ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
Revision: 1.51
Committed: Fri Aug 14 14:07:44 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.50: +27 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     AnyEvent::MP - multi-processing/message-passing framework
4    
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP;
8    
9 root 1.22 $NODE # contains this node's noderef
10     NODE # returns this node's noderef
11     NODE $port # returns the noderef of the port
12 root 1.2
13 root 1.38 $SELF # receiving/own port id in rcv callbacks
14    
15 root 1.48 # initialise the node so it can send/receive messages
16     initialise_node; # -OR-
17     initialise_node "localhost:4040"; # -OR-
18     initialise_node "slave/", "localhost:4040"
19    
20 root 1.38 # ports are message endpoints
21    
22     # sending messages
23 root 1.2 snd $port, type => data...;
24 root 1.38 snd $port, @msg;
25     snd @msg_with_first_element_being_a_port;
26 root 1.2
27 root 1.50 # creating/using ports, the simple way
28     my $somple_port = port { my @msg = @_; 0 };
29 root 1.22
30 root 1.50 # creating/using ports, type matching
31 root 1.38 my $port = port;
32     rcv $port, ping => sub { snd $_[0], "pong"; 0 };
33     rcv $port, pong => sub { warn "pong received\n"; 0 };
34 root 1.2
35 root 1.48 # create a port on another node
36     my $port = spawn $node, $initfunc, @initdata;
37    
38 root 1.35 # monitoring
39     mon $port, $cb->(@msg) # callback is invoked on death
40     mon $port, $otherport # kill otherport on abnormal death
41     mon $port, $otherport, @msg # send message on death
42    
43 root 1.45 =head1 CURRENT STATUS
44    
45     AnyEvent::MP - stable API, should work
46     AnyEvent::MP::Intro - outdated
47     AnyEvent::MP::Kernel - WIP
48     AnyEvent::MP::Transport - mostly stable
49    
50     stay tuned.
51    
52 root 1.1 =head1 DESCRIPTION
53    
54 root 1.2 This module (-family) implements a simple message passing framework.
55    
56     Despite its simplicity, you can securely message other processes running
57     on the same or other hosts.
58    
59 root 1.23 For an introduction to this module family, see the L<AnyEvent::MP::Intro>
60     manual page.
61    
62     At the moment, this module family is severly broken and underdocumented,
63 root 1.21 so do not use. This was uploaded mainly to reserve the CPAN namespace -
64 root 1.45 stay tuned!
65 root 1.6
66 root 1.2 =head1 CONCEPTS
67    
68     =over 4
69    
70     =item port
71    
72 root 1.29 A port is something you can send messages to (with the C<snd> function).
73    
74     Some ports allow you to register C<rcv> handlers that can match specific
75     messages. All C<rcv> handlers will receive messages they match, messages
76     will not be queued.
77 root 1.2
78 root 1.3 =item port id - C<noderef#portname>
79 root 1.2
80 root 1.29 A port id is normaly the concatenation of a noderef, a hash-mark (C<#>) as
81     separator, and a port name (a printable string of unspecified format). An
82 root 1.30 exception is the the node port, whose ID is identical to its node
83 root 1.29 reference.
84 root 1.2
85     =item node
86    
87     A node is a single process containing at least one port - the node
88 root 1.29 port. You can send messages to node ports to find existing ports or to
89     create new ports, among other things.
90 root 1.2
91 root 1.29 Nodes are either private (single-process only), slaves (connected to a
92     master node only) or public nodes (connectable from unrelated nodes).
93 root 1.2
94 root 1.5 =item noderef - C<host:port,host:port...>, C<id@noderef>, C<id>
95 root 1.2
96 root 1.29 A node reference is a string that either simply identifies the node (for
97     private and slave nodes), or contains a recipe on how to reach a given
98 root 1.2 node (for public nodes).
99    
100 root 1.29 This recipe is simply a comma-separated list of C<address:port> pairs (for
101     TCP/IP, other protocols might look different).
102    
103     Node references come in two flavours: resolved (containing only numerical
104     addresses) or unresolved (where hostnames are used instead of addresses).
