ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP.pm
Revision: 1.53
Committed: Fri Aug 14 15:31:21 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.52: +7 -8 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     AnyEvent::MP - multi-processing/message-passing framework
4    
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP;
8    
9 root 1.22 $NODE # contains this node's noderef
10     NODE # returns this node's noderef
11     NODE $port # returns the noderef of the port
12 root 1.2
13 root 1.38 $SELF # receiving/own port id in rcv callbacks
14    
15 root 1.48 # initialise the node so it can send/receive messages
16     initialise_node; # -OR-
17     initialise_node "localhost:4040"; # -OR-
18     initialise_node "slave/", "localhost:4040"
19    
20 root 1.38 # ports are message endpoints
21    
22     # sending messages
23 root 1.2 snd $port, type => data...;
24 root 1.38 snd $port, @msg;
25     snd @msg_with_first_element_being_a_port;
26 root 1.2
27 root 1.50 # creating/using ports, the simple way
28 root 1.53 my $simple_port = port { my @msg = @_; 0 };
29 root 1.22
30 root 1.52 # creating/using ports, tagged message matching
31 root 1.38 my $port = port;
32     rcv $port, ping => sub { snd $_[0], "pong"; 0 };
33     rcv $port, pong => sub { warn "pong received\n"; 0 };
34 root 1.2
35 root 1.48 # create a port on another node
36     my $port = spawn $node, $initfunc, @initdata;
37    
38 root 1.35 # monitoring
39     mon $port, $cb->(@msg) # callback is invoked on death
40     mon $port, $otherport # kill otherport on abnormal death
41     mon $port, $otherport, @msg # send message on death
42    
43 root 1.45 =head1 CURRENT STATUS
44    
45     AnyEvent::MP - stable API, should work
46     AnyEvent::MP::Intro - outdated
47     AnyEvent::MP::Kernel - WIP
48     AnyEvent::MP::Transport - mostly stable
49    
50     stay tuned.
51    
52 root 1.1 =head1 DESCRIPTION
53    
54 root 1.2 This module (-family) implements a simple message passing framework.
55    
56     Despite its simplicity, you can securely message other processes running
57     on the same or other hosts.
58    
59 root 1.23 For an introduction to this module family, see the L<AnyEvent::MP::Intro>
60     manual page.
61    
62     At the moment, this module family is severly broken and underdocumented,
63 root 1.21 so do not use. This was uploaded mainly to reserve the CPAN namespace -
64 root 1.45 stay tuned!
65 root 1.6
66 root 1.2 =head1 CONCEPTS
67    
68     =over 4
69    
70     =item port
71    
72 root 1.29 A port is something you can send messages to (with the C<snd> function).
73    
74 root 1.53 Ports allow you to register C<rcv> handlers that can match all or just
75     some messages. Messages will not be queued.
76 root 1.2
77 root 1.3 =item port id - C<noderef#portname>
78 root 1.2
79 root 1.53 A port ID is the concatenation of a noderef, a hash-mark (C<#>) as
80 root 1.29 separator, and a port name (a printable string of unspecified format). An
81 root 1.30 exception is the the node port, whose ID is identical to its node
82 root 1.29 reference.
83 root 1.2
84     =item node
85    
86 root 1.53 A node is a single process containing at least one port - the node port,
87     which provides nodes to manage each other remotely, and to create new
88     ports.
89 root 1.2
90 root 1.29 Nodes are either private (single-process only), slaves (connected to a
91     master node only) or public nodes (connectable from unrelated nodes).
92 root 1.2
93 root 1.5 =item noderef - C<host:port,host:port...>, C<id@noderef>, C<id>
94 root 1.2
95 root 1.29 A node reference is a string that either simply identifies the node (for
96     private and slave nodes), or contains a recipe on how to reach a given
97 root 1.2 node (for public nodes).
98    
99 root 1.29 This recipe is simply a comma-separated list of C<address:port> pairs (for
100     TCP/IP, other protocols might look different).
101    
102     Node references come in two flavours: resolved (containing only numerical
103     addresses) or unresolved (where hostnames are used instead of addresses).
104    
105     Before using an unresolved node reference in a message you first have to
106     resolve it.
