ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.75
Committed: Tue Feb 28 18:37:24 2012 UTC (12 years, 3 months ago) by root
Branch: MAIN
Changes since 1.74: +30 -17 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.75 our @HOOK_GREET; # called at connect/accept time
45     our @HOOK_GREETED; # called at greeting1 time
46     our @HOOK_CONNECT; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.75 =item $listener = mp_server $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101 root 1.75 Create a new transport - usually used via C<mp_server> or C<mp_connect>
102     instead.
103    
104 root 1.1 # immediately starts negotiation
105     my $transport = new AnyEvent::MP::Transport
106 root 1.2 # mandatory
107 root 1.75 fh => $filehandle,
108     local_id => $identifier,
109     on_recv => sub { receive-callback },
110     on_error => sub { error-callback },
111 root 1.1
112     # optional
113 root 1.75 on_greet => sub { before sending greeting },
114     on_greeted => sub { after receiving greeting },
115 root 1.1 on_connect => sub { successful-connect-callback },
116 root 1.75 greeting => { key => value },
117 root 1.1
118     # tls support
119 root 1.75 tls_ctx => AnyEvent::TLS,
120     peername => $peername, # for verification
121 root 1.1 ;
122    
123     =cut
124    
125     sub new {
126     my ($class, %arg) = @_;
127    
128     my $self = bless \%arg, $class;
129    
130     {
131     Scalar::Util::weaken (my $self = $self);
132    
133 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
134 root 1.30
135 root 1.50 my $timeout = $config->{monitor_timeout};
136 root 1.64 my $lframing = $config->{framing_format};
137 root 1.50 my $auth_snd = $config->{auth_offer};
138     my $auth_rcv = $config->{auth_accept};
139 root 1.31
140 root 1.42 $self->{secret} = $config->{secret}
141     unless exists $self->{secret};
142 root 1.2
143 root 1.42 my $secret = $self->{secret};
144 root 1.19
145 root 1.30 if (exists $config->{cert}) {
146 root 1.42 $self->{tls_ctx} = {
147 root 1.19 sslv2 => 0,
148     sslv3 => 0,
149     tlsv1 => 1,
150     verify => 1,
151 root 1.30 cert => $config->{cert},
152     ca_cert => $config->{cert},
153 root 1.19 verify_require_client_cert => 1,
154     };
155     }
156    
157 root 1.1 $self->{hdl} = new AnyEvent::Handle
158 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
159 root 1.63 autocork => $config->{autocork},
160     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
161 root 1.48 keepalive => 1,
162     on_error => sub {
163 root 1.1 $self->error ($_[2]);
164     },
165 root 1.49 rtimeout => $timeout,
166 root 1.1 ;
167    
168 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
169 root 1.24
170 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
171 root 1.75 $greeting_kv->{provider} = "AE-$AnyEvent::MP::Config::VERSION";
172 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
173 root 1.23
174 root 1.58 my $protocol = $self->{protocol} || "aemp";
175    
176 root 1.52 # can modify greeting_kv
177 root 1.75 $_->($self) for $protocol eq "aemp" ? @HOOK_GREET : ();
178     (delete $self->{on_greet})->($self)
179     if exists $self->{on_greet};
180 root 1.52
181 root 1.1 # send greeting
182 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
183 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
184 root 1.50 . ";" . (join ",", @$auth_rcv)
185     . ";" . (join ",", @$lframing)
186 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
187 root 1.12
188 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
189 root 1.1
190 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
191 root 1.72 return unless $self;
192 root 1.1
193     # expect greeting
194 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
195 root 1.1 $self->{hdl}->push_read (line => sub {
196 root 1.7 my $rgreeting1 = $_[1];
197 root 1.1
198 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
199 root 1.1
200 root 1.53 $self->{remote_node} = $rnode;
201    
202     $self->{remote_greeting} = {
203     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
204     @kv
205     };
206    
207 root 1.60 # maybe upgrade the protocol
208     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
209     # maybe check for existence of the protocol handler?