105    
106     Before using an unresolved node reference in a message you first have to
107     resolve it.
108    
109 root 1.2 =back
110    
111 root 1.3 =head1 VARIABLES/FUNCTIONS
112 root 1.2
113     =over 4
114    
115 root 1.1 =cut
116    
117     package AnyEvent::MP;
118    
119 root 1.44 use AnyEvent::MP::Kernel;
120 root 1.2
121 root 1.1 use common::sense;
122    
123 root 1.2 use Carp ();
124    
125 root 1.1 use AE ();
126    
127 root 1.2 use base "Exporter";
128    
129 root 1.44 our $VERSION = $AnyEvent::MP::Kernel::VERSION;
130 root 1.43
131 root 1.8 our @EXPORT = qw(
132 root 1.22 NODE $NODE *SELF node_of _any_
133 root 1.31 resolve_node initialise_node
134 root 1.38 snd rcv mon kil reg psub spawn
135 root 1.22 port
136 root 1.8 );
137 root 1.2
138 root 1.22 our $SELF;
139    
140     sub _self_die() {
141     my $msg = $@;
142     $msg =~ s/\n+$// unless ref $msg;
143     kil $SELF, die => $msg;
144     }
145    
146     =item $thisnode = NODE / $NODE
147    
148     The C<NODE> function returns, and the C<$NODE> variable contains
149     the noderef of the local node. The value is initialised by a call
150     to C<become_public> or C<become_slave>, after which all local port
151     identifiers become invalid.
152    
153 root 1.33 =item $noderef = node_of $port
154 root 1.22
155     Extracts and returns the noderef from a portid or a noderef.
156    
157 root 1.34 =item initialise_node $noderef, $seednode, $seednode...
158    
159     =item initialise_node "slave/", $master, $master...
160    
161     Before a node can talk to other nodes on the network it has to initialise
162     itself - the minimum a node needs to know is it's own name, and optionally
163     it should know the noderefs of some other nodes in the network.
164    
165     This function initialises a node - it must be called exactly once (or
166     never) before calling other AnyEvent::MP functions.
167    
168 root 1.49 All arguments (optionally except for the first) are noderefs, which can be
169     either resolved or unresolved.
170    
171     The first argument will be looked up in the configuration database first
172     (if it is C<undef> then the current nodename will be used instead) to find
173     the relevant configuration profile (see L<aemp>). If none is found then
174     the default configuration is used. The configuration supplies additional
175     seed/master nodes and can override the actual noderef.
176 root 1.34
177     There are two types of networked nodes, public nodes and slave nodes:
178    
179     =over 4
180    
181     =item public nodes
182    
183 root 1.49 For public nodes, C<$noderef> (supplied either directly to
184     C<initialise_node> or indirectly via a profile or the nodename) must be a
185     noderef (possibly unresolved, in which case it will be resolved).
186    
187     After resolving, the node will bind itself on all endpoints and try to
188     connect to all additional C<$seednodes> that are specified. Seednodes are
189     optional and can be used to quickly bootstrap the node into an existing
190     network.
191 root 1.34
192     =item slave nodes
193    
194 root 1.49 When the C<$noderef> (either as given or overriden by the config file)
195     is the special string C<slave/>, then the node will become a slave
196     node. Slave nodes cannot be contacted from outside and will route most of
197     their traffic to the master node that they attach to.
198    
199     At least one additional noderef is required (either by specifying it
200     directly or because it is part of the configuration profile): The node
201     will try to connect to all of them and will become a slave attached to the
202     first node it can successfully connect to.
203 root 1.34
204     =back
205    
206     This function will block until all nodes have been resolved and, for slave
207     nodes, until it has successfully established a connection to a master
208     server.
209    
210 root 1.49 Example: become a public node listening on the guessed noderef, or the one
211     specified via C<aemp> for the current node. This should be the most common
212     form of invocation for "daemon"-type nodes.