107    
108 root 1.2 =back
109    
110 root 1.3 =head1 VARIABLES/FUNCTIONS
111 root 1.2
112     =over 4
113    
114 root 1.1 =cut
115    
116     package AnyEvent::MP;
117    
118 root 1.44 use AnyEvent::MP::Kernel;
119 root 1.2
120 root 1.1 use common::sense;
121    
122 root 1.2 use Carp ();
123    
124 root 1.1 use AE ();
125    
126 root 1.2 use base "Exporter";
127    
128 root 1.44 our $VERSION = $AnyEvent::MP::Kernel::VERSION;
129 root 1.43
130 root 1.8 our @EXPORT = qw(
131 root 1.22 NODE $NODE *SELF node_of _any_
132 root 1.31 resolve_node initialise_node
133 root 1.38 snd rcv mon kil reg psub spawn
134 root 1.22 port
135 root 1.8 );
136 root 1.2
137 root 1.22 our $SELF;
138    
139     sub _self_die() {
140     my $msg = $@;
141     $msg =~ s/\n+$// unless ref $msg;
142     kil $SELF, die => $msg;
143     }
144    
145     =item $thisnode = NODE / $NODE
146    
147 root 1.52 The C<NODE> function returns, and the C<$NODE> variable contains the
148     noderef of the local node. The value is initialised by a call to
149     C<initialise_node>.
150 root 1.22
151 root 1.33 =item $noderef = node_of $port
152 root 1.22
153 root 1.52 Extracts and returns the noderef from a port ID or a noderef.
154 root 1.22
155 root 1.34 =item initialise_node $noderef, $seednode, $seednode...
156    
157     =item initialise_node "slave/", $master, $master...
158    
159     Before a node can talk to other nodes on the network it has to initialise
160     itself - the minimum a node needs to know is it's own name, and optionally
161     it should know the noderefs of some other nodes in the network.
162    
163     This function initialises a node - it must be called exactly once (or
164     never) before calling other AnyEvent::MP functions.
165    
166 root 1.49 All arguments (optionally except for the first) are noderefs, which can be
167     either resolved or unresolved.
168    
169     The first argument will be looked up in the configuration database first
170     (if it is C<undef> then the current nodename will be used instead) to find
171     the relevant configuration profile (see L<aemp>). If none is found then
172     the default configuration is used. The configuration supplies additional
173     seed/master nodes and can override the actual noderef.
174 root 1.34
175     There are two types of networked nodes, public nodes and slave nodes:
176    
177     =over 4
178    
179     =item public nodes
180    
181 root 1.49 For public nodes, C<$noderef> (supplied either directly to
182     C<initialise_node> or indirectly via a profile or the nodename) must be a
183     noderef (possibly unresolved, in which case it will be resolved).
184    
185     After resolving, the node will bind itself on all endpoints and try to
186     connect to all additional C<$seednodes> that are specified. Seednodes are
187     optional and can be used to quickly bootstrap the node into an existing
188     network.
189 root 1.34
190     =item slave nodes
191    
192 root 1.49 When the C<$noderef> (either as given or overriden by the config file)
193     is the special string C<slave/>, then the node will become a slave
194     node. Slave nodes cannot be contacted from outside and will route most of
195     their traffic to the master node that they attach to.
196    
197     At least one additional noderef is required (either by specifying it
198     directly or because it is part of the configuration profile): The node
199     will try to connect to all of them and will become a slave attached to the
200     first node it can successfully connect to.
201 root 1.34
202     =back
203    
204     This function will block until all nodes have been resolved and, for slave
205     nodes, until it has successfully established a connection to a master
206     server.
207    
208 root 1.49 Example: become a public node listening on the guessed noderef, or the one
209     specified via C<aemp> for the current node. This should be the most common
210     form of invocation for "daemon"-type nodes.
211 root 1.34
212     initialise_node;
213    
214 root 1.49 Example: become a slave node to any of the the seednodes specified via
215     C<aemp>. This form is often used for commandline clients.
216    
217     initialise_node "slave/";
218    
219     Example: become a slave node to any of the specified master servers. This
220     form is also often used for commandline clients.