210     $self->{protocol} = $protocol = $aemp;
211     }
212    
213 root 1.75 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETED : ();
214     (delete $self->{on_greeted})->($self)
215     if exists $self->{on_greeted};
216 root 1.54
217 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
218 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
219 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
220     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
221 root 1.60 } elsif ($protocol eq "aemp") {
222     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
223     return $self->error ("I refuse to talk to myself");
224     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
225     return $self->error ("$rnode already connected, not connecting again.");
226     }
227 root 1.1 }
228    
229 root 1.7 # read nonce
230     $self->{hdl}->push_read (line => sub {
231     my $rgreeting2 = $_[1];
232    
233 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
234     or return $self->error ("authentication error, echo attack?");
235    
236 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
237    
238     my $s_auth;
239     for my $auth_ (split /,/, $auths) {
240 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
241 root 1.41 $s_auth = $auth_;
242     last;
243     }
244     }
245    
246     defined $s_auth
247     or return $self->error ("$auths: no common auth type supported");
248    
249     my $s_framing;
250     for my $framing_ (split /,/, $framings) {
251 root 1.50 if (grep $framing_ eq $_, @$lframing) {
252 root 1.41 $s_framing = $framing_;
253     last;
254     }
255     }
256    
257     defined $s_framing
258     or return $self->error ("$framings: no common framing method supported");
259    
260 root 1.30 my $key;
261 root 1.19 my $lauth;
262    
263 root 1.41 if ($tls) {
264 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
265     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
266 root 1.66 return unless $self->{hdl}; # starttls might destruct us
267 root 1.41
268     $lauth =
269     $s_auth eq "tls_anon" ? ""
270     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
271     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
272    
273 root 1.30 } elsif (length $secret) {
274 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
275     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
276    
277 root 1.30 $key = Digest::MD6::md6 $secret;
278 root 1.19 # we currently only support hmac_md6_64_256
279     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
280 root 1.41
281 root 1.30 } else {
282     return $self->error ("unable to handshake TLS and no shared secret configured");
283 root 1.8 }
284 root 1.2
285 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
286 root 1.72 return unless $self;
287 root 1.2
288 root 1.19 # read the authentication response
289 root 1.7 $self->{hdl}->push_read (line => sub {
290     my ($hdl, $rline) = @_;
291 root 1.2
292 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
293 root 1.1
294 root 1.19 my $rauth =
295     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
296     : $auth_method eq "cleartext" ? unpack "H*", $secret
297 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
298     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
299     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
300 root 1.19
301 root 1.7 if ($rauth2 ne $rauth) {
302     return $self->error ("authentication failure/shared secret mismatch");
303     }
304 root 1.1
305 root 1.7 $self->{s_framing} = $s_framing;
306 root 1.2
307 root 1.7 $hdl->rbuf_max (undef);
308 root 1.1
309 root 1.49 # we rely on TCP retransmit timeouts and keepalives
310     $self->{hdl}->rtimeout (undef);
311    
312     $self->{remote_greeting}{untrusted} = 1
313     if $auth_method eq "tls_anon";
314 root 1.24
315 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
316 root 1.59 # listener-less node need to continuously probe
317     unless (@$AnyEvent::MP::Kernel::LISTENER) {
318     $self->{hdl}->wtimeout ($timeout);
319 root 1.71 $self->{hdl}->on_wtimeout (sub { $self->{send}->([]) });
320 root 1.59 }
321 root 1.58
322     # receive handling
323 root 1.45
324 root 1.68 my $push_write = $hdl->can ("push_write");
325     my $push_read = $hdl->can ("push_read");
326    
327 root 1.69 if ($s_framing eq "json") {
328 root 1.68 $self->{send} = sub {
329     $push_write->($hdl, JSON::XS::encode_json $_[0]);
330     };
331 root 1.69 } else {
332     $self->{send} = sub {
333     $push_write->($hdl, $s_framing => $_[0]);
334     };
335     }
336    
337     if ($r_framing eq "json") {
338     my $coder = JSON::XS->new->utf8;
339 root 1.68
340     $hdl->on_read (sub {