213 root 1.34
214     initialise_node;
215    
216 root 1.49 Example: become a slave node to any of the the seednodes specified via
217     C<aemp>. This form is often used for commandline clients.
218    
219     initialise_node "slave/";
220    
221     Example: become a slave node to any of the specified master servers. This
222     form is also often used for commandline clients.
223    
224     initialise_node "slave/", "master1", "192.168.13.17", "mp.example.net";
225    
226 root 1.34 Example: become a public node, and try to contact some well-known master
227     servers to become part of the network.
228    
229     initialise_node undef, "master1", "master2";
230    
231     Example: become a public node listening on port C<4041>.
232    
233     initialise_node 4041;
234    
235     Example: become a public node, only visible on localhost port 4044.
236    
237 root 1.49 initialise_node "localhost:4044";
238 root 1.34
239 root 1.29 =item $cv = resolve_node $noderef
240    
241     Takes an unresolved node reference that may contain hostnames and
242     abbreviated IDs, resolves all of them and returns a resolved node
243     reference.
244    
245     In addition to C<address:port> pairs allowed in resolved noderefs, the
246     following forms are supported:
247    
248     =over 4
249    
250     =item the empty string
251    
252     An empty-string component gets resolved as if the default port (4040) was
253     specified.
254    
255     =item naked port numbers (e.g. C<1234>)
256    
257     These are resolved by prepending the local nodename and a colon, to be
258     further resolved.
259    
260     =item hostnames (e.g. C<localhost:1234>, C<localhost>)
261    
262     These are resolved by using AnyEvent::DNS to resolve them, optionally
263     looking up SRV records for the C<aemp=4040> port, if no port was
264     specified.
265    
266     =back
267    
268 root 1.22 =item $SELF
269    
270     Contains the current port id while executing C<rcv> callbacks or C<psub>
271     blocks.
272 root 1.3
273 root 1.22 =item SELF, %SELF, @SELF...
274    
275     Due to some quirks in how perl exports variables, it is impossible to
276     just export C<$SELF>, all the symbols called C<SELF> are exported by this
277     module, but only C<$SELF> is currently used.
278 root 1.3
279 root 1.33 =item snd $port, type => @data
280 root 1.3
281 root 1.33 =item snd $port, @msg
282 root 1.3
283 root 1.8 Send the given message to the given port ID, which can identify either
284     a local or a remote port, and can be either a string or soemthignt hat
285     stringifies a sa port ID (such as a port object :).
286    
287     While the message can be about anything, it is highly recommended to use a
288     string as first element (a portid, or some word that indicates a request
289     type etc.).
290 root 1.3
291     The message data effectively becomes read-only after a call to this
292     function: modifying any argument is not allowed and can cause many
293     problems.
294    
295     The type of data you can transfer depends on the transport protocol: when
296     JSON is used, then only strings, numbers and arrays and hashes consisting
297     of those are allowed (no objects). When Storable is used, then anything
298     that Storable can serialise and deserialise is allowed, and for the local
299     node, anything can be passed.
300    
301 root 1.22 =item $local_port = port
302 root 1.2
303 root 1.50 Create a new local port object and returns its port ID. Initially it has
304     no callbacks set and will throw an error when it receives messages.
305 root 1.10
306 root 1.50 =item $local_port = port { my @msg = @_ }
307 root 1.15
308 root 1.50 Creates a new local port, and returns its ID. Semantically the same as
309     creating a port and calling C<rcv $port, $callback> on it.
310 root 1.15
311 root 1.50 The block will be called for every message received on the port, with the
312     global variable C<$SELF> set to the port ID. Runtime errors will cause the
313     port to be C<kil>ed. The message will be passed as-is, no extra argument
314     (i.e. no port ID) will be passed to the callback.
315 root 1.15
316 root 1.50 If you want to stop/destroy the port, simply C<kil> it:
317 root 1.15
318 root 1.50 my $port = port {
319     my @msg = @_;
320     ...
