ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.71
Committed: Mon Apr 19 04:42:51 2010 UTC (14 years, 1 month ago) by root
Branch: MAIN
CVS Tags: rel-1_29
Changes since 1.70: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.52 our @HOOK_CONNECT; # called at connect/accept time
45     our @HOOK_GREETING; # called at greeting1 time
46     our @HOOK_CONNECTED; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.39 =item $listener = mp_listener $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101     # immediately starts negotiation
102     my $transport = new AnyEvent::MP::Transport
103 root 1.2 # mandatory
104 root 1.1 fh => $filehandle,
105 root 1.2 local_id => $identifier,
106 root 1.1 on_recv => sub { receive-callback },
107     on_error => sub { error-callback },
108    
109     # optional
110     on_eof => sub { clean-close-callback },
111     on_connect => sub { successful-connect-callback },
112 root 1.2 greeting => { key => value },
113 root 1.1
114     # tls support
115     tls_ctx => AnyEvent::TLS,
116     peername => $peername, # for verification
117     ;
118    
119     =cut
120    
121     sub new {
122     my ($class, %arg) = @_;
123    
124     my $self = bless \%arg, $class;
125    
126     {
127     Scalar::Util::weaken (my $self = $self);
128    
129 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
130 root 1.30
131 root 1.50 my $timeout = $config->{monitor_timeout};
132 root 1.64 my $lframing = $config->{framing_format};
133 root 1.50 my $auth_snd = $config->{auth_offer};
134     my $auth_rcv = $config->{auth_accept};
135 root 1.31
136 root 1.42 $self->{secret} = $config->{secret}
137     unless exists $self->{secret};
138 root 1.2
139 root 1.42 my $secret = $self->{secret};
140 root 1.19
141 root 1.30 if (exists $config->{cert}) {
142 root 1.42 $self->{tls_ctx} = {
143 root 1.19 sslv2 => 0,
144     sslv3 => 0,
145     tlsv1 => 1,
146     verify => 1,
147 root 1.30 cert => $config->{cert},
148     ca_cert => $config->{cert},
149 root 1.19 verify_require_client_cert => 1,
150     };
151     }
152    
153 root 1.1 $self->{hdl} = new AnyEvent::Handle
154 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 root 1.63 autocork => $config->{autocork},
156     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 root 1.48 keepalive => 1,
158     on_error => sub {
159 root 1.1 $self->error ($_[2]);
160     },
161 root 1.49 rtimeout => $timeout,
162 root 1.1 ;
163    
164 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
165 root 1.24
166 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 root 1.62 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169 root 1.23
170 root 1.58 my $protocol = $self->{protocol} || "aemp";
171    
172 root 1.52 # can modify greeting_kv
173 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174 root 1.52
175 root 1.1 # send greeting
176 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
178 root 1.50 . ";" . (join ",", @$auth_rcv)
179     . ";" . (join ",", @$lframing)
180 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181 root 1.12
182 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183 root 1.1
184 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 root 1.1
186     # expect greeting
187 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
188 root 1.1 $self->{hdl}->push_read (line => sub {
189 root 1.7 my $rgreeting1 = $_[1];
190 root 1.1
191 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192 root 1.1
193 root 1.53 $self->{remote_node} = $rnode;
194    
195     $self->{remote_greeting} = {
196     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197     @kv
198     };
199    
200 root 1.60 # maybe upgrade the protocol
201     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202     # maybe check for existence of the protocol handler?
