 root 1.36 Example: create a port and bind receivers on it in one go.
403    
404     my $port = rcv port,
405     msg1 => sub { ...; 0 },
406     msg2 => sub { ...; 0 },
407     ;
408    
409     Example: create a port, bind receivers and send it in a message elsewhere
410     in one go:
411    
412     snd $otherport, reply =>
413     rcv port,
414     msg1 => sub { ...; 0 },
415     ...
416     ;
417    
418 root 1.3 =cut
419    
420     sub rcv($@) {
421 root 1.33 my $port = shift;
422     my ($noderef, $portid) = split /#/, $port, 2;
423 root 1.3
424 root 1.22 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
425 root 1.33 or Carp::croak "$port: rcv can only be called on local ports, caught";
426 root 1.22
427 root 1.33 if (@_ == 1) {
428     my $cb = shift;
429     delete $PORT_DATA{$portid};
430     $PORT{$portid} = sub {
431     local $SELF = $port;
432     eval {
433     &$cb
434     and kil $port;
435     };
436     _self_die if $@;
437     };
438     } else {
439     my $self = $PORT_DATA{$portid} ||= do {
440     my $self = bless {
441     id => $port,
442     }, "AnyEvent::MP::Port";
443    
444     $PORT{$portid} = sub {
445     local $SELF = $port;
446    
447     eval {
448     for (@{ $self->{rc0}{$_[0]} }) {
449     $_ && &{$_->[0]}
450     && undef $_;
451     }
452    
453     for (@{ $self->{rcv}{$_[0]} }) {
454     $_ && [@_[1 .. @{$_->[1]}]] ~~ $_->[1]
455     && &{$_->[0]}
456     && undef $_;
457     }
458    
459     for (@{ $self->{any} }) {
460     $_ && [@_[0 .. $#{$_->[1]}]] ~~ $_->[1]
461     && &{$_->[0]}
462     && undef $_;
463     }
464     };
465     _self_die if $@;
466     };
467    
468     $self
469     };
470 root 1.22
471 root 1.33 "AnyEvent::MP::Port" eq ref $self
472     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
473 root 1.22
474 root 1.33 while (@_) {
475     my ($match, $cb) = splice @_, 0, 2;
476    
477     if (!ref $match) {
478     push @{ $self->{rc0}{$match} }, [$cb];
479     } elsif (("ARRAY" eq ref $match && !ref $match->[0])) {
480     my ($type, @match) = @$match;
481     @match
482     ? push @{ $self->{rcv}{$match->[0]} }, [$cb, \@match]
483     : push @{ $self->{rc0}{$match->[0]} }, [$cb];
484     } else {
485     push @{ $self->{any} }, [$cb, $match];
486     }
487 root 1.22 }
488 root 1.3 }
489 root 1.31
490 root 1.33 $port
491 root 1.2 }
492    
493 root 1.22 =item $closure = psub { BLOCK }
494 root 1.2
495 root 1.22 Remembers C<$SELF> and creates a closure out of the BLOCK. When the
496     closure is executed, sets up the environment in the same way as in C<rcv>
497     callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
498    
499     This is useful when you register callbacks from C<rcv> callbacks:
500    
501     rcv delayed_reply => sub {
502     my ($delay, @reply) = @_;
503     my $timer = AE::timer $delay, 0, psub {
504     snd @reply, $SELF;
505     };
506     };
507 root 1.3
508 root 1.8 =cut
509 root 1.3
510 root 1.22 sub psub(&) {
511     my $cb = shift;
512 root 1.3
513 root 1.22 my $port = $SELF
514     or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
515 root 1.1
516 root 1.22 sub {
517     local $SELF = $port;
518 root 1.2
519 root 1.22 if (wantarray) {
520     my @res = eval { &$cb };
521     _self_die if $@;
522     @res
523     } else {
524     my $res = eval { &$cb };
525     _self_die if $@;
526     $res
527     }
528     }
529 root 1.2 }
530    
531 root 1.33 =item $guard = mon $port, $cb->(@reason)
532 root 1.32
533 root 1.36 =item $guard = mon $port, $rcvport
534    
535     =item $guard = mon $port
536 root 1.32
537 root 1.36 =item $guard = mon $port, $rcvport, @msg
538 root 1.32
539 root 1.42 Monitor the given port and do something when the port is killed or
540     messages to it were lost, and optionally return a guard that can be used
541     to stop monitoring again.