321     kil $SELF;
322 root 1.15 };
323 root 1.10
324     =cut
325    
326 root 1.33 sub rcv($@);
327    
328 root 1.50 sub _kilme {
329     die "received message on port without callback";
330     }
331    
332 root 1.22 sub port(;&) {
333     my $id = "$UNIQ." . $ID++;
334     my $port = "$NODE#$id";
335    
336 root 1.50 rcv $port, shift || \&_kilme;
337 root 1.10
338 root 1.22 $port
339 root 1.10 }
340    
341 root 1.50 =item rcv $local_port, $callback->(@msg)
342 root 1.31
343 root 1.50 Replaces the default callback on the specified port. There is no way to
344     remove the default callback: use C<sub { }> to disable it, or better
345     C<kil> the port when it is no longer needed.
346 root 1.3
347 root 1.33 The global C<$SELF> (exported by this module) contains C<$port> while
348 root 1.50 executing the callback. Runtime errors during callback execution will
349     result in the port being C<kil>ed.
350 root 1.22
351 root 1.50 The default callback received all messages not matched by a more specific
352     C<tag> match.
353 root 1.22
354 root 1.50 =item rcv $local_port, tag => $callback->(@msg_without_tag), ...
355 root 1.3
356 root 1.50 Register callbacks to be called on messages starting with the given tag on
357     the given port (and return the port), or unregister it (when C<$callback>
358     is C<$undef>).
359 root 1.3
360 root 1.50 The original message will be passed to the callback, after the first
361     element (the tag) has been removed. The callback will use the same
362     environment as the default callback (see above).
363 root 1.3
364 root 1.36 Example: create a port and bind receivers on it in one go.
365    
366     my $port = rcv port,
367 root 1.50 msg1 => sub { ... },
368     msg2 => sub { ... },
369 root 1.36 ;
370    
371     Example: create a port, bind receivers and send it in a message elsewhere
372     in one go:
373    
374     snd $otherport, reply =>
375     rcv port,
376 root 1.50 msg1 => sub { ... },
377 root 1.36 ...
378     ;
379    
380 root 1.3 =cut
381    
382     sub rcv($@) {
383 root 1.33 my $port = shift;
384     my ($noderef, $portid) = split /#/, $port, 2;
385 root 1.3
386 root 1.22 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
387 root 1.33 or Carp::croak "$port: rcv can only be called on local ports, caught";
388 root 1.22
389 root 1.50 while (@_) {
390     if (ref $_[0]) {
391     if (my $self = $PORT_DATA{$portid}) {
392     "AnyEvent::MP::Port" eq ref $self
393     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
394 root 1.33
395 root 1.50 $self->[2] = shift;
396     } else {
397     my $cb = shift;
398     $PORT{$portid} = sub {
399     local $SELF = $port;
400     eval { &$cb }; _self_die if $@;
401     };
402     }
403     } elsif (defined $_[0]) {
404     my $self = $PORT_DATA{$portid} ||= do {
405     my $self = bless [$PORT{$port} || sub { }, { }, $port], "AnyEvent::MP::Port";
406    
407     $PORT{$portid} = sub {
408     local $SELF = $port;
409    
410     if (my $cb = $self->[1]{$_[0]}) {
411     shift;
412     eval { &$cb }; _self_die if $@;
413     } else {
414     &{ $self->[0] };
415 root 1.33 }
416     };
417 root 1.50
418     $self
419 root 1.33 };
420    
421 root 1.50 "AnyEvent::MP::Port" eq ref $self
422     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
423 root 1.22
424 root 1.50 my ($tag, $cb) = splice @_, 0, 2;
425 root 1.33
426 root 1.50 if (defined $cb) {
427     $self->[1]{$tag} = $cb;
428 root 1.33 } else {
429 root 1.50 delete $self->[1]{$tag};
430 root 1.33 }
431 root 1.22 }
432 root 1.3 }
433 root 1.31
434 root 1.33 $port
435 root 1.2 }
436    
437 root 1.22 =item $closure = psub { BLOCK }
438 root 1.2
439 root 1.22 Remembers C<$SELF> and creates a closure out of the BLOCK. When the
440     closure is executed, sets up the environment in the same way as in C<rcv>
441     callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
442    
443     This is useful when you register callbacks from C<rcv> callbacks:
444    
445     rcv delayed_reply => sub {