203     $self->{protocol} = $protocol = $aemp;
204     }
205    
206 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207 root 1.54
208 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
209 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
211     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 root 1.60 } elsif ($protocol eq "aemp") {
213     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214     return $self->error ("I refuse to talk to myself");
215     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216     return $self->error ("$rnode already connected, not connecting again.");
217     }
218 root 1.1 }
219    
220 root 1.7 # read nonce
221     $self->{hdl}->push_read (line => sub {
222     my $rgreeting2 = $_[1];
223    
224 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225     or return $self->error ("authentication error, echo attack?");
226    
227 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228    
229     my $s_auth;
230     for my $auth_ (split /,/, $auths) {
231 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 root 1.41 $s_auth = $auth_;
233     last;
234     }
235     }
236    
237     defined $s_auth
238     or return $self->error ("$auths: no common auth type supported");
239    
240     my $s_framing;
241     for my $framing_ (split /,/, $framings) {
242 root 1.50 if (grep $framing_ eq $_, @$lframing) {
243 root 1.41 $s_framing = $framing_;
244     last;
245     }
246     }
247    
248     defined $s_framing
249     or return $self->error ("$framings: no common framing method supported");
250    
251 root 1.30 my $key;
252 root 1.19 my $lauth;
253    
254 root 1.41 if ($tls) {
255 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 root 1.66 return unless $self->{hdl}; # starttls might destruct us
258 root 1.41
259     $lauth =
260     $s_auth eq "tls_anon" ? ""
261     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263    
264 root 1.30 } elsif (length $secret) {
265 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267    
268 root 1.30 $key = Digest::MD6::md6 $secret;
269 root 1.19 # we currently only support hmac_md6_64_256
270     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271 root 1.41
272 root 1.30 } else {
273     return $self->error ("unable to handshake TLS and no shared secret configured");
274 root 1.8 }
275 root 1.2
276 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277 root 1.2
278 root 1.19 # read the authentication response
279 root 1.7 $self->{hdl}->push_read (line => sub {
280     my ($hdl, $rline) = @_;
281 root 1.2
282 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283 root 1.1
284 root 1.19 my $rauth =
285     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286     : $auth_method eq "cleartext" ? unpack "H*", $secret
287 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290 root 1.19
291 root 1.7 if ($rauth2 ne $rauth) {
292     return $self->error ("authentication failure/shared secret mismatch");
293     }
294 root 1.1
295 root 1.7 $self->{s_framing} = $s_framing;
296 root 1.2
297 root 1.7 $hdl->rbuf_max (undef);
298 root 1.1
299 root 1.49 # we rely on TCP retransmit timeouts and keepalives
300     $self->{hdl}->rtimeout (undef);
301    
302     $self->{remote_greeting}{untrusted} = 1
303     if $auth_method eq "tls_anon";
304 root 1.24
305 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
306 root 1.59 # listener-less node need to continuously probe
307     unless (@$AnyEvent::MP::Kernel::LISTENER) {
308     $self->{hdl}->wtimeout ($timeout);
309 root 1.71 $self->{hdl}->on_wtimeout (sub { $self->{send}->([]) });
310 root 1.59 }
311 root 1.58
312     # receive handling
313 root 1.45
314 root 1.68 my $push_write = $hdl->can ("push_write");
315     my $push_read = $hdl->can ("push_read");
316    
317 root 1.69 if ($s_framing eq "json") {
318 root 1.68 $self->{send} = sub {
319     $push_write->($hdl, JSON::XS::encode_json $_[0]);
320     };
321 root 1.69 } else {
322     $self->{send} = sub {
323     $push_write->($hdl, $s_framing => $_[0]);
324     };
325     }
326    
327     if ($r_framing eq "json") {
328     my $coder = JSON::XS->new->utf8;
329 root 1.68
330     $hdl->on_read (sub {
331 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
332 root 1.68
333     AnyEvent::MP::Kernel::_inject (@$_)
334     for $coder->incr_parse (delete $_[0]{rbuf});
335    
336     ()
337     });
338 root 1.65 } else {
339     my $rmsg; $rmsg = $self->{rmsg} = sub {
340 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
341 root 1.65
342 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
343 root 1.65 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