542    
543     C<mon> effectively guarantees that, in the absence of hardware failures,
544     that after starting the monitor, either all messages sent to the port
545     will arrive, or the monitoring action will be invoked after possible
546     message loss has been detected. No messages will be lost "in between"
547     (after the first lost message no further messages will be received by the
548     port). After the monitoring action was invoked, further messages might get
549     delivered again.
550 root 1.32
551 root 1.36 In the first form (callback), the callback is simply called with any
552     number of C<@reason> elements (no @reason means that the port was deleted
553 root 1.32 "normally"). Note also that I<< the callback B<must> never die >>, so use
554     C<eval> if unsure.
555    
556 root 1.43 In the second form (another port given), the other port (C<$rcvport>)
557 root 1.36 will be C<kil>'ed with C<@reason>, iff a @reason was specified, i.e. on
558     "normal" kils nothing happens, while under all other conditions, the other
559     port is killed with the same reason.
560 root 1.32
561 root 1.36 The third form (kill self) is the same as the second form, except that
562     C<$rvport> defaults to C<$SELF>.
563    
564     In the last form (message), a message of the form C<@msg, @reason> will be
565     C<snd>.
566 root 1.32
567 root 1.37 As a rule of thumb, monitoring requests should always monitor a port from
568     a local port (or callback). The reason is that kill messages might get
569     lost, just like any other message. Another less obvious reason is that
570     even monitoring requests can get lost (for exmaple, when the connection
571     to the other node goes down permanently). When monitoring a port locally
572     these problems do not exist.
573    
574 root 1.32 Example: call a given callback when C<$port> is killed.
575    
576     mon $port, sub { warn "port died because of <@_>\n" };
577    
578     Example: kill ourselves when C<$port> is killed abnormally.
579    
580 root 1.36 mon $port;
581 root 1.32
582 root 1.36 Example: send us a restart message when another C<$port> is killed.
583 root 1.32
584     mon $port, $self => "restart";
585    
586     =cut
587    
588     sub mon {
589     my ($noderef, $port) = split /#/, shift, 2;
590    
591     my $node = $NODE{$noderef} || add_node $noderef;
592    
593 root 1.41 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
594 root 1.32
595     unless (ref $cb) {
596     if (@_) {
597     # send a kill info message
598 root 1.41 my (@msg) = ($cb, @_);
599 root 1.32 $cb = sub { snd @msg, @_ };
600     } else {
601     # simply kill other port
602     my $port = $cb;
603     $cb = sub { kil $port, @_ if @_ };
604     }
605     }
606    
607     $node->monitor ($port, $cb);
608    
609     defined wantarray
610     and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
611     }
612    
613     =item $guard = mon_guard $port, $ref, $ref...
614    
615     Monitors the given C<$port> and keeps the passed references. When the port
616     is killed, the references will be freed.
617    
618     Optionally returns a guard that will stop the monitoring.
619    
620     This function is useful when you create e.g. timers or other watchers and
621     want to free them when the port gets killed:
622    
623     $port->rcv (start => sub {
624     my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
625     undef $timer if 0.9 < rand;
626     });
627     });
628    
629     =cut
630    
631     sub mon_guard {
632     my ($port, @refs) = @_;
633    
634 root 1.36 #TODO: mon-less form?
635    
636 root 1.32 mon $port, sub { 0 && @refs }
637     }
638    
639 root 1.33 =item kil $port[, @reason]
640 root 1.32
641     Kill the specified port with the given C<@reason>.
642    
643     If no C<@reason> is specified, then the port is killed "normally" (linked
644     ports will not be kileld, or even notified).
645    
646     Otherwise, linked ports get killed with the same reason (second form of
647     C<mon>, see below).
648    
649     Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
650     will be reported as reason C<< die => $@ >>.
651    
652     Transport/communication errors are reported as C<< transport_error =>
653     $message >>.
654    
655 root 1.38 =cut
656    
657     =item $port = spawn $node, $initfunc[, @initdata]
658    
659     Creates a port on the node C<$node> (which can also be a port ID, in which
660     case it's the node where that port resides).
661    
662     The port ID of the newly created port is return immediately, and it is
663     permissible to immediately start sending messages or monitor the port.
664    
665     After the port has been created, the init function is
666 root 1.39 called. This function must be a fully-qualified function name
667 root 1.40 (e.g. C<MyApp::Chat::Server::init>). To specify a function in the main
668     program, use C<::name>.
669 root 1.38
670     If the function doesn't exist, then the node tries to C<require>
671     the package, then the package above the package and so on (e.g.
672     C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
673     exists or it runs out of package names.
