ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.69
Committed: Sat Mar 13 22:03:51 2010 UTC (14 years, 2 months ago) by root
Branch: MAIN
CVS Tags: rel-1_27
Changes since 1.68: +9 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.52 our @HOOK_CONNECT; # called at connect/accept time
45     our @HOOK_GREETING; # called at greeting1 time
46     our @HOOK_CONNECTED; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.39 =item $listener = mp_listener $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101     # immediately starts negotiation
102     my $transport = new AnyEvent::MP::Transport
103 root 1.2 # mandatory
104 root 1.1 fh => $filehandle,
105 root 1.2 local_id => $identifier,
106 root 1.1 on_recv => sub { receive-callback },
107     on_error => sub { error-callback },
108    
109     # optional
110     on_eof => sub { clean-close-callback },
111     on_connect => sub { successful-connect-callback },
112 root 1.2 greeting => { key => value },
113 root 1.1
114     # tls support
115     tls_ctx => AnyEvent::TLS,
116     peername => $peername, # for verification
117     ;
118    
119     =cut
120    
121     sub new {
122     my ($class, %arg) = @_;
123    
124     my $self = bless \%arg, $class;
125    
126     {
127     Scalar::Util::weaken (my $self = $self);
128    
129 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
130 root 1.30
131 root 1.50 my $timeout = $config->{monitor_timeout};
132 root 1.64 my $lframing = $config->{framing_format};
133 root 1.50 my $auth_snd = $config->{auth_offer};
134     my $auth_rcv = $config->{auth_accept};
135 root 1.31
136 root 1.42 $self->{secret} = $config->{secret}
137     unless exists $self->{secret};
138 root 1.2
139 root 1.42 my $secret = $self->{secret};
140 root 1.19
141 root 1.30 if (exists $config->{cert}) {
142 root 1.42 $self->{tls_ctx} = {
143 root 1.19 sslv2 => 0,
144     sslv3 => 0,
145     tlsv1 => 1,
146     verify => 1,
147 root 1.30 cert => $config->{cert},
148     ca_cert => $config->{cert},
149 root 1.19 verify_require_client_cert => 1,
150     };
151     }
152    
153 root 1.1 $self->{hdl} = new AnyEvent::Handle
154 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 root 1.63 autocork => $config->{autocork},
156     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 root 1.48 keepalive => 1,
158     on_error => sub {
159 root 1.1 $self->error ($_[2]);
160     },
161 root 1.49 rtimeout => $timeout,
162 root 1.1 ;
163    
164 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
165 root 1.24
166 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 root 1.62 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169 root 1.23
170 root 1.58 my $protocol = $self->{protocol} || "aemp";
171    
172 root 1.52 # can modify greeting_kv
173 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174 root 1.52
175 root 1.1 # send greeting
176 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
178 root 1.50 . ";" . (join ",", @$auth_rcv)
179     . ";" . (join ",", @$lframing)
180 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181 root 1.12
182 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183 root 1.1
184 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 root 1.1
186     # expect greeting
187 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
188 root 1.1 $self->{hdl}->push_read (line => sub {
189 root 1.7 my $rgreeting1 = $_[1];
190 root 1.1
191 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192 root 1.1
193 root 1.53 $self->{remote_node} = $rnode;
194    
195     $self->{remote_greeting} = {
196     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197     @kv
198     };
199    
200 root 1.60 # maybe upgrade the protocol
201     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202     # maybe check for existence of the protocol handler?