221    
222     initialise_node "slave/", "master1", "192.168.13.17", "mp.example.net";
223    
224 root 1.34 Example: become a public node, and try to contact some well-known master
225     servers to become part of the network.
226    
227     initialise_node undef, "master1", "master2";
228    
229     Example: become a public node listening on port C<4041>.
230    
231     initialise_node 4041;
232    
233     Example: become a public node, only visible on localhost port 4044.
234    
235 root 1.49 initialise_node "localhost:4044";
236 root 1.34
237 root 1.29 =item $cv = resolve_node $noderef
238    
239     Takes an unresolved node reference that may contain hostnames and
240     abbreviated IDs, resolves all of them and returns a resolved node
241     reference.
242    
243     In addition to C<address:port> pairs allowed in resolved noderefs, the
244     following forms are supported:
245    
246     =over 4
247    
248     =item the empty string
249    
250     An empty-string component gets resolved as if the default port (4040) was
251     specified.
252    
253     =item naked port numbers (e.g. C<1234>)
254    
255     These are resolved by prepending the local nodename and a colon, to be
256     further resolved.
257    
258     =item hostnames (e.g. C<localhost:1234>, C<localhost>)
259    
260     These are resolved by using AnyEvent::DNS to resolve them, optionally
261     looking up SRV records for the C<aemp=4040> port, if no port was
262     specified.
263    
264     =back
265    
266 root 1.22 =item $SELF
267    
268     Contains the current port id while executing C<rcv> callbacks or C<psub>
269     blocks.
270 root 1.3
271 root 1.22 =item SELF, %SELF, @SELF...
272    
273     Due to some quirks in how perl exports variables, it is impossible to
274     just export C<$SELF>, all the symbols called C<SELF> are exported by this
275     module, but only C<$SELF> is currently used.
276 root 1.3
277 root 1.33 =item snd $port, type => @data
278 root 1.3
279 root 1.33 =item snd $port, @msg
280 root 1.3
281 root 1.8 Send the given message to the given port ID, which can identify either
282 root 1.52 a local or a remote port, and must be a port ID.
283 root 1.8
284     While the message can be about anything, it is highly recommended to use a
285 root 1.52 string as first element (a port ID, or some word that indicates a request
286 root 1.8 type etc.).
287 root 1.3
288     The message data effectively becomes read-only after a call to this
289     function: modifying any argument is not allowed and can cause many
290     problems.
291    
292     The type of data you can transfer depends on the transport protocol: when
293     JSON is used, then only strings, numbers and arrays and hashes consisting
294     of those are allowed (no objects). When Storable is used, then anything
295     that Storable can serialise and deserialise is allowed, and for the local
296     node, anything can be passed.
297    
298 root 1.22 =item $local_port = port
299 root 1.2
300 root 1.50 Create a new local port object and returns its port ID. Initially it has
301     no callbacks set and will throw an error when it receives messages.
302 root 1.10
303 root 1.50 =item $local_port = port { my @msg = @_ }
304 root 1.15
305 root 1.50 Creates a new local port, and returns its ID. Semantically the same as
306     creating a port and calling C<rcv $port, $callback> on it.
307 root 1.15
308 root 1.50 The block will be called for every message received on the port, with the
309     global variable C<$SELF> set to the port ID. Runtime errors will cause the
310     port to be C<kil>ed. The message will be passed as-is, no extra argument
311     (i.e. no port ID) will be passed to the callback.
312 root 1.15
313 root 1.50 If you want to stop/destroy the port, simply C<kil> it:
314 root 1.15
315 root 1.50 my $port = port {
316     my @msg = @_;
317     ...
