ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.72
Committed: Thu Jun 30 09:31:58 2011 UTC (12 years, 11 months ago) by root
Branch: MAIN
CVS Tags: rel-1_30
Changes since 1.71: +2 -0 lines
Log Message:
1.30

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.52 our @HOOK_CONNECT; # called at connect/accept time
45     our @HOOK_GREETING; # called at greeting1 time
46     our @HOOK_CONNECTED; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.39 =item $listener = mp_listener $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101     # immediately starts negotiation
102     my $transport = new AnyEvent::MP::Transport
103 root 1.2 # mandatory
104 root 1.1 fh => $filehandle,
105 root 1.2 local_id => $identifier,
106 root 1.1 on_recv => sub { receive-callback },
107     on_error => sub { error-callback },
108    
109     # optional
110     on_eof => sub { clean-close-callback },
111     on_connect => sub { successful-connect-callback },
112 root 1.2 greeting => { key => value },
113 root 1.1
114     # tls support
115     tls_ctx => AnyEvent::TLS,
116     peername => $peername, # for verification
117     ;
118    
119     =cut
120    
121     sub new {
122     my ($class, %arg) = @_;
123    
124     my $self = bless \%arg, $class;
125    
126     {
127     Scalar::Util::weaken (my $self = $self);
128    
129 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
130 root 1.30
131 root 1.50 my $timeout = $config->{monitor_timeout};
132 root 1.64 my $lframing = $config->{framing_format};
133 root 1.50 my $auth_snd = $config->{auth_offer};
134     my $auth_rcv = $config->{auth_accept};
135 root 1.31
136 root 1.42 $self->{secret} = $config->{secret}
137     unless exists $self->{secret};
138 root 1.2
139 root 1.42 my $secret = $self->{secret};
140 root 1.19
141 root 1.30 if (exists $config->{cert}) {
142 root 1.42 $self->{tls_ctx} = {
143 root 1.19 sslv2 => 0,
144     sslv3 => 0,
145     tlsv1 => 1,
146     verify => 1,
147 root 1.30 cert => $config->{cert},
148     ca_cert => $config->{cert},
149 root 1.19 verify_require_client_cert => 1,
150     };
151     }
152    
153 root 1.1 $self->{hdl} = new AnyEvent::Handle
154 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 root 1.63 autocork => $config->{autocork},
156     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 root 1.48 keepalive => 1,
158     on_error => sub {
159 root 1.1 $self->error ($_[2]);
160     },
161 root 1.49 rtimeout => $timeout,
162 root 1.1 ;
163    
164 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
165 root 1.24
166 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 root 1.62 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169 root 1.23
170 root 1.58 my $protocol = $self->{protocol} || "aemp";
171    
172 root 1.52 # can modify greeting_kv
173 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174 root 1.52
175 root 1.1 # send greeting
176 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
178 root 1.50 . ";" . (join ",", @$auth_rcv)
179     . ";" . (join ",", @$lframing)
180 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181 root 1.12
182 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183 root 1.1
184 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 root 1.72 return unless $self;
186 root 1.1
187     # expect greeting
188 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
189 root 1.1 $self->{hdl}->push_read (line => sub {
190 root 1.7 my $rgreeting1 = $_[1];
191 root 1.1
192 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
193 root 1.1
194 root 1.53 $self->{remote_node} = $rnode;
195    
196     $self->{remote_greeting} = {
197     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
198     @kv
199     };
200    
201 root 1.60 # maybe upgrade the protocol
202     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
203     # maybe check for existence of the protocol handler?