203     $self->{protocol} = $protocol = $aemp;
204     }
205    
206 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207 root 1.54
208 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
209 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
211     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 root 1.60 } elsif ($protocol eq "aemp") {
213     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214     return $self->error ("I refuse to talk to myself");
215     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216     return $self->error ("$rnode already connected, not connecting again.");
217     }
218 root 1.1 }
219    
220 root 1.7 # read nonce
221     $self->{hdl}->push_read (line => sub {
222     my $rgreeting2 = $_[1];
223    
224 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225     or return $self->error ("authentication error, echo attack?");
226    
227 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228    
229     my $s_auth;
230     for my $auth_ (split /,/, $auths) {
231 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 root 1.41 $s_auth = $auth_;
233     last;
234     }
235     }
236    
237     defined $s_auth
238     or return $self->error ("$auths: no common auth type supported");
239    
240     my $s_framing;
241     for my $framing_ (split /,/, $framings) {
242 root 1.50 if (grep $framing_ eq $_, @$lframing) {
243 root 1.41 $s_framing = $framing_;
244     last;
245     }
246     }
247    
248     defined $s_framing
249     or return $self->error ("$framings: no common framing method supported");
250    
251 root 1.30 my $key;
252 root 1.19 my $lauth;
253    
254 root 1.41 if ($tls) {
255 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 root 1.66 return unless $self->{hdl}; # starttls might destruct us
258 root 1.41
259     $lauth =
260     $s_auth eq "tls_anon" ? ""
261     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263    
264 root 1.30 } elsif (length $secret) {
265 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267    
268 root 1.30 $key = Digest::MD6::md6 $secret;
269 root 1.19 # we currently only support hmac_md6_64_256
270     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271 root 1.41
272 root 1.30 } else {
273     return $self->error ("unable to handshake TLS and no shared secret configured");
274 root 1.8 }
275 root 1.2
276 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277 root 1.2
278 root 1.19 # read the authentication response
279 root 1.7 $self->{hdl}->push_read (line => sub {
280     my ($hdl, $rline) = @_;
281 root 1.2
282 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283 root 1.1
284 root 1.19 my $rauth =
285     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286     : $auth_method eq "cleartext" ? unpack "H*", $secret
287 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290 root 1.19
291 root 1.7 if ($rauth2 ne $rauth) {
292     return $self->error ("authentication failure/shared secret mismatch");
293     }
294 root 1.1
295 root 1.7 $self->{s_framing} = $s_framing;
296 root 1.2
297 root 1.7 $hdl->rbuf_max (undef);
298 root 1.1
299 root 1.49 # we rely on TCP retransmit timeouts and keepalives
300     $self->{hdl}->rtimeout (undef);
301    
302     $self->{remote_greeting}{untrusted} = 1
303     if $auth_method eq "tls_anon";
304 root 1.24
305 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
306 root 1.59 # listener-less node need to continuously probe
307     unless (@$AnyEvent::MP::Kernel::LISTENER) {
308     $self->{hdl}->wtimeout ($timeout);
309     $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
310     }
311 root 1.58
312     # receive handling
313     my $src_node = $self->{node};
314 root 1.65 Scalar::Util::weaken $src_node;
315 root 1.45
316 root 1.68 # optimisation
317     my $push_write = $hdl->can ("push_write");
318     my $push_read = $hdl->can ("push_read");
319    
320 root 1.69 if ($s_framing eq "json") {
321 root 1.68 $self->{send} = sub {
322     $push_write->($hdl, JSON::XS::encode_json $_[0]);
323     };
324 root 1.69 } else {
325     $self->{send} = sub {
326     $push_write->($hdl, $s_framing => $_[0]);
327     };
328     }
329    
330     if ($r_framing eq "json") {
331     my $coder = JSON::XS->new->utf8;
332 root 1.68
333     $hdl->on_read (sub {
334     local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
335    
336     AnyEvent::MP::Kernel::_inject (@$_)
337     for $coder->incr_parse (delete $_[0]{rbuf});
338    
339     ()
340     });
341 root 1.65 } else {
342     my $rmsg; $rmsg = $self->{rmsg} = sub {
343 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
344 root 1.65
345     local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