318     kil $SELF;
319 root 1.15 };
320 root 1.10
321     =cut
322    
323 root 1.33 sub rcv($@);
324    
325 root 1.50 sub _kilme {
326     die "received message on port without callback";
327     }
328    
329 root 1.22 sub port(;&) {
330     my $id = "$UNIQ." . $ID++;
331     my $port = "$NODE#$id";
332    
333 root 1.50 rcv $port, shift || \&_kilme;
334 root 1.10
335 root 1.22 $port
336 root 1.10 }
337    
338 root 1.50 =item rcv $local_port, $callback->(@msg)
339 root 1.31
340 root 1.50 Replaces the default callback on the specified port. There is no way to
341     remove the default callback: use C<sub { }> to disable it, or better
342     C<kil> the port when it is no longer needed.
343 root 1.3
344 root 1.33 The global C<$SELF> (exported by this module) contains C<$port> while
345 root 1.50 executing the callback. Runtime errors during callback execution will
346     result in the port being C<kil>ed.
347 root 1.22
348 root 1.50 The default callback received all messages not matched by a more specific
349     C<tag> match.
350 root 1.22
351 root 1.50 =item rcv $local_port, tag => $callback->(@msg_without_tag), ...
352 root 1.3
353 root 1.50 Register callbacks to be called on messages starting with the given tag on
354     the given port (and return the port), or unregister it (when C<$callback>
355     is C<$undef>).
356 root 1.3
357 root 1.50 The original message will be passed to the callback, after the first
358     element (the tag) has been removed. The callback will use the same
359     environment as the default callback (see above).
360 root 1.3
361 root 1.36 Example: create a port and bind receivers on it in one go.
362    
363     my $port = rcv port,
364 root 1.50 msg1 => sub { ... },
365     msg2 => sub { ... },
366 root 1.36 ;
367    
368     Example: create a port, bind receivers and send it in a message elsewhere
369     in one go:
370    
371     snd $otherport, reply =>
372     rcv port,
373 root 1.50 msg1 => sub { ... },
374 root 1.36 ...
375     ;
376    
377 root 1.3 =cut
378    
379     sub rcv($@) {
380 root 1.33 my $port = shift;
381     my ($noderef, $portid) = split /#/, $port, 2;
382 root 1.3
383 root 1.22 ($NODE{$noderef} || add_node $noderef) == $NODE{""}
384 root 1.33 or Carp::croak "$port: rcv can only be called on local ports, caught";
385 root 1.22
386 root 1.50 while (@_) {
387     if (ref $_[0]) {
388     if (my $self = $PORT_DATA{$portid}) {
389     "AnyEvent::MP::Port" eq ref $self
390     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
391 root 1.33
392 root 1.50 $self->[2] = shift;
393     } else {
394     my $cb = shift;
395     $PORT{$portid} = sub {
396     local $SELF = $port;
397     eval { &$cb }; _self_die if $@;
398     };
399     }
400     } elsif (defined $_[0]) {
401     my $self = $PORT_DATA{$portid} ||= do {
402     my $self = bless [$PORT{$port} || sub { }, { }, $port], "AnyEvent::MP::Port";
403    
404     $PORT{$portid} = sub {
405     local $SELF = $port;
406    
407     if (my $cb = $self->[1]{$_[0]}) {
408     shift;
409     eval { &$cb }; _self_die if $@;
410     } else {
411     &{ $self->[0] };
412 root 1.33 }
413     };
414 root 1.50
415     $self
416 root 1.33 };
417    
418 root 1.50 "AnyEvent::MP::Port" eq ref $self
419     or Carp::croak "$port: rcv can only be called on message matching ports, caught";
420 root 1.22
421 root 1.50 my ($tag, $cb) = splice @_, 0, 2;
422 root 1.33
423 root 1.50 if (defined $cb) {
424     $self->[1]{$tag} = $cb;
425 root 1.33 } else {
426 root 1.50 delete $self->[1]{$tag};
427 root 1.33 }
428 root 1.22 }
429 root 1.3 }
430 root 1.31
431 root 1.33 $port
432 root 1.2 }
433    
434 root 1.22 =item $closure = psub { BLOCK }
435 root 1.2
436 root 1.22 Remembers C<$SELF> and creates a closure out of the BLOCK. When the
437     closure is executed, sets up the environment in the same way as in C<rcv>
438     callbacks, i.e. runtime errors will cause the port to get C<kil>ed.