341 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
342 root 1.68
343     AnyEvent::MP::Kernel::_inject (@$_)
344     for $coder->incr_parse (delete $_[0]{rbuf});
345    
346     ()
347     });
348 root 1.65 } else {
349     my $rmsg; $rmsg = $self->{rmsg} = sub {
350 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
351 root 1.65
352 root 1.70 local $AnyEvent::MP::Kernel::SRCNODE = $self->{node};
353 root 1.65 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
354     };
355     eval {
356 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
357 root 1.65 };
358     Scalar::Util::weaken $rmsg;
359     return $self->error ("$r_framing: unusable remote framing")
360     if $@;
361     }
362 root 1.58 }
363 root 1.67
364     $self->connected;
365 root 1.7 });
366 root 1.1 });
367     });
368     }
369    
370     $self
371     }
372    
373     sub error {
374     my ($self, $msg) = @_;
375    
376 root 1.39 delete $self->{keepalive};
377    
378 root 1.58 if ($self->{protocol}) {
379 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
380 root 1.58 } else {
381     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
382 root 1.39
383 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
384     if $self->{node} && $self->{node}{transport} == $self;
385     }
386 root 1.31
387     (delete $self->{release})->()
388     if exists $self->{release};
389    
390 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
391 root 1.4 $self->destroy;
392 root 1.1 }
393    
394 root 1.2 sub connected {
395     my ($self) = @_;
396    
397 root 1.39 delete $self->{keepalive};
398    
399 root 1.58 if ($self->{protocol}) {
400 root 1.59 $self->{hdl}->on_error (undef);
401     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
402 root 1.58 } else {
403     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
404    
405     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
406     Scalar::Util::weaken ($self->{node} = $node);
407     $node->transport_connect ($self);
408 root 1.39
409 root 1.75 $_->($self) for @HOOK_CONNECT;
410 root 1.58 }
411 root 1.61
412     (delete $self->{release})->()
413     if exists $self->{release};
414 root 1.75
415     (delete $self->{on_connect})->($self)
416     if exists $self->{on_connect};
417 root 1.2 }
418    
419 root 1.1 sub destroy {
420     my ($self) = @_;
421    
422 root 1.42 (delete $self->{release})->()
423     if exists $self->{release};
424    
425 root 1.2 $self->{hdl}->destroy
426     if $self->{hdl};
427 root 1.52
428 root 1.75 (delete $self->{on_destroy})->($self)
429     if exists $self->{on_destroy};
430 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
431 root 1.74
432     $self->{protocol} = "destroyed"; # to keep hooks from invoked twice.
433 root 1.1 }
434    
435     sub DESTROY {
436     my ($self) = @_;
437    
438     $self->destroy;
439     }
440    
441     =back
442    
443 root 1.7 =head1 PROTOCOL
444    
445 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
446     which are symmetrical for both sides: greeting (followed by optionally
447     switching to TLS mode), authentication and packet exchange.
448 root 1.7
449 root 1.43 The protocol is designed to allow both full-text and binary streams.
450 root 1.7
451     The greeting consists of two text lines that are ended by either an ASCII
452     CR LF pair, or a single ASCII LF (recommended).
453    
454     =head2 GREETING
455    
456 root 1.15 All the lines until after authentication must not exceed 4kb in length,
457 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
458     that can be received.
459 root 1.15
460     =head3 First Greeting Line
461 root 1.12
462 root 1.16 Example:
463    
464 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
465 root 1.16
466     The first line contains strings separated (not ended) by C<;>
467 root 1.43 characters. The first five strings are fixed by the protocol, the
468 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
469 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
470     C<;> and C<%25> to represent C<%>)-
471 root 1.16
472 root 1.12 The fixed strings are:
473 root 1.7
474     =over 4
475    
476 root 1.18 =item protocol identification
477 root 1.7
478 root 1.43 The constant C<aemp> to identify this protocol.
479 root 1.7
480     =item protocol version
481    
482 root 1.55 The protocol version supported by this end, currently C<1>. If the
483 root 1.12 versions don't match then no communication is possible. Minor extensions
484 root 1.18 are supposed to be handled through additional key-value pairs.
485 root 1.7
486 root 1.43 =item the node ID
487 root 1.7
488 root 1.57 This is the node ID of the connecting node.