346     AnyEvent::MP::Kernel::_inject (@{ $_[1] });
347     };
348     eval {
349 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
350 root 1.65 };
351     Scalar::Util::weaken $rmsg;
352     return $self->error ("$r_framing: unusable remote framing")
353     if $@;
354     }
355 root 1.58 }
356 root 1.67
357     $self->connected;
358 root 1.7 });
359 root 1.1 });
360     });
361     }
362    
363     $self
364     }
365    
366     sub error {
367     my ($self, $msg) = @_;
368    
369 root 1.39 delete $self->{keepalive};
370    
371 root 1.58 if ($self->{protocol}) {
372 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
373 root 1.58 } else {
374     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
375 root 1.39
376 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
377     if $self->{node} && $self->{node}{transport} == $self;
378     }
379 root 1.31
380     (delete $self->{release})->()
381     if exists $self->{release};
382    
383 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
384 root 1.4 $self->destroy;
385 root 1.1 }
386    
387 root 1.2 sub connected {
388     my ($self) = @_;
389    
390 root 1.39 delete $self->{keepalive};
391    
392 root 1.58 if ($self->{protocol}) {
393 root 1.59 $self->{hdl}->on_error (undef);
394     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
395 root 1.58 } else {
396     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
397    
398     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
399     Scalar::Util::weaken ($self->{node} = $node);
400     $node->transport_connect ($self);
401 root 1.39
402 root 1.58 $_->($self) for @HOOK_CONNECTED;
403     }
404 root 1.61
405     (delete $self->{release})->()
406     if exists $self->{release};
407 root 1.2 }
408    
409 root 1.1 sub destroy {
410     my ($self) = @_;
411    
412 root 1.42 (delete $self->{release})->()
413     if exists $self->{release};
414    
415 root 1.2 $self->{hdl}->destroy
416     if $self->{hdl};
417 root 1.52
418 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
419 root 1.1 }
420    
421     sub DESTROY {
422     my ($self) = @_;
423    
424     $self->destroy;
425     }
426    
427     =back
428    
429 root 1.7 =head1 PROTOCOL
430    
431 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
432     which are symmetrical for both sides: greeting (followed by optionally
433     switching to TLS mode), authentication and packet exchange.
434 root 1.7
435 root 1.43 The protocol is designed to allow both full-text and binary streams.
436 root 1.7
437     The greeting consists of two text lines that are ended by either an ASCII
438     CR LF pair, or a single ASCII LF (recommended).
439    
440     =head2 GREETING
441    
442 root 1.15 All the lines until after authentication must not exceed 4kb in length,
443 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
444     that can be received.
445 root 1.15
446     =head3 First Greeting Line
447 root 1.12
448 root 1.16 Example:
449    
450 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
451 root 1.16
452     The first line contains strings separated (not ended) by C<;>
453 root 1.43 characters. The first five strings are fixed by the protocol, the
454 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
455 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
456     C<;> and C<%25> to represent C<%>)-
457 root 1.16
458 root 1.12 The fixed strings are:
459 root 1.7
460     =over 4
461    
462 root 1.18 =item protocol identification
463 root 1.7
464 root 1.43 The constant C<aemp> to identify this protocol.
465 root 1.7
466     =item protocol version
467    
468 root 1.55 The protocol version supported by this end, currently C<1>. If the
469 root 1.12 versions don't match then no communication is possible. Minor extensions
470 root 1.18 are supposed to be handled through additional key-value pairs.
471 root 1.7
472 root 1.43 =item the node ID
473 root 1.7
474 root 1.57 This is the node ID of the connecting node.
475 root 1.7
476     =item the acceptable authentication methods
477    
478     A comma-separated list of authentication methods supported by the
479     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
480 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
481     this authentication method itself.
482 root 1.7
483 root 1.43 The receiving side should choose the first authentication method it
484     supports.
485 root 1.7
486     =item the acceptable framing formats
487    
488 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
489 root 1.7 receiving side should choose the first framing format it supports for
490     sending packets (which might be different from the format it has to accept).