439    
440     This is useful when you register callbacks from C<rcv> callbacks:
441    
442     rcv delayed_reply => sub {
443     my ($delay, @reply) = @_;
444     my $timer = AE::timer $delay, 0, psub {
445     snd @reply, $SELF;
446     };
447     };
448 root 1.3
449 root 1.8 =cut
450 root 1.3
451 root 1.22 sub psub(&) {
452     my $cb = shift;
453 root 1.3
454 root 1.22 my $port = $SELF
455     or Carp::croak "psub can only be called from within rcv or psub callbacks, not";
456 root 1.1
457 root 1.22 sub {
458     local $SELF = $port;
459 root 1.2
460 root 1.22 if (wantarray) {
461     my @res = eval { &$cb };
462     _self_die if $@;
463     @res
464     } else {
465     my $res = eval { &$cb };
466     _self_die if $@;
467     $res
468     }
469     }
470 root 1.2 }
471    
472 root 1.33 =item $guard = mon $port, $cb->(@reason)
473 root 1.32
474 root 1.36 =item $guard = mon $port, $rcvport
475    
476     =item $guard = mon $port
477 root 1.32
478 root 1.36 =item $guard = mon $port, $rcvport, @msg
479 root 1.32
480 root 1.42 Monitor the given port and do something when the port is killed or
481     messages to it were lost, and optionally return a guard that can be used
482     to stop monitoring again.
483    
484     C<mon> effectively guarantees that, in the absence of hardware failures,
485     that after starting the monitor, either all messages sent to the port
486     will arrive, or the monitoring action will be invoked after possible
487     message loss has been detected. No messages will be lost "in between"
488     (after the first lost message no further messages will be received by the
489     port). After the monitoring action was invoked, further messages might get
490     delivered again.
491 root 1.32
492 root 1.36 In the first form (callback), the callback is simply called with any
493     number of C<@reason> elements (no @reason means that the port was deleted
494 root 1.32 "normally"). Note also that I<< the callback B<must> never die >>, so use
495     C<eval> if unsure.
496    
497 root 1.43 In the second form (another port given), the other port (C<$rcvport>)
498 root 1.36 will be C<kil>'ed with C<@reason>, iff a @reason was specified, i.e. on
499     "normal" kils nothing happens, while under all other conditions, the other
500     port is killed with the same reason.
501 root 1.32
502 root 1.36 The third form (kill self) is the same as the second form, except that
503     C<$rvport> defaults to C<$SELF>.
504    
505     In the last form (message), a message of the form C<@msg, @reason> will be
506     C<snd>.
507 root 1.32
508 root 1.37 As a rule of thumb, monitoring requests should always monitor a port from
509     a local port (or callback). The reason is that kill messages might get
510     lost, just like any other message. Another less obvious reason is that
511     even monitoring requests can get lost (for exmaple, when the connection
512     to the other node goes down permanently). When monitoring a port locally
513     these problems do not exist.
514    
515 root 1.32 Example: call a given callback when C<$port> is killed.
516    
517     mon $port, sub { warn "port died because of <@_>\n" };
518    
519     Example: kill ourselves when C<$port> is killed abnormally.
520    
521 root 1.36 mon $port;
522 root 1.32
523 root 1.36 Example: send us a restart message when another C<$port> is killed.
524 root 1.32
525     mon $port, $self => "restart";
526    
527     =cut
528    
529     sub mon {
530     my ($noderef, $port) = split /#/, shift, 2;
531    
532     my $node = $NODE{$noderef} || add_node $noderef;
533    
534 root 1.41 my $cb = @_ ? shift : $SELF || Carp::croak 'mon: called with one argument only, but $SELF not set,';
535 root 1.32
536     unless (ref $cb) {
537     if (@_) {
538     # send a kill info message
539 root 1.41 my (@msg) = ($cb, @_);
540 root 1.32 $cb = sub { snd @msg, @_ };
541     } else {
542     # simply kill other port
543     my $port = $cb;
544     $cb = sub { kil $port, @_ if @_ };
545     }
546     }
547    
548     $node->monitor ($port, $cb);
549    
550     defined wantarray
551     and AnyEvent::Util::guard { $node->unmonitor ($port, $cb) }
552     }
553    
554     =item $guard = mon_guard $port, $ref, $ref...
555    
556     Monitors the given C<$port> and keeps the passed references. When the port
557     is killed, the references will be freed.