204     $self->{protocol} = $protocol = $aemp;
205     }
206    
207 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
208 root 1.54
209 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
210 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
211 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
212     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
213 root 1.60 } elsif ($protocol eq "aemp") {
214     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
215     return $self->error ("I refuse to talk to myself");
216     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
217     return $self->error ("$rnode already connected, not connecting again.");
218     }
219 root 1.1 }
220    
221 root 1.7 # read nonce
222     $self->{hdl}->push_read (line => sub {
223     my $rgreeting2 = $_[1];
224    
225 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
226     or return $self->error ("authentication error, echo attack?");
227    
228 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
229    
230     my $s_auth;
231     for my $auth_ (split /,/, $auths) {
232 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
233 root 1.41 $s_auth = $auth_;
234     last;
235     }
236     }
237    
238     defined $s_auth
239     or return $self->error ("$auths: no common auth type supported");
240    
241     my $s_framing;
242     for my $framing_ (split /,/, $framings) {
243 root 1.50 if (grep $framing_ eq $_, @$lframing) {
244 root 1.41 $s_framing = $framing_;
245     last;
246     }
247     }
248    
249     defined $s_framing
250     or return $self->error ("$framings: no common framing method supported");
251    
252 root 1.30 my $key;
253 root 1.19 my $lauth;
254    
255 root 1.41 if ($tls) {
256 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
257     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
258 root 1.66 return unless $self->{hdl}; # starttls might destruct us
259 root 1.41
260     $lauth =
261     $s_auth eq "tls_anon" ? ""
262     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
263     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
264    
265 root 1.30 } elsif (length $secret) {
266 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
267     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
268    
269 root 1.30 $key = Digest::MD6::md6 $secret;
270 root 1.19 # we currently only support hmac_md6_64_256
271     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
272 root 1.41
273 root 1.30 } else {
274     return $self->error ("unable to handshake TLS and no shared secret configured");
275 root 1.8 }
276 root 1.2
277 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
278 root 1.72 return unless $self;
279 root 1.2
280 root 1.19 # read the authentication response
281 root 1.7 $self->{hdl}->push_read (line => sub {
282     my ($hdl, $rline) = @_;
283 root 1.2
284 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
285 root 1.1
286 root 1.19 my $rauth =
287     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
288     : $auth_method eq "cleartext" ? unpack "H*", $secret
289 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
290     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
291     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
292 root 1.19
293 root 1.7 if ($rauth2 ne $rauth) {
294     return $self->error ("authentication failure/shared secret mismatch");
295     }
296 root 1.1
297 root 1.7 $self->{s_framing} = $s_framing;
298 root 1.2
299 root 1.7 $hdl->rbuf_max (undef);
300 root 1.1
301 root 1.49 # we rely on TCP retransmit timeouts and keepalives
302     $self->{hdl}->rtimeout (undef);
303    
304     $self->{remote_greeting}{untrusted} = 1
305     if $auth_method eq "tls_anon";
306 root 1.24
307 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
308 root 1.59 # listener-less node need to continuously probe
309     unless (@$AnyEvent::MP::Kernel::LISTENER) {
310     $self->{hdl}->wtimeout ($timeout);
311 root 1.71 $self->{hdl}->on_wtimeout (sub { $self->{send}->([]) });
312 root 1.59 }
313 root 1.58
314     # receive handling
315 root 1.45
316 root 1.68 my $push_write = $hdl->can ("push_write");
317     my $push_read = $hdl->can ("push_read");
318    
319 root 1.69 if ($s_framing eq "json") {
320 root 1.68 $self->{send} = sub {
321     $push_write->($hdl, JSON::XS::encode_json $_[0]);
322     };
323 root 1.69 } else {
324     $self->{send} = sub {
325     $push_write->($hdl, $s_framing => $_[0]);
326     };
327     }
328    
329     if ($r_framing eq "json") {
330     my $coder = JSON::XS->new->utf8;
331 root 1.68
332     $hdl->on_read (sub {
333 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
334 root 1.68
335     AnyEvent::MP::Kernel::_inject (@$_)
336     for $coder->incr_parse (delete $_[0]{rbuf});
337    
338     ()
339     });
340 root 1.65 } else {
341     my $rmsg; $rmsg = $self->{rmsg} = sub {