344     };
345     eval {
346 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
347 root 1.65 };
348     Scalar::Util::weaken $rmsg;
349     return $self->error ("$r_framing: unusable remote framing")
350     if $@;
351     }
352 root 1.58 }
353 root 1.67
354     $self->connected;
355 root 1.7 });
356 root 1.1 });
357     });
358     }
359    
360     $self
361     }
362    
363     sub error {
364     my ($self, $msg) = @_;
365    
366 root 1.39 delete $self->{keepalive};
367    
368 root 1.58 if ($self->{protocol}) {
369 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
370 root 1.58 } else {
371     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
372 root 1.39
373 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
374     if $self->{node} && $self->{node}{transport} == $self;
375     }
376 root 1.31
377     (delete $self->{release})->()
378     if exists $self->{release};
379    
380 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
381 root 1.4 $self->destroy;
382 root 1.1 }
383    
384 root 1.2 sub connected {
385     my ($self) = @_;
386    
387 root 1.39 delete $self->{keepalive};
388    
389 root 1.58 if ($self->{protocol}) {
390 root 1.59 $self->{hdl}->on_error (undef);
391     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
392 root 1.58 } else {
393     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
394    
395     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
396     Scalar::Util::weaken ($self->{node} = $node);
397     $node->transport_connect ($self);
398 root 1.39
399 root 1.58 $_->($self) for @HOOK_CONNECTED;
400     }
401 root 1.61
402     (delete $self->{release})->()
403     if exists $self->{release};
404 root 1.2 }
405    
406 root 1.1 sub destroy {
407     my ($self) = @_;
408    
409 root 1.42 (delete $self->{release})->()
410     if exists $self->{release};
411    
412 root 1.2 $self->{hdl}->destroy
413     if $self->{hdl};
414 root 1.52
415 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
416 root 1.1 }
417    
418     sub DESTROY {
419     my ($self) = @_;
420    
421     $self->destroy;
422     }
423    
424     =back
425    
426 root 1.7 =head1 PROTOCOL
427    
428 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
429     which are symmetrical for both sides: greeting (followed by optionally
430     switching to TLS mode), authentication and packet exchange.
431 root 1.7
432 root 1.43 The protocol is designed to allow both full-text and binary streams.
433 root 1.7
434     The greeting consists of two text lines that are ended by either an ASCII
435     CR LF pair, or a single ASCII LF (recommended).
436    
437     =head2 GREETING
438    
439 root 1.15 All the lines until after authentication must not exceed 4kb in length,
440 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
441     that can be received.
442 root 1.15
443     =head3 First Greeting Line
444 root 1.12
445 root 1.16 Example:
446    
447 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
448 root 1.16
449     The first line contains strings separated (not ended) by C<;>
450 root 1.43 characters. The first five strings are fixed by the protocol, the
451 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
452 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
453     C<;> and C<%25> to represent C<%>)-
454 root 1.16
455 root 1.12 The fixed strings are:
456 root 1.7
457     =over 4
458    
459 root 1.18 =item protocol identification
460 root 1.7
461 root 1.43 The constant C<aemp> to identify this protocol.
462 root 1.7
463     =item protocol version
464    
465 root 1.55 The protocol version supported by this end, currently C<1>. If the
466 root 1.12 versions don't match then no communication is possible. Minor extensions
467 root 1.18 are supposed to be handled through additional key-value pairs.
468 root 1.7
469 root 1.43 =item the node ID
470 root 1.7
471 root 1.57 This is the node ID of the connecting node.
472 root 1.7
473     =item the acceptable authentication methods
474    
475     A comma-separated list of authentication methods supported by the
476     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
477 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
478     this authentication method itself.
479 root 1.7
480 root 1.43 The receiving side should choose the first authentication method it
481     supports.
482 root 1.7
483     =item the acceptable framing formats
484    
485 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
486 root 1.7 receiving side should choose the first framing format it supports for
487     sending packets (which might be different from the format it has to accept).