446     my ($delay, @reply) = @_;
447     my $timer = AE::timer $delay, 0, psub {
448     snd @reply, $SELF;
449     };
450     };
451 root 1.3
452 root 1.8 =cut
453 root 1.3
454 root 1.22 sub psub(&) {
455     my $cb = shift;
456 root 1.3
457 root 1.22 my $port = $SELF
458     or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
459 root 1.1
460 root 1.22 sub {
461     local $SELF = $port;
462 root 1.2
463 root 1.22 if (wantarray) {
464     my @res = eval { &$cb };
465     _self_die if $@;
466     @res
467     } else {
468     my $res = eval { &$cb };
469     _self_die if $@;
470     $res
471     }
472     }
473 root 1.2 }
474    
475 root 1.33 =item $guard = mon $port, $cb->(@reason)
476 root 1.32
477 root 1.36 =item $guard = mon $port, $rcvport
478    
479     =item $guard = mon $port
480 root 1.32
481 root 1.36 =item $guard = mon $port, $rcvport, @msg
482 root 1.32
483 root 1.42 Monitor the given port and do something when the port is killed or
484     messages to it were lost, and optionally return a guard that can be used
485     to stop monitoring again.
486    
487     C<mon> effectively guarantees that, in the absence of hardware failures,
488     that after starting the monitor, either all messages sent to the port
489     will arrive, or the monitoring action will be invoked after possible
490     message loss has been detected. No messages will be lost "in between"
491     (after the first lost message no further messages will be received by the
492     port). After the monitoring action was invoked, further messages might get
493     delivered again.
494 root 1.32
495 root 1.36 In the first form (callback), the callback is simply called with any
496     number of C<@reason> elements (no @reason means that the port was deleted
497 root 1.32 "normally"). Note also that I<< the callback B<must> never die >>, so use
498     C<eval> if unsure.
499    
500 root 1.43 In the second form (another port given), the other port (C<$rcvport>)
501 root 1.36 will be C<kil>'ed with C<@reason>, iff a @reason was specified, i.e. on
502     "normal" kils nothing happens, while under all other conditions, the other
503     port is killed with the same reason.
504 root 1.32
505 root 1.36 The third form (kill self) is the same as the second form, except that
506     C<$rvport> defaults to C<$SELF>.
507    
508     In the last form (message), a message of the form C<@msg, @reason> will be
509     C<snd>.
510 root 1.32
511 root 1.37 As a rule of thumb, monitoring requests should always monitor a port from
512     a local port (or callback). The reason is that kill messages might get
513     lost, just like any other message. Another less obvious reason is that
514     even monitoring requests can get lost (for exmaple, when the connection
515     to the other node goes down permanently). When monitoring a port locally
516     these problems do not exist.
517    
518 root 1.32 Example: call a given callback when C<$port> is killed.
519    
520     mon $port, sub { warn "port died because of <@_>\n" };
521    
522     Example: kill ourselves when C<$port> is killed abnormally.
523    
524 root 1.36 mon $port;
525 root 1.32
526 root 1.36 Example: send us a restart message when another C<$port> is killed.
527 root 1.32
528     mon $port, $self => "restart";
529    
530     =cut
531    
532     sub mon {
533     my ($noderef, $port) = split /#/, shift, 2;
534    
535     my $node = $NODE{$noderef} || add_node $noderef;
536    
537 root 1.41 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
538 root 1.32
539     unless (ref $cb) {
540     if (@_) {
541     # send a kill info message
542 root 1.41 my (@msg) = ($cb, @_);
543 root 1.32 $cb = sub { snd @msg, @_ };
544     } else {
545     # simply kill other port
546     my $port = $cb;
547     $cb = sub { kil $port, @_ if @_ };
548     }
549     }
550    
551     $node->monitor ($port, $cb);
552    
553     defined wantarray
554     and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
555     }
556    
557     =item $guard = mon_guard $port, $ref, $ref...