491    
492 root 1.10 =back
493 root 1.8
494     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
495     pairs are known at this time:
496    
497     =over 4
498    
499     =item provider=<module-version>
500    
501     The software provider for this implementation. For AnyEvent::MP, this is
502     C<AE-0.0> or whatever version it currently is at.
503    
504     =item peeraddr=<host>:<port>
505    
506 root 1.39 The peer address (socket address of the other side) as seen locally.
507 root 1.8
508     =item tls=<major>.<minor>
509    
510     Indicates that the other side supports TLS (version should be 1.0) and
511     wishes to do a TLS handshake.
512    
513     =back
514    
515 root 1.15 =head3 Second Greeting Line
516    
517 root 1.8 After this greeting line there will be a second line containing a
518     cryptographic nonce, i.e. random data of high quality. To keep the
519     protocol text-only, these are usually 32 base64-encoded octets, but
520     it could be anything that doesn't contain any ASCII CR or ASCII LF
521     characters.
522    
523 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
524     B<must> check and fail when they are identical >>.
525    
526 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
527     data):
528 root 1.8
529 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
530 root 1.8
531     =head2 TLS handshake
532    
533 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
534 root 1.43 connection B<must> use TLS, or fail to continue. >>
535 root 1.8
536     Both sides compare their nonces, and the side who sent the lower nonce
537     value ("string" comparison on the raw octet values) becomes the client,
538     and the one with the higher nonce the server.
539    
540     =head2 AUTHENTICATION PHASE
541    
542     After the greeting is received (and the optional TLS handshake),
543     the authentication phase begins, which consists of sending a single
544     C<;>-separated line with three fixed strings and any number of
545     C<KEY=VALUE> pairs.
546    
547     The three fixed strings are:
548    
549     =over 4
550    
551     =item the authentication method chosen
552    
553     This must be one of the methods offered by the other side in the greeting.
554    
555 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
556     successfully handshaked (and to be secure the implementation must enforce
557     this).
558    
559 root 1.13 The currently supported authentication methods are:
560    
561     =over 4
562    
563     =item cleartext
564    
565     This is simply the shared secret, lowercase-hex-encoded. This method is of
566 root 1.43 course very insecure if TLS is not used (and not completely secure even
567     if TLS is used), which is why this module will accept, but not generate,
568     cleartext auth replies.
569 root 1.13
570     =item hmac_md6_64_256
571    
572 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
573     requires a shared secret. It is the preferred auth method when a shared
574     secret is available.
575    
576     First, the shared secret is hashed with MD6:
577 root 1.13
578     key = MD6 (secret)
579    
580     This secret is then used to generate the "local auth reply", by taking
581     the two local greeting lines and the two remote greeting lines (without
582     line endings), appending \012 to all of them, concatenating them and
583 root 1.43 calculating the MD6 HMAC with the key:
584 root 1.13
585     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
586    
587     This authentication token is then lowercase-hex-encoded and sent to the
588     other side.
589    
590     Then the remote auth reply is generated using the same method, but local
591     and remote greeting lines swapped:
592    
593     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
594    
595     This is the token that is expected from the other side.
596    
597 root 1.41 =item tls_anon
598 root 1.19
599 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
600 root 1.19 was successful. It has no authentication data, as the server/client
601     certificate was successfully verified.
602    
603 root 1.43 This authentication type is somewhat insecure, as it allows a
604     man-in-the-middle attacker to change some of the connection parameters
605     (such as the framing format), although there is no known attack that
606     exploits this in a way that is worse than just denying the service.
607 root 1.41
608 root 1.43 By default, this implementation accepts but never generates this auth
609     reply.
610 root 1.41
611     =item tls_md6_64_256
612    
613 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
614     successful.
615 root 1.41
616     This authentication type simply calculates:
617    
618     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
619    
620     and lowercase-hex encodes the result and sends it as authentication
621     data. No shared secret is required (authentication is done by TLS). The
622 root 1.43 checksum exists only to make tinkering with the greeting hard.