342 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
343 root 1.65
344 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
345 root 1.65 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
346     };
347     eval {
348 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
349 root 1.65 };
350     Scalar::Util::weaken $rmsg;
351     return $self->error ("$r_framing: unusable remote framing")
352     if $@;
353     }
354 root 1.58 }
355 root 1.67
356     $self->connected;
357 root 1.7 });
358 root 1.1 });
359     });
360     }
361    
362     $self
363     }
364    
365     sub error {
366     my ($self, $msg) = @_;
367    
368 root 1.39 delete $self->{keepalive};
369    
370 root 1.58 if ($self->{protocol}) {
371 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
372 root 1.58 } else {
373     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
374 root 1.39
375 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
376     if $self->{node} && $self->{node}{transport} == $self;
377     }
378 root 1.31
379     (delete $self->{release})->()
380     if exists $self->{release};
381    
382 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
383 root 1.4 $self->destroy;
384 root 1.1 }
385    
386 root 1.2 sub connected {
387     my ($self) = @_;
388    
389 root 1.39 delete $self->{keepalive};
390    
391 root 1.58 if ($self->{protocol}) {
392 root 1.59 $self->{hdl}->on_error (undef);
393     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
394 root 1.58 } else {
395     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
396    
397     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
398     Scalar::Util::weaken ($self->{node} = $node);
399     $node->transport_connect ($self);
400 root 1.39
401 root 1.58 $_->($self) for @HOOK_CONNECTED;
402     }
403 root 1.61
404     (delete $self->{release})->()
405     if exists $self->{release};
406 root 1.2 }
407    
408 root 1.1 sub destroy {
409     my ($self) = @_;
410    
411 root 1.42 (delete $self->{release})->()
412     if exists $self->{release};
413    
414 root 1.2 $self->{hdl}->destroy
415     if $self->{hdl};
416 root 1.52
417 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
418 root 1.1 }
419    
420     sub DESTROY {
421     my ($self) = @_;
422    
423     $self->destroy;
424     }
425    
426     =back
427    
428 root 1.7 =head1 PROTOCOL
429    
430 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
431     which are symmetrical for both sides: greeting (followed by optionally
432     switching to TLS mode), authentication and packet exchange.
433 root 1.7
434 root 1.43 The protocol is designed to allow both full-text and binary streams.
435 root 1.7
436     The greeting consists of two text lines that are ended by either an ASCII
437     CR LF pair, or a single ASCII LF (recommended).
438    
439     =head2 GREETING
440    
441 root 1.15 All the lines until after authentication must not exceed 4kb in length,
442 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
443     that can be received.
444 root 1.15
445     =head3 First Greeting Line
446 root 1.12
447 root 1.16 Example:
448    
449 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
450 root 1.16
451     The first line contains strings separated (not ended) by C<;>
452 root 1.43 characters. The first five strings are fixed by the protocol, the
453 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
454 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
455     C<;> and C<%25> to represent C<%>)-
456 root 1.16
457 root 1.12 The fixed strings are:
458 root 1.7
459     =over 4
460    
461 root 1.18 =item protocol identification
462 root 1.7
463 root 1.43 The constant C<aemp> to identify this protocol.
464 root 1.7
465     =item protocol version
466    
467 root 1.55 The protocol version supported by this end, currently C<1>. If the
468 root 1.12 versions don't match then no communication is possible. Minor extensions
469 root 1.18 are supposed to be handled through additional key-value pairs.
470 root 1.7
471 root 1.43 =item the node ID
472 root 1.7
473 root 1.57 This is the node ID of the connecting node.
474 root 1.7
475     =item the acceptable authentication methods
476    
477     A comma-separated list of authentication methods supported by the
478     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
479 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
480     this authentication method itself.
481 root 1.7
482 root 1.43 The receiving side should choose the first authentication method it
483     supports.
484 root 1.7
485     =item the acceptable framing formats
486    
487 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
488 root 1.7 receiving side should choose the first framing format it supports for
489     sending packets (which might be different from the format it has to accept).