558    
559     Monitors the given C<$port> and keeps the passed references. When the port
560     is killed, the references will be freed.
561    
562     Optionally returns a guard that will stop the monitoring.
563    
564     This function is useful when you create e.g. timers or other watchers and
565     want to free them when the port gets killed:
566    
567     $port->rcv (start => sub {
568     my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
569     undef $timer if 0.9 < rand;
570     });
571     });
572    
573     =cut
574    
575     sub mon_guard {
576     my ($port, @refs) = @_;
577    
578 root 1.36 #TODO: mon-less form?
579    
580 root 1.32 mon $port, sub { 0 && @refs }
581     }
582    
583 root 1.33 =item kil $port[, @reason]
584 root 1.32
585     Kill the specified port with the given C<@reason>.
586    
587     If no C<@reason> is specified, then the port is killed "normally" (linked
588     ports will not be kileld, or even notified).
589    
590     Otherwise, linked ports get killed with the same reason (second form of
591     C<mon>, see below).
592    
593     Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
594     will be reported as reason C<< die => $@ >>.
595    
596     Transport/communication errors are reported as C<< transport_error =>
597     $message >>.
598    
599 root 1.38 =cut
600    
601     =item $port = spawn $node, $initfunc[, @initdata]
602    
603     Creates a port on the node C<$node> (which can also be a port ID, in which
604     case it's the node where that port resides).
605    
606     The port ID of the newly created port is return immediately, and it is
607     permissible to immediately start sending messages or monitor the port.
608    
609     After the port has been created, the init function is
610 root 1.39 called. This function must be a fully-qualified function name
611 root 1.40 (e.g. C<MyApp::Chat::Server::init>). To specify a function in the main
612     program, use C<::name>.
613 root 1.38
614     If the function doesn't exist, then the node tries to C<require>
615     the package, then the package above the package and so on (e.g.
616     C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
617     exists or it runs out of package names.
618    
619     The init function is then called with the newly-created port as context
620     object (C<$SELF>) and the C<@initdata> values as arguments.
621    
622     A common idiom is to pass your own port, monitor the spawned port, and
623     in the init function, monitor the original port. This two-way monitoring
624     ensures that both ports get cleaned up when there is a problem.
625    
626     Example: spawn a chat server port on C<$othernode>.
627    
628     # this node, executed from within a port context:
629     my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
630     mon $server;
631    
632     # init function on C<$othernode>
633     sub connect {
634     my ($srcport) = @_;
635    
636     mon $srcport;
637    
638     rcv $SELF, sub {
639     ...
640     };
641     }
642    
643     =cut
644    
645     sub _spawn {
646     my $port = shift;
647     my $init = shift;
648    
649     local $SELF = "$NODE#$port";
650     eval {
651     &{ load_func $init }
652     };
653     _self_die if $@;
654     }
655    
656     sub spawn(@) {
657     my ($noderef, undef) = split /#/, shift, 2;
658    
659     my $id = "$RUNIQ." . $ID++;
660    
661 root 1.39 $_[0] =~ /::/
662     or Carp::croak "spawn init function must be a fully-qualified name, caught";
663    
664 root 1.38 ($NODE{$noderef} || add_node $noderef)
665     ->send (["", "AnyEvent::MP::_spawn" => $id, @_]);
666    
667     "$noderef#$id"
668     }
669    
670 root 1.8 =back
671    
672 root 1.4 =head1 NODE MESSAGES
673    
674 root 1.5 Nodes understand the following messages sent to them. Many of them take
675     arguments called C<@reply>, which will simply be used to compose a reply
676     message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
677     the remaining arguments are simply the message data.
678 root 1.4
679 root 1.29 While other messages exist, they are not public and subject to change.