558    
559     Optionally returns a guard that will stop the monitoring.
560    
561     This function is useful when you create e.g. timers or other watchers and
562     want to free them when the port gets killed:
563    
564     $port->rcv (start => sub {
565     my $timer; $timer = mon_guard $port, AE::timer 1, 1, sub {
566     undef $timer if 0.9 < rand;
567     });
568     });
569    
570     =cut
571    
572     sub mon_guard {
573     my ($port, @refs) = @_;
574    
575 root 1.36 #TODO: mon-less form?
576    
577 root 1.32 mon $port, sub { 0 && @refs }
578     }
579    
580 root 1.33 =item kil $port[, @reason]
581 root 1.32
582     Kill the specified port with the given C<@reason>.
583    
584     If no C<@reason> is specified, then the port is killed "normally" (linked
585     ports will not be kileld, or even notified).
586    
587     Otherwise, linked ports get killed with the same reason (second form of
588     C<mon>, see below).
589    
590     Runtime errors while evaluating C<rcv> callbacks or inside C<psub> blocks
591     will be reported as reason C<< die => $@ >>.
592    
593     Transport/communication errors are reported as C<< transport_error =>
594     $message >>.
595    
596 root 1.38 =cut
597    
598     =item $port = spawn $node, $initfunc[, @initdata]
599    
600     Creates a port on the node C<$node> (which can also be a port ID, in which
601     case it's the node where that port resides).
602    
603     The port ID of the newly created port is return immediately, and it is
604     permissible to immediately start sending messages or monitor the port.
605    
606     After the port has been created, the init function is
607 root 1.39 called. This function must be a fully-qualified function name
608 root 1.40 (e.g. C<MyApp::Chat::Server::init>). To specify a function in the main
609     program, use C<::name>.
610 root 1.38
611     If the function doesn't exist, then the node tries to C<require>
612     the package, then the package above the package and so on (e.g.
613     C<MyApp::Chat::Server>, C<MyApp::Chat>, C<MyApp>) until the function
614     exists or it runs out of package names.
615    
616     The init function is then called with the newly-created port as context
617     object (C<$SELF>) and the C<@initdata> values as arguments.
618    
619     A common idiom is to pass your own port, monitor the spawned port, and
620     in the init function, monitor the original port. This two-way monitoring
621     ensures that both ports get cleaned up when there is a problem.
622    
623     Example: spawn a chat server port on C<$othernode>.
624    
625     # this node, executed from within a port context:
626     my $server = spawn $othernode, "MyApp::Chat::Server::connect", $SELF;
627     mon $server;
628    
629     # init function on C<$othernode>
630     sub connect {
631     my ($srcport) = @_;
632    
633     mon $srcport;
634    
635     rcv $SELF, sub {
636     ...
637     };
638     }
639    
640     =cut
641    
642     sub _spawn {
643     my $port = shift;
644     my $init = shift;
645    
646     local $SELF = "$NODE#$port";
647     eval {
648     &{ load_func $init }
649     };
650     _self_die if $@;
651     }
652    
653     sub spawn(@) {
654     my ($noderef, undef) = split /#/, shift, 2;
655    
656     my $id = "$RUNIQ." . $ID++;
657    
658 root 1.39 $_[0] =~ /::/
659     or Carp::croak "spawn init function must be a fully-qualified name, caught";
660    
661 root 1.38 ($NODE{$noderef} || add_node $noderef)
662     ->send (["", "AnyEvent::MP::_spawn" => $id, @_]);
663    
664     "$noderef#$id"
665     }
666    
667 root 1.8 =back
668    
669 root 1.4 =head1 NODE MESSAGES
670    
671 root 1.5 Nodes understand the following messages sent to them. Many of them take
672     arguments called C<@reply>, which will simply be used to compose a reply
673     message - C<$reply[0]> is the port to reply to, C<$reply[1]> the type and
674     the remaining arguments are simply the message data.
675 root 1.4
676 root 1.29 While other messages exist, they are not public and subject to change.