623 root 1.19
624 root 1.13 =back
625    
626 root 1.8 =item the authentication data
627    
628 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
629     above.
630 root 1.8
631     =item the framing protocol chosen
632    
633     This must be one of the framing protocols offered by the other side in the
634 root 1.43 greeting. Each side must accept the choice of the other side, and generate
635     packets in the format it chose itself.
636 root 1.8
637     =back
638    
639 root 1.16 Example of an authentication reply:
640 root 1.9
641 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
642 root 1.9
643 root 1.8 =head2 DATA PHASE
644    
645     After this, packets get exchanged using the chosen framing protocol. It is
646     quite possible that both sides use a different framing protocol.
647    
648 root 1.16 =head2 FULL EXAMPLE
649    
650 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
651 root 1.16 packet. The greater than/less than lines indicate the direction of the
652     transfer only.
653    
654 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
655     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
656    
657     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
658     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
659    
660     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
661    
662     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
663     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
664     ...
665    
666     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
667 root 1.16
668 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
669    
670     Implementing the full set of options for handshaking can be a daunting
671     task.
672    
673     If security is not so important (because you only connect locally and
674     control the host, a common case), and you want to interface with an AEMP
675     node from another programming language, then you can also implement a
676     simplified handshake.
677    
678     For example, in a simple implementation you could decide to simply not
679     check the authenticity of the other side and use cleartext authentication
680     yourself. The the handshake is as simple as sending three lines of text,
681     reading three lines of text, and then you can exchange JSON-formatted
682     messages:
683    
684     aemp;1;<nodename>;hmac_md6_64_256;json
685     <nonce>
686     cleartext;<hexencoded secret>;json
687    
688     The nodename should be unique within the network, preferably unique with
689     every connection, the <nonce> could be empty or some random data, and the
690     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
691     the secret is "geheim", the hex-encoded version would be "67656865696d").
692    
693     Note that apart from the low-level handshake and framing protocol, there
694     is a high-level protocol, e.g. for monitoring, building the mesh or
695     spawning. All these messages are sent to the node port (the empty string)
696     and can safely be ignored if you do not need the relevant functionality.
697    
698     =head3 USEFUL HINTS
699    
700     Since taking part in the global protocol to find port groups is
701     nontrivial, hardcoding port names should be considered as well, i.e. the
702     non-Perl node could simply listen to messages for a few well-known ports.
703    
704     Alternatively, the non-Perl node could call a (already loaded) function
705     in the Perl node by sending it a special message:
706    
707     ["", "Some::Function::name", "myownport", 1, 2, 3]
708    
709     This would call the function C<Some::Function::name> with the string
710     C<myownport> and some additional arguments.
711    
712 root 1.49 =head2 MONITORING
713    
714     Monitoring the connection itself is transport-specific. For TCP, all
715     connection monitoring is currently left to TCP retransmit time-outs
716     on a busy link, and TCP keepalive (which should be enabled) for idle
717     connections.
718    
719     This is not sufficient for listener-less nodes, however: they need
720     to regularly send data (30 seconds, or the monitoring interval, is
721     recommended), so TCP actively probes.
722    
723     Future implementations of AnyEvent::Transport might query the kernel TCP
724     buffer after a write timeout occurs, and if it is non-empty, shut down the
725     connections, but this is an area of future research :)
726    
727     =head2 NODE PROTOCOL
728    
729     The transport simply transfers messages, but to implement a full node, a
730     special node port must exist that understands a number of requests.
731    
732     If you are interested in implementing this, drop us a note so we finish
733     the documentation.
734    
735 root 1.1 =head1 SEE ALSO
736    
737 root 1.29 L<AnyEvent::MP>.
738 root 1.1
739     =head1 AUTHOR
740    
741     Marc Lehmann <schmorp@schmorp.de>
742     http://home.schmorp.de/
743    
744     =cut
745    
746     1
747