680    
681 root 1.4 =over 4
682    
683     =cut
684    
685 root 1.22 =item lookup => $name, @reply
686 root 1.3
687 root 1.8 Replies with the port ID of the specified well-known port, or C<undef>.
688 root 1.3
689 root 1.7 =item devnull => ...
690    
691     Generic data sink/CPU heat conversion.
692    
693 root 1.4 =item relay => $port, @msg
694    
695     Simply forwards the message to the given port.
696    
697     =item eval => $string[ @reply]
698    
699     Evaluates the given string. If C<@reply> is given, then a message of the
700 root 1.5 form C<@reply, $@, @evalres> is sent.
701    
702     Example: crash another node.
703    
704     snd $othernode, eval => "exit";
705 root 1.4
706     =item time => @reply
707    
708     Replies the the current node time to C<@reply>.
709    
710 root 1.5 Example: tell the current node to send the current time to C<$myport> in a
711     C<timereply> message.
712    
713     snd $NODE, time => $myport, timereply => 1, 2;
714     # => snd $myport, timereply => 1, 2, <time>
715    
716 root 1.2 =back
717    
718 root 1.26 =head1 AnyEvent::MP vs. Distributed Erlang
719    
720 root 1.35 AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
721     == aemp node, Erlang process == aemp port), so many of the documents and
722     programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
723 root 1.27 sample:
724    
725 root 1.35 http://www.Erlang.se/doc/programming_rules.shtml
726     http://Erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
727     http://Erlang.org/download/Erlang-book-part1.pdf # chapters 5 and 6
728     http://Erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
729 root 1.27
730     Despite the similarities, there are also some important differences:
731 root 1.26
732     =over 4
733    
734     =item * Node references contain the recipe on how to contact them.
735    
736     Erlang relies on special naming and DNS to work everywhere in the
737     same way. AEMP relies on each node knowing it's own address(es), with
738     convenience functionality.
739    
740 root 1.27 This means that AEMP requires a less tightly controlled environment at the
741     cost of longer node references and a slightly higher management overhead.
742    
743 root 1.51 =item Erlang has a "remote ports are like local ports" philosophy, AEMP
744     uses "local ports are like remote ports".
745    
746     The failure modes for local ports are quite different (runtime errors
747     only) then for remote ports - when a local port dies, you I<know> it dies,
748     when a connection to another node dies, you know nothing about the other
749     port.
750    
751     Erlang pretends remote ports are as reliable as local ports, even when
752     they are not.
753    
754     AEMP encourages a "treat remote ports differently" philosophy, with local
755     ports being the special case/exception, where transport errors cannot
756     occur.
757    
758 root 1.26 =item * Erlang uses processes and a mailbox, AEMP does not queue.
759    
760 root 1.51 Erlang uses processes that selectively receive messages, and therefore
761     needs a queue. AEMP is event based, queuing messages would serve no
762     useful purpose. For the same reason the pattern-matching abilities of
763     AnyEvent::MP are more limited, as there is little need to be able to
764     filter messages without dequeing them.
765 root 1.26
766 root 1.35 (But see L<Coro::MP> for a more Erlang-like process model on top of AEMP).
767 root 1.26
768     =item * Erlang sends are synchronous, AEMP sends are asynchronous.
769    
770 root 1.51 Sending messages in Erlang is synchronous and blocks the process (and
771     so does not need a queue that can overflow). AEMP sends are immediate,
772     connection establishment is handled in the background.
773 root 1.26
774 root 1.51 =item * Erlang suffers from silent message loss, AEMP does not.
775 root 1.26
776     Erlang makes few guarantees on messages delivery - messages can get lost
777     without any of the processes realising it (i.e. you send messages a, b,
778     and c, and the other side only receives messages a and c).
779    
780     AEMP guarantees correct ordering, and the guarantee that there are no
781     holes in the message sequence.
782    
783 root 1.35 =item * In Erlang, processes can be declared dead and later be found to be
784 root 1.26 alive.
785    
786 root 1.35 In Erlang it can happen that a monitored process is declared dead and
787 root 1.26 linked processes get killed, but later it turns out that the process is
788     still alive - and can receive messages.