677    
678 root 1.4 =over 4
679    
680     =cut
681    
682 root 1.22 =item lookup => $name, @reply
683 root 1.3
684 root 1.8 Replies with the port ID of the specified well-known port, or C<undef>.
685 root 1.3
686 root 1.7 =item devnull => ...
687    
688     Generic data sink/CPU heat conversion.
689    
690 root 1.4 =item relay => $port, @msg
691    
692     Simply forwards the message to the given port.
693    
694     =item eval => $string[ @reply]
695    
696     Evaluates the given string. If C<@reply> is given, then a message of the
697 root 1.5 form C<@reply, $@, @evalres> is sent.
698    
699     Example: crash another node.
700    
701     snd $othernode, eval => "exit";
702 root 1.4
703     =item time => @reply
704    
705     Replies the the current node time to C<@reply>.
706    
707 root 1.5 Example: tell the current node to send the current time to C<$myport> in a
708     C<timereply> message.
709    
710     snd $NODE, time => $myport, timereply => 1, 2;
711     # => snd $myport, timereply => 1, 2, <time>
712    
713 root 1.2 =back
714    
715 root 1.26 =head1 AnyEvent::MP vs. Distributed Erlang
716    
717 root 1.35 AnyEvent::MP got lots of its ideas from distributed Erlang (Erlang node
718     == aemp node, Erlang process == aemp port), so many of the documents and
719     programming techniques employed by Erlang apply to AnyEvent::MP. Here is a
720 root 1.27 sample:
721    
722 root 1.35 http://www.Erlang.se/doc/programming_rules.shtml
723     http://Erlang.org/doc/getting_started/part_frame.html # chapters 3 and 4
724     http://Erlang.org/download/Erlang-book-part1.pdf # chapters 5 and 6
725     http://Erlang.org/download/armstrong_thesis_2003.pdf # chapters 4 and 5
726 root 1.27
727     Despite the similarities, there are also some important differences:
728 root 1.26
729     =over 4
730    
731     =item * Node references contain the recipe on how to contact them.
732    
733     Erlang relies on special naming and DNS to work everywhere in the
734     same way. AEMP relies on each node knowing it's own address(es), with
735     convenience functionality.
736    
737 root 1.27 This means that AEMP requires a less tightly controlled environment at the
738     cost of longer node references and a slightly higher management overhead.
739    
740 root 1.51 =item Erlang has a "remote ports are like local ports" philosophy, AEMP
741     uses "local ports are like remote ports".
742    
743     The failure modes for local ports are quite different (runtime errors
744     only) then for remote ports - when a local port dies, you I<know> it dies,
745     when a connection to another node dies, you know nothing about the other
746     port.
747    
748     Erlang pretends remote ports are as reliable as local ports, even when
749     they are not.
750    
751     AEMP encourages a "treat remote ports differently" philosophy, with local
752     ports being the special case/exception, where transport errors cannot
753     occur.
754    
755 root 1.26 =item * Erlang uses processes and a mailbox, AEMP does not queue.
756    
757 root 1.51 Erlang uses processes that selectively receive messages, and therefore
758     needs a queue. AEMP is event based, queuing messages would serve no
759     useful purpose. For the same reason the pattern-matching abilities of
760     AnyEvent::MP are more limited, as there is little need to be able to
761     filter messages without dequeing them.
762 root 1.26
763 root 1.35 (But see L<Coro::MP> for a more Erlang-like process model on top of AEMP).
764 root 1.26
765     =item * Erlang sends are synchronous, AEMP sends are asynchronous.
766    
767 root 1.51 Sending messages in Erlang is synchronous and blocks the process (and
768     so does not need a queue that can overflow). AEMP sends are immediate,
769     connection establishment is handled in the background.
770 root 1.26
771 root 1.51 =item * Erlang suffers from silent message loss, AEMP does not.
772 root 1.26
773     Erlang makes few guarantees on messages delivery - messages can get lost
774     without any of the processes realising it (i.e. you send messages a, b,
775     and c, and the other side only receives messages a and c).
776    
777     AEMP guarantees correct ordering, and the guarantee that there are no
778     holes in the message sequence.
779    
780 root 1.35 =item * In Erlang, processes can be declared dead and later be found to be
781 root 1.26 alive.