488    
489 root 1.10 =back
490 root 1.8
491     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
492     pairs are known at this time:
493    
494     =over 4
495    
496     =item provider=<module-version>
497    
498     The software provider for this implementation. For AnyEvent::MP, this is
499     C<AE-0.0> or whatever version it currently is at.
500    
501     =item peeraddr=<host>:<port>
502    
503 root 1.39 The peer address (socket address of the other side) as seen locally.
504 root 1.8
505     =item tls=<major>.<minor>
506    
507     Indicates that the other side supports TLS (version should be 1.0) and
508     wishes to do a TLS handshake.
509    
510     =back
511    
512 root 1.15 =head3 Second Greeting Line
513    
514 root 1.8 After this greeting line there will be a second line containing a
515     cryptographic nonce, i.e. random data of high quality. To keep the
516     protocol text-only, these are usually 32 base64-encoded octets, but
517     it could be anything that doesn't contain any ASCII CR or ASCII LF
518     characters.
519    
520 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
521     B<must> check and fail when they are identical >>.
522    
523 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
524     data):
525 root 1.8
526 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
527 root 1.8
528     =head2 TLS handshake
529    
530 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
531 root 1.43 connection B<must> use TLS, or fail to continue. >>
532 root 1.8
533     Both sides compare their nonces, and the side who sent the lower nonce
534     value ("string" comparison on the raw octet values) becomes the client,
535     and the one with the higher nonce the server.
536    
537     =head2 AUTHENTICATION PHASE
538    
539     After the greeting is received (and the optional TLS handshake),
540     the authentication phase begins, which consists of sending a single
541     C<;>-separated line with three fixed strings and any number of
542     C<KEY=VALUE> pairs.
543    
544     The three fixed strings are:
545    
546     =over 4
547    
548     =item the authentication method chosen
549    
550     This must be one of the methods offered by the other side in the greeting.
551    
552 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
553     successfully handshaked (and to be secure the implementation must enforce
554     this).
555    
556 root 1.13 The currently supported authentication methods are:
557    
558     =over 4
559    
560     =item cleartext
561    
562     This is simply the shared secret, lowercase-hex-encoded. This method is of
563 root 1.43 course very insecure if TLS is not used (and not completely secure even
564     if TLS is used), which is why this module will accept, but not generate,
565     cleartext auth replies.
566 root 1.13
567     =item hmac_md6_64_256
568    
569 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
570     requires a shared secret. It is the preferred auth method when a shared
571     secret is available.
572    
573     First, the shared secret is hashed with MD6:
574 root 1.13
575     key = MD6 (secret)
576    
577     This secret is then used to generate the "local auth reply", by taking
578     the two local greeting lines and the two remote greeting lines (without
579     line endings), appending \012 to all of them, concatenating them and
580 root 1.43 calculating the MD6 HMAC with the key:
581 root 1.13
582     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
583    
584     This authentication token is then lowercase-hex-encoded and sent to the
585     other side.
586    
587     Then the remote auth reply is generated using the same method, but local
588     and remote greeting lines swapped:
589    
590     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
591    
592     This is the token that is expected from the other side.
593    
594 root 1.41 =item tls_anon
595 root 1.19
596 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
597 root 1.19 was successful. It has no authentication data, as the server/client
598     certificate was successfully verified.
599    
600 root 1.43 This authentication type is somewhat insecure, as it allows a
601     man-in-the-middle attacker to change some of the connection parameters
602     (such as the framing format), although there is no known attack that
603     exploits this in a way that is worse than just denying the service.
604 root 1.41
605 root 1.43 By default, this implementation accepts but never generates this auth
606     reply.
607 root 1.41
608     =item tls_md6_64_256
609    
610 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
611     successful.
612 root 1.41
613     This authentication type simply calculates:
614    
615     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
616    
617     and lowercase-hex encodes the result and sends it as authentication
618     data. No shared secret is required (authentication is done by TLS). The
619 root 1.43 checksum exists only to make tinkering with the greeting hard.