490    
491 root 1.10 =back
492 root 1.8
493     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
494     pairs are known at this time:
495    
496     =over 4
497    
498     =item provider=<module-version>
499    
500     The software provider for this implementation. For AnyEvent::MP, this is
501     C<AE-0.0> or whatever version it currently is at.
502    
503     =item peeraddr=<host>:<port>
504    
505 root 1.39 The peer address (socket address of the other side) as seen locally.
506 root 1.8
507     =item tls=<major>.<minor>
508    
509     Indicates that the other side supports TLS (version should be 1.0) and
510     wishes to do a TLS handshake.
511    
512     =back
513    
514 root 1.15 =head3 Second Greeting Line
515    
516 root 1.8 After this greeting line there will be a second line containing a
517     cryptographic nonce, i.e. random data of high quality. To keep the
518     protocol text-only, these are usually 32 base64-encoded octets, but
519     it could be anything that doesn't contain any ASCII CR or ASCII LF
520     characters.
521    
522 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
523     B<must> check and fail when they are identical >>.
524    
525 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
526     data):
527 root 1.8
528 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
529 root 1.8
530     =head2 TLS handshake
531    
532 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
533 root 1.43 connection B<must> use TLS, or fail to continue. >>
534 root 1.8
535     Both sides compare their nonces, and the side who sent the lower nonce
536     value ("string" comparison on the raw octet values) becomes the client,
537     and the one with the higher nonce the server.
538    
539     =head2 AUTHENTICATION PHASE
540    
541     After the greeting is received (and the optional TLS handshake),
542     the authentication phase begins, which consists of sending a single
543     C<;>-separated line with three fixed strings and any number of
544     C<KEY=VALUE> pairs.
545    
546     The three fixed strings are:
547    
548     =over 4
549    
550     =item the authentication method chosen
551    
552     This must be one of the methods offered by the other side in the greeting.
553    
554 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
555     successfully handshaked (and to be secure the implementation must enforce
556     this).
557    
558 root 1.13 The currently supported authentication methods are:
559    
560     =over 4
561    
562     =item cleartext
563    
564     This is simply the shared secret, lowercase-hex-encoded. This method is of
565 root 1.43 course very insecure if TLS is not used (and not completely secure even
566     if TLS is used), which is why this module will accept, but not generate,
567     cleartext auth replies.
568 root 1.13
569     =item hmac_md6_64_256
570    
571 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
572     requires a shared secret. It is the preferred auth method when a shared
573     secret is available.
574    
575     First, the shared secret is hashed with MD6:
576 root 1.13
577     key = MD6 (secret)
578    
579     This secret is then used to generate the "local auth reply", by taking
580     the two local greeting lines and the two remote greeting lines (without
581     line endings), appending \012 to all of them, concatenating them and
582 root 1.43 calculating the MD6 HMAC with the key:
583 root 1.13
584     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
585    
586     This authentication token is then lowercase-hex-encoded and sent to the
587     other side.
588    
589     Then the remote auth reply is generated using the same method, but local
590     and remote greeting lines swapped:
591    
592     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
593    
594     This is the token that is expected from the other side.
595    
596 root 1.41 =item tls_anon
597 root 1.19
598 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
599 root 1.19 was successful. It has no authentication data, as the server/client
600     certificate was successfully verified.
601    
602 root 1.43 This authentication type is somewhat insecure, as it allows a
603     man-in-the-middle attacker to change some of the connection parameters
604     (such as the framing format), although there is no known attack that
605     exploits this in a way that is worse than just denying the service.
606 root 1.41
607 root 1.43 By default, this implementation accepts but never generates this auth
608     reply.
609 root 1.41
610     =item tls_md6_64_256
611    
612 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
613     successful.
614 root 1.41
615     This authentication type simply calculates:
616    
617     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
618    
619     and lowercase-hex encodes the result and sends it as authentication
620     data. No shared secret is required (authentication is done by TLS). The
621 root 1.43 checksum exists only to make tinkering with the greeting hard.