789    
790     In AEMP, when port monitoring detects a port as dead, then that port will
791     eventually be killed - it cannot happen that a node detects a port as dead
792     and then later sends messages to it, finding it is still alive.
793    
794     =item * Erlang can send messages to the wrong port, AEMP does not.
795    
796 root 1.51 In Erlang it is quite likely that a node that restarts reuses a process ID
797     known to other nodes for a completely different process, causing messages
798     destined for that process to end up in an unrelated process.
799 root 1.26
800     AEMP never reuses port IDs, so old messages or old port IDs floating
801     around in the network will not be sent to an unrelated port.
802    
803     =item * Erlang uses unprotected connections, AEMP uses secure
804     authentication and can use TLS.
805    
806     AEMP can use a proven protocol - SSL/TLS - to protect connections and
807     securely authenticate nodes.
808    
809 root 1.28 =item * The AEMP protocol is optimised for both text-based and binary
810     communications.
811    
812 root 1.35 The AEMP protocol, unlike the Erlang protocol, supports both
813 root 1.28 language-independent text-only protocols (good for debugging) and binary,
814     language-specific serialisers (e.g. Storable).
815    
816     It has also been carefully designed to be implementable in other languages
817     with a minimum of work while gracefully degrading fucntionality to make the
818     protocol simple.
819    
820 root 1.35 =item * AEMP has more flexible monitoring options than Erlang.
821    
822     In Erlang, you can chose to receive I<all> exit signals as messages
823     or I<none>, there is no in-between, so monitoring single processes is
824     difficult to implement. Monitoring in AEMP is more flexible than in
825     Erlang, as one can choose between automatic kill, exit message or callback
826     on a per-process basis.
827    
828 root 1.37 =item * Erlang tries to hide remote/local connections, AEMP does not.
829 root 1.35
830     Monitoring in Erlang is not an indicator of process death/crashes,
831 root 1.37 as linking is (except linking is unreliable in Erlang).
832    
833     In AEMP, you don't "look up" registered port names or send to named ports
834     that might or might not be persistent. Instead, you normally spawn a port
835     on the remote node. The init function monitors the you, and you monitor
836     the remote port. Since both monitors are local to the node, they are much
837     more reliable.
838    
839     This also saves round-trips and avoids sending messages to the wrong port
840     (hard to do in Erlang).
841 root 1.35
842 root 1.26 =back
843    
844 root 1.46 =head1 RATIONALE
845    
846     =over 4
847    
848     =item Why strings for ports and noderefs, why not objects?
849    
850     We considered "objects", but found that the actual number of methods
851     thatc an be called are very low. Since port IDs and noderefs travel over
852     the network frequently, the serialising/deserialising would add lots of
853     overhead, as well as having to keep a proxy object.
854    
855     Strings can easily be printed, easily serialised etc. and need no special
856     procedures to be "valid".
857    
858 root 1.47 And a a miniport consists of a single closure stored in a global hash - it
859     can't become much cheaper.
860    
861 root 1.46 =item Why favour JSON, why not real serialising format such as Storable?
862    
863     In fact, any AnyEvent::MP node will happily accept Storable as framing
864     format, but currently there is no way to make a node use Storable by
865     default.
866    
867     The default framing protocol is JSON because a) JSON::XS is many times
868     faster for small messages and b) most importantly, after years of
869     experience we found that object serialisation is causing more problems
870     than it gains: Just like function calls, objects simply do not travel
871     easily over the network, mostly because they will always be a copy, so you
872     always have to re-think your design.
873    
874     Keeping your messages simple, concentrating on data structures rather than
875     objects, will keep your messages clean, tidy and efficient.
876    
877     =back
878    
879 root 1.1 =head1 SEE ALSO
880    
881     L<AnyEvent>.
882    
883     =head1 AUTHOR
884    
885     Marc Lehmann <schmorp@schmorp.de>
886     http://home.schmorp.de/
887    
888     =cut
889    
890     1
891