620 root 1.19
621 root 1.13 =back
622    
623 root 1.8 =item the authentication data
624    
625 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
626     above.
627 root 1.8
628     =item the framing protocol chosen
629    
630     This must be one of the framing protocols offered by the other side in the
631 root 1.43 greeting. Each side must accept the choice of the other side, and generate
632     packets in the format it chose itself.
633 root 1.8
634     =back
635    
636 root 1.16 Example of an authentication reply:
637 root 1.9
638 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
639 root 1.9
640 root 1.8 =head2 DATA PHASE
641    
642     After this, packets get exchanged using the chosen framing protocol. It is
643     quite possible that both sides use a different framing protocol.
644    
645 root 1.16 =head2 FULL EXAMPLE
646    
647 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
648 root 1.16 packet. The greater than/less than lines indicate the direction of the
649     transfer only.
650    
651 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
652     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
653    
654     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
655     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
656    
657     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
658    
659     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
660     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
661     ...
662    
663     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
664 root 1.16
665 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
666    
667     Implementing the full set of options for handshaking can be a daunting
668     task.
669    
670     If security is not so important (because you only connect locally and
671     control the host, a common case), and you want to interface with an AEMP
672     node from another programming language, then you can also implement a
673     simplified handshake.
674    
675     For example, in a simple implementation you could decide to simply not
676     check the authenticity of the other side and use cleartext authentication
677     yourself. The the handshake is as simple as sending three lines of text,
678     reading three lines of text, and then you can exchange JSON-formatted
679     messages:
680    
681     aemp;1;<nodename>;hmac_md6_64_256;json
682     <nonce>
683     cleartext;<hexencoded secret>;json
684    
685     The nodename should be unique within the network, preferably unique with
686     every connection, the <nonce> could be empty or some random data, and the
687     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
688     the secret is "geheim", the hex-encoded version would be "67656865696d").
689    
690     Note that apart from the low-level handshake and framing protocol, there
691     is a high-level protocol, e.g. for monitoring, building the mesh or
692     spawning. All these messages are sent to the node port (the empty string)
693     and can safely be ignored if you do not need the relevant functionality.
694    
695     =head3 USEFUL HINTS
696    
697     Since taking part in the global protocol to find port groups is
698     nontrivial, hardcoding port names should be considered as well, i.e. the
699     non-Perl node could simply listen to messages for a few well-known ports.
700    
701     Alternatively, the non-Perl node could call a (already loaded) function
702     in the Perl node by sending it a special message:
703    
704     ["", "Some::Function::name", "myownport", 1, 2, 3]
705    
706     This would call the function C<Some::Function::name> with the string
707     C<myownport> and some additional arguments.
708    
709 root 1.49 =head2 MONITORING
710    
711     Monitoring the connection itself is transport-specific. For TCP, all
712     connection monitoring is currently left to TCP retransmit time-outs
713     on a busy link, and TCP keepalive (which should be enabled) for idle
714     connections.
715    
716     This is not sufficient for listener-less nodes, however: they need
717     to regularly send data (30 seconds, or the monitoring interval, is
718     recommended), so TCP actively probes.
719    
720     Future implementations of AnyEvent::Transport might query the kernel TCP
721     buffer after a write timeout occurs, and if it is non-empty, shut down the
722     connections, but this is an area of future research :)
723    
724     =head2 NODE PROTOCOL
725    
726     The transport simply transfers messages, but to implement a full node, a
727     special node port must exist that understands a number of requests.
728    
729     If you are interested in implementing this, drop us a note so we finish
730     the documentation.
731    
732 root 1.1 =head1 SEE ALSO
733    
734 root 1.29 L<AnyEvent::MP>.
735 root 1.1
736     =head1 AUTHOR
737    
738     Marc Lehmann <schmorp@schmorp.de>
739     http://home.schmorp.de/
740    
741     =cut
742    
743     1
744