489 root 1.7
490     =item the acceptable authentication methods
491    
492     A comma-separated list of authentication methods supported by the
493     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
494 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
495     this authentication method itself.
496 root 1.7
497 root 1.43 The receiving side should choose the first authentication method it
498     supports.
499 root 1.7
500     =item the acceptable framing formats
501    
502 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
503 root 1.7 receiving side should choose the first framing format it supports for
504     sending packets (which might be different from the format it has to accept).
505    
506 root 1.10 =back
507 root 1.8
508     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
509     pairs are known at this time:
510    
511     =over 4
512    
513     =item provider=<module-version>
514    
515     The software provider for this implementation. For AnyEvent::MP, this is
516     C<AE-0.0> or whatever version it currently is at.
517    
518     =item peeraddr=<host>:<port>
519    
520 root 1.39 The peer address (socket address of the other side) as seen locally.
521 root 1.8
522     =item tls=<major>.<minor>
523    
524     Indicates that the other side supports TLS (version should be 1.0) and
525     wishes to do a TLS handshake.
526    
527     =back
528    
529 root 1.15 =head3 Second Greeting Line
530    
531 root 1.8 After this greeting line there will be a second line containing a
532     cryptographic nonce, i.e. random data of high quality. To keep the
533     protocol text-only, these are usually 32 base64-encoded octets, but
534     it could be anything that doesn't contain any ASCII CR or ASCII LF
535     characters.
536    
537 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
538     B<must> check and fail when they are identical >>.
539    
540 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
541     data):
542 root 1.8
543 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
544 root 1.8
545     =head2 TLS handshake
546    
547 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
548 root 1.43 connection B<must> use TLS, or fail to continue. >>
549 root 1.8
550     Both sides compare their nonces, and the side who sent the lower nonce
551     value ("string" comparison on the raw octet values) becomes the client,
552     and the one with the higher nonce the server.
553    
554     =head2 AUTHENTICATION PHASE
555    
556     After the greeting is received (and the optional TLS handshake),
557     the authentication phase begins, which consists of sending a single
558     C<;>-separated line with three fixed strings and any number of
559     C<KEY=VALUE> pairs.
560    
561     The three fixed strings are:
562    
563     =over 4
564    
565     =item the authentication method chosen
566    
567     This must be one of the methods offered by the other side in the greeting.
568    
569 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
570     successfully handshaked (and to be secure the implementation must enforce
571     this).
572    
573 root 1.13 The currently supported authentication methods are:
574    
575     =over 4
576    
577     =item cleartext
578    
579     This is simply the shared secret, lowercase-hex-encoded. This method is of
580 root 1.43 course very insecure if TLS is not used (and not completely secure even
581     if TLS is used), which is why this module will accept, but not generate,
582     cleartext auth replies.
583 root 1.13
584     =item hmac_md6_64_256
585    
586 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
587     requires a shared secret. It is the preferred auth method when a shared
588     secret is available.
589    
590     First, the shared secret is hashed with MD6:
591 root 1.13
592     key = MD6 (secret)
593    
594     This secret is then used to generate the "local auth reply", by taking
595     the two local greeting lines and the two remote greeting lines (without
596     line endings), appending \012 to all of them, concatenating them and
597 root 1.43 calculating the MD6 HMAC with the key:
598 root 1.13
599     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
600    
601     This authentication token is then lowercase-hex-encoded and sent to the
602     other side.
603    
604     Then the remote auth reply is generated using the same method, but local
605     and remote greeting lines swapped:
606    
607     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
608    
609     This is the token that is expected from the other side.
610    
611 root 1.41 =item tls_anon
612 root 1.19
613 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
614 root 1.19 was successful. It has no authentication data, as the server/client
615     certificate was successfully verified.
616    
617 root 1.43 This authentication type is somewhat insecure, as it allows a
618     man-in-the-middle attacker to change some of the connection parameters
619     (such as the framing format), although there is no known attack that
620     exploits this in a way that is worse than just denying the service.
621 root 1.41
622 root 1.43 By default, this implementation accepts but never generates this auth
623     reply.
624 root 1.41
625     =item tls_md6_64_256
626    
627 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
628     successful.