622 root 1.19
623 root 1.13 =back
624    
625 root 1.8 =item the authentication data
626    
627 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
628     above.
629 root 1.8
630     =item the framing protocol chosen
631    
632     This must be one of the framing protocols offered by the other side in the
633 root 1.43 greeting. Each side must accept the choice of the other side, and generate
634     packets in the format it chose itself.
635 root 1.8
636     =back
637    
638 root 1.16 Example of an authentication reply:
639 root 1.9
640 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
641 root 1.9
642 root 1.8 =head2 DATA PHASE
643    
644     After this, packets get exchanged using the chosen framing protocol. It is
645     quite possible that both sides use a different framing protocol.
646    
647 root 1.16 =head2 FULL EXAMPLE
648    
649 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
650 root 1.16 packet. The greater than/less than lines indicate the direction of the
651     transfer only.
652    
653 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
654     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
655    
656     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
657     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
658    
659     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
660    
661     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
662     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
663     ...
664    
665     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
666 root 1.16
667 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
668    
669     Implementing the full set of options for handshaking can be a daunting
670     task.
671    
672     If security is not so important (because you only connect locally and
673     control the host, a common case), and you want to interface with an AEMP
674     node from another programming language, then you can also implement a
675     simplified handshake.
676    
677     For example, in a simple implementation you could decide to simply not
678     check the authenticity of the other side and use cleartext authentication
679     yourself. The the handshake is as simple as sending three lines of text,
680     reading three lines of text, and then you can exchange JSON-formatted
681     messages:
682    
683     aemp;1;<nodename>;hmac_md6_64_256;json
684     <nonce>
685     cleartext;<hexencoded secret>;json
686    
687     The nodename should be unique within the network, preferably unique with
688     every connection, the <nonce> could be empty or some random data, and the
689     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
690     the secret is "geheim", the hex-encoded version would be "67656865696d").
691    
692     Note that apart from the low-level handshake and framing protocol, there
693     is a high-level protocol, e.g. for monitoring, building the mesh or
694     spawning. All these messages are sent to the node port (the empty string)
695     and can safely be ignored if you do not need the relevant functionality.
696    
697     =head3 USEFUL HINTS
698    
699     Since taking part in the global protocol to find port groups is
700     nontrivial, hardcoding port names should be considered as well, i.e. the
701     non-Perl node could simply listen to messages for a few well-known ports.
702    
703     Alternatively, the non-Perl node could call a (already loaded) function
704     in the Perl node by sending it a special message:
705    
706     ["", "Some::Function::name", "myownport", 1, 2, 3]
707    
708     This would call the function C<Some::Function::name> with the string
709     C<myownport> and some additional arguments.
710    
711 root 1.49 =head2 MONITORING
712    
713     Monitoring the connection itself is transport-specific. For TCP, all
714     connection monitoring is currently left to TCP retransmit time-outs
715     on a busy link, and TCP keepalive (which should be enabled) for idle
716     connections.
717    
718     This is not sufficient for listener-less nodes, however: they need
719     to regularly send data (30 seconds, or the monitoring interval, is
720     recommended), so TCP actively probes.
721    
722     Future implementations of AnyEvent::Transport might query the kernel TCP
723     buffer after a write timeout occurs, and if it is non-empty, shut down the
724     connections, but this is an area of future research :)
725    
726     =head2 NODE PROTOCOL
727    
728     The transport simply transfers messages, but to implement a full node, a
729     special node port must exist that understands a number of requests.
730    
731     If you are interested in implementing this, drop us a note so we finish
732     the documentation.
733    
734 root 1.1 =head1 SEE ALSO
735    
736 root 1.29 L<AnyEvent::MP>.
737 root 1.1
738     =head1 AUTHOR
739    
740     Marc Lehmann <schmorp@schmorp.de>
741     http://home.schmorp.de/
742    
743     =cut
744    
745     1
746