782    
783 root 1.35 In Erlang it can happen that a monitored process is declared dead and
784 root 1.26 linked processes get killed, but later it turns out that the process is
785     still alive - and can receive messages.
786    
787     In AEMP, when port monitoring detects a port as dead, then that port will
788     eventually be killed - it cannot happen that a node detects a port as dead
789     and then later sends messages to it, finding it is still alive.
790    
791     =item * Erlang can send messages to the wrong port, AEMP does not.
792    
793 root 1.51 In Erlang it is quite likely that a node that restarts reuses a process ID
794     known to other nodes for a completely different process, causing messages
795     destined for that process to end up in an unrelated process.
796 root 1.26
797     AEMP never reuses port IDs, so old messages or old port IDs floating
798     around in the network will not be sent to an unrelated port.
799    
800     =item * Erlang uses unprotected connections, AEMP uses secure
801     authentication and can use TLS.
802    
803     AEMP can use a proven protocol - SSL/TLS - to protect connections and
804     securely authenticate nodes.
805    
806 root 1.28 =item * The AEMP protocol is optimised for both text-based and binary
807     communications.
808    
809 root 1.35 The AEMP protocol, unlike the Erlang protocol, supports both
810 root 1.28 language-independent text-only protocols (good for debugging) and binary,
811     language-specific serialisers (e.g. Storable).
812    
813     It has also been carefully designed to be implementable in other languages
814     with a minimum of work while gracefully degrading fucntionality to make the
815     protocol simple.
816    
817 root 1.35 =item * AEMP has more flexible monitoring options than Erlang.
818    
819     In Erlang, you can chose to receive I<all> exit signals as messages
820     or I<none>, there is no in-between, so monitoring single processes is
821     difficult to implement. Monitoring in AEMP is more flexible than in
822     Erlang, as one can choose between automatic kill, exit message or callback
823     on a per-process basis.
824    
825 root 1.37 =item * Erlang tries to hide remote/local connections, AEMP does not.
826 root 1.35
827     Monitoring in Erlang is not an indicator of process death/crashes,
828 root 1.37 as linking is (except linking is unreliable in Erlang).
829    
830     In AEMP, you don't "look up" registered port names or send to named ports
831     that might or might not be persistent. Instead, you normally spawn a port
832     on the remote node. The init function monitors the you, and you monitor
833     the remote port. Since both monitors are local to the node, they are much
834     more reliable.
835    
836     This also saves round-trips and avoids sending messages to the wrong port
837     (hard to do in Erlang).
838 root 1.35
839 root 1.26 =back
840    
841 root 1.46 =head1 RATIONALE
842    
843     =over 4
844    
845     =item Why strings for ports and noderefs, why not objects?
846    
847     We considered "objects", but found that the actual number of methods
848     thatc an be called are very low. Since port IDs and noderefs travel over
849     the network frequently, the serialising/deserialising would add lots of
850     overhead, as well as having to keep a proxy object.
851    
852     Strings can easily be printed, easily serialised etc. and need no special
853     procedures to be "valid".
854    
855 root 1.47 And a a miniport consists of a single closure stored in a global hash - it
856     can't become much cheaper.
857    
858 root 1.46 =item Why favour JSON, why not real serialising format such as Storable?
859    
860     In fact, any AnyEvent::MP node will happily accept Storable as framing
861     format, but currently there is no way to make a node use Storable by
862     default.
863    
864     The default framing protocol is JSON because a) JSON::XS is many times
865     faster for small messages and b) most importantly, after years of
866     experience we found that object serialisation is causing more problems
867     than it gains: Just like function calls, objects simply do not travel
868     easily over the network, mostly because they will always be a copy, so you
869     always have to re-think your design.
870    
871     Keeping your messages simple, concentrating on data structures rather than
872     objects, will keep your messages clean, tidy and efficient.
873    
874     =back
875    
876 root 1.1 =head1 SEE ALSO
877    
878     L<AnyEvent>.
879    
880     =head1 AUTHOR
881    
882     Marc Lehmann <schmorp@schmorp.de>
883     http://home.schmorp.de/
884    
885     =cut
886    
887     1
888