629 root 1.41
630     This authentication type simply calculates:
631    
632     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
633    
634     and lowercase-hex encodes the result and sends it as authentication
635     data. No shared secret is required (authentication is done by TLS). The
636 root 1.43 checksum exists only to make tinkering with the greeting hard.
637 root 1.19
638 root 1.13 =back
639    
640 root 1.8 =item the authentication data
641    
642 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
643     above.
644 root 1.8
645     =item the framing protocol chosen
646    
647     This must be one of the framing protocols offered by the other side in the
648 root 1.43 greeting. Each side must accept the choice of the other side, and generate
649     packets in the format it chose itself.
650 root 1.8
651     =back
652    
653 root 1.16 Example of an authentication reply:
654 root 1.9
655 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
656 root 1.9
657 root 1.8 =head2 DATA PHASE
658    
659     After this, packets get exchanged using the chosen framing protocol. It is
660     quite possible that both sides use a different framing protocol.
661    
662 root 1.16 =head2 FULL EXAMPLE
663    
664 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
665 root 1.16 packet. The greater than/less than lines indicate the direction of the
666     transfer only.
667    
668 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
669     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
670    
671     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
672     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
673    
674     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
675    
676     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
677     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
678     ...
679    
680     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
681 root 1.16
682 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
683    
684     Implementing the full set of options for handshaking can be a daunting
685     task.
686    
687     If security is not so important (because you only connect locally and
688     control the host, a common case), and you want to interface with an AEMP
689     node from another programming language, then you can also implement a
690     simplified handshake.
691    
692     For example, in a simple implementation you could decide to simply not
693     check the authenticity of the other side and use cleartext authentication
694     yourself. The the handshake is as simple as sending three lines of text,
695     reading three lines of text, and then you can exchange JSON-formatted
696     messages:
697    
698     aemp;1;<nodename>;hmac_md6_64_256;json
699     <nonce>
700     cleartext;<hexencoded secret>;json
701    
702     The nodename should be unique within the network, preferably unique with
703     every connection, the <nonce> could be empty or some random data, and the
704     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
705     the secret is "geheim", the hex-encoded version would be "67656865696d").
706    
707     Note that apart from the low-level handshake and framing protocol, there
708     is a high-level protocol, e.g. for monitoring, building the mesh or
709     spawning. All these messages are sent to the node port (the empty string)
710     and can safely be ignored if you do not need the relevant functionality.
711    
712     =head3 USEFUL HINTS
713    
714     Since taking part in the global protocol to find port groups is
715     nontrivial, hardcoding port names should be considered as well, i.e. the
716     non-Perl node could simply listen to messages for a few well-known ports.
717    
718     Alternatively, the non-Perl node could call a (already loaded) function
719     in the Perl node by sending it a special message:
720    
721     ["", "Some::Function::name", "myownport", 1, 2, 3]
722    
723     This would call the function C<Some::Function::name> with the string
724     C<myownport> and some additional arguments.
725    
726 root 1.49 =head2 MONITORING
727    
728     Monitoring the connection itself is transport-specific. For TCP, all
729     connection monitoring is currently left to TCP retransmit time-outs
730     on a busy link, and TCP keepalive (which should be enabled) for idle
731     connections.
732    
733     This is not sufficient for listener-less nodes, however: they need
734     to regularly send data (30 seconds, or the monitoring interval, is
735     recommended), so TCP actively probes.
736    
737 elmex 1.73 Future implementations of AnyEvent::MP::Transport might query the kernel TCP
738 root 1.49 buffer after a write timeout occurs, and if it is non-empty, shut down the
739     connections, but this is an area of future research :)
740    
741     =head2 NODE PROTOCOL
742    
743     The transport simply transfers messages, but to implement a full node, a
744     special node port must exist that understands a number of requests.
745    
746     If you are interested in implementing this, drop us a note so we finish
747     the documentation.
748    
749 root 1.1 =head1 SEE ALSO
750    
751 root 1.29 L<AnyEvent::MP>.
752 root 1.1
753     =head1 AUTHOR
754    
755     Marc Lehmann <schmorp@schmorp.de>
756     http://home.schmorp.de/
757    
758     =cut
759    
760     1
761