674    
675     The init function is then called with the newly-created port as context
676     object (C<$SELF>) and the C<@initdata> values as arguments.
677    
678     A common idiom is to pass your own port, monitor the spawned port, and
679     in the init function, monitor the original port. This two-way monitoring
680     ensures that both ports get cleaned up when there is a problem.
681    
682     Example: spawn a chat server port on C<$othernode>.
683    
684     # this node, executed from within a port context:
685     my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
686     mon $server;
687    
688     # init function on C<$othernode>
689     sub connect {
690     my ($srcport) = @_;
691    
692     mon $srcport;
693    
694     rcv $SELF, sub {
695     ...
696     };
697     }
698    
699     =cut
700    
701     sub _spawn {
702     my $port = shift;
703     my $init = shift;
704    
705     local $SELF = "$NODE#$port";
706     eval {
707     &{ load_func $init }
708     };
709     _self_die if $@;
710     }
711    
712     sub spawn(@) {
713     my ($noderef, undef) = split /#/, shift, 2;
714    
715     my $id = "$RUNIQ." . $ID++;
716    
717 root 1.39 $_[0] =~ /::/
718     or Carp::croak "spawn init function must be a fully-qualified name, caught";
719    
720 root 1.38 ($NODE{$noderef} || add_node $noderef)
721     ->send (["", "AnyEvent::MP::_spawn" => $id, @_]);
722    
723     "$noderef#$id"
724     }
725    
726 root 1.8 =back
727    
728 root 1.4 =head1 NODE MESSAGES
729    
730 root 1.5 Nodes understand the following messages sent to them. Many of them take
731     arguments called C<@reply>, which will simply be used to compose a reply
732     message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
733     the remaining arguments are simply the message data.
734 root 1.4
735 root 1.29 While other messages exist, they are not public and subject to change.
736    
737 root 1.4 =over 4
738    
739     =cut
740    
741 root 1.22 =item lookup => $name, @reply
742 root 1.3
743 root 1.8 Replies with the port ID of the specified well-known port, or C<undef>.
744 root 1.3
745 root 1.7 =item devnull => ...
746    
747     Generic data sink/CPU heat conversion.
748    
749 root 1.4 =item relay => $port, @msg
750    
751     Simply forwards the message to the given port.
752    
753     =item eval => $string[ @reply]
754    
755     Evaluates the given string. If C<@reply> is given, then a message of the
756 root 1.5 form C<@reply, $@, @evalres> is sent.
757    
758     Example: crash another node.
759    
760     snd $othernode, eval => "exit";
761 root 1.4
762     =item time => @reply
763    
764     Replies the the current node time to C<@reply>.
765    
766 root 1.5 Example: tell the current node to send the current time to C<$myport> in a
767     C<timereply> message.
768    
769     snd $NODE, time => $myport, timereply => 1, 2;
770     # => snd $myport, timereply => 1, 2, <time>
771    
772 root 1.2 =back
773    
774 root 1.26 =head1 AnyEvent::MP vs. Distributed Erlang
775    
776 root 1.35 AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
777     == aemp node, Erlang process == aemp port), so many of the documents and
778     programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
779 root 1.27 sample:
780    
781 root 1.35 http://www.Erlang.se/doc/programming_rules.shtml
782     http://Erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
783     http://Erlang.org/download/Erlang-book-part1.pdf # chapters 5 and 6
784     http://Erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
785 root 1.27
786     Despite the similarities, there are also some important differences:
787 root 1.26
788     =over 4
789    
790     =item * Node references contain the recipe on how to contact them.
791    
792     Erlang relies on special naming and DNS to work everywhere in the
793     same way. AEMP relies on each node knowing it's own address(es), with
794     convenience functionality.
795    
796 root 1.27 This means that AEMP requires a less tightly controlled environment at the
797     cost of longer node references and a slightly higher management overhead.
798    
799 root 1.26 =item * Erlang uses processes and a mailbox, AEMP does not queue.
800    
801     Erlang uses processes that selctively receive messages, and therefore
802     needs a queue. AEMP is event based, queuing messages would serve no useful
803     purpose.
804    
805 root 1.35 (But see L<Coro::MP> for a more Erlang-like process model on top of AEMP).
806 root 1.26
807     =item * Erlang sends are synchronous, AEMP sends are asynchronous.
808    
809 root 1.35 Sending messages in Erlang is synchronous and blocks the process. AEMP
810 root 1.26 sends are immediate, connection establishment is handled in the
811     background.
812    
813     =item * Erlang can silently lose messages, AEMP cannot.
814    
815     Erlang makes few guarantees on messages delivery - messages can get lost
816     without any of the processes realising it (i.e. you send messages a, b,
817     and c, and the other side only receives messages a and c).
818    
819     AEMP guarantees correct ordering, and the guarantee that there are no
820     holes in the message sequence.
821    
822 root 1.35 =item * In Erlang, processes can be declared dead and later be found to be
823 root 1.26 alive.
824    
825 root 1.35 In Erlang it can happen that a monitored process is declared dead and
826 root 1.26 linked processes get killed, but later it turns out that the process is
827     still alive - and can receive messages.
828    
829     In AEMP, when port monitoring detects a port as dead, then that port will
830     eventually be killed - it cannot happen that a node detects a port as dead
831     and then later sends messages to it, finding it is still alive.
832    
833     =item * Erlang can send messages to the wrong port, AEMP does not.
834    
835 root 1.35 In Erlang it is quite possible that a node that restarts reuses a process
836 root 1.26 ID known to other nodes for a completely different process, causing
837     messages destined for that process to end up in an unrelated process.
838    
839     AEMP never reuses port IDs, so old messages or old port IDs floating
840     around in the network will not be sent to an unrelated port.
841    
842     =item * Erlang uses unprotected connections, AEMP uses secure
843     authentication and can use TLS.
844    
845     AEMP can use a proven protocol - SSL/TLS - to protect connections and
846     securely authenticate nodes.
847    
848 root 1.28 =item * The AEMP protocol is optimised for both text-based and binary
849     communications.
850    
851 root 1.35 The AEMP protocol, unlike the Erlang protocol, supports both
852 root 1.28 language-independent text-only protocols (good for debugging) and binary,
853     language-specific serialisers (e.g. Storable).
854    
855     It has also been carefully designed to be implementable in other languages
856     with a minimum of work while gracefully degrading fucntionality to make the
857     protocol simple.
858    
859 root 1.35 =item * AEMP has more flexible monitoring options than Erlang.
860    
861     In Erlang, you can chose to receive I<all> exit signals as messages
862     or I<none>, there is no in-between, so monitoring single processes is
863     difficult to implement. Monitoring in AEMP is more flexible than in
864     Erlang, as one can choose between automatic kill, exit message or callback
865     on a per-process basis.
866    
867 root 1.37 =item * Erlang tries to hide remote/local connections, AEMP does not.
868 root 1.35
869     Monitoring in Erlang is not an indicator of process death/crashes,
870 root 1.37 as linking is (except linking is unreliable in Erlang).
871    
872     In AEMP, you don't "look up" registered port names or send to named ports
873     that might or might not be persistent. Instead, you normally spawn a port
874     on the remote node. The init function monitors the you, and you monitor
875     the remote port. Since both monitors are local to the node, they are much
876     more reliable.
877    
878     This also saves round-trips and avoids sending messages to the wrong port
879     (hard to do in Erlang).
880 root 1.35
881 root 1.26 =back
882    
883 root 1.46 =head1 RATIONALE
884    
885     =over 4
886    
887     =item Why strings for ports and noderefs, why not objects?
888    
889     We considered "objects", but found that the actual number of methods
890     thatc an be called are very low. Since port IDs and noderefs travel over
891     the network frequently, the serialising/deserialising would add lots of
892     overhead, as well as having to keep a proxy object.
893    
894     Strings can easily be printed, easily serialised etc. and need no special
895     procedures to be "valid".
896    
897 root 1.47 And a a miniport consists of a single closure stored in a global hash - it
898     can't become much cheaper.
899    
900 root 1.46 =item Why favour JSON, why not real serialising format such as Storable?
901    
902     In fact, any AnyEvent::MP node will happily accept Storable as framing
903     format, but currently there is no way to make a node use Storable by
904     default.
905    
906     The default framing protocol is JSON because a) JSON::XS is many times
907     faster for small messages and b) most importantly, after years of
908     experience we found that object serialisation is causing more problems
909     than it gains: Just like function calls, objects simply do not travel
910     easily over the network, mostly because they will always be a copy, so you
911     always have to re-think your design.
912    
913     Keeping your messages simple, concentrating on data structures rather than
914     objects, will keep your messages clean, tidy and efficient.
915    
916     =back
917    
918 root 1.1 =head1 SEE ALSO
919    
920     L<AnyEvent>.
921    
922     =head1 AUTHOR
923    
924     Marc Lehmann <schmorp@schmorp.de>
925     http://home.schmorp.de/
926    
927     =cut
928    
929     1
930