ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent-MP/MP/Transport.pm
Revision: 1.79
Committed: Wed Mar 21 15:22:16 2012 UTC (12 years, 2 months ago) by root
Branch: MAIN
Changes since 1.78: +56 -39 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.75 our @HOOK_GREET; # called at connect/accept time
45     our @HOOK_GREETED; # called at greeting1 time
46     our @HOOK_CONNECT; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.75 =item $listener = mp_server $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101 root 1.75 Create a new transport - usually used via C<mp_server> or C<mp_connect>
102     instead.
103    
104 root 1.1 # immediately starts negotiation
105     my $transport = new AnyEvent::MP::Transport
106 root 1.2 # mandatory
107 root 1.75 fh => $filehandle,
108     local_id => $identifier,
109     on_recv => sub { receive-callback },
110     on_error => sub { error-callback },
111 root 1.1
112     # optional
113 root 1.75 on_greet => sub { before sending greeting },
114     on_greeted => sub { after receiving greeting },
115 root 1.1 on_connect => sub { successful-connect-callback },
116 root 1.75 greeting => { key => value },
117 root 1.1
118     # tls support
119 root 1.75 tls_ctx => AnyEvent::TLS,
120     peername => $peername, # for verification
121 root 1.1 ;
122    
123     =cut
124    
125     sub new {
126     my ($class, %arg) = @_;
127    
128     my $self = bless \%arg, $class;
129    
130     {
131     Scalar::Util::weaken (my $self = $self);
132    
133 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
134 root 1.30
135 root 1.50 my $timeout = $config->{monitor_timeout};
136 root 1.64 my $lframing = $config->{framing_format};
137 root 1.50 my $auth_snd = $config->{auth_offer};
138     my $auth_rcv = $config->{auth_accept};
139 root 1.31
140 root 1.42 $self->{secret} = $config->{secret}
141     unless exists $self->{secret};
142 root 1.2
143 root 1.42 my $secret = $self->{secret};
144 root 1.19
145 root 1.30 if (exists $config->{cert}) {
146 root 1.42 $self->{tls_ctx} = {
147 root 1.19 sslv2 => 0,
148     sslv3 => 0,
149     tlsv1 => 1,
150     verify => 1,
151 root 1.30 cert => $config->{cert},
152     ca_cert => $config->{cert},
153 root 1.19 verify_require_client_cert => 1,
154     };
155     }
156    
157 root 1.1 $self->{hdl} = new AnyEvent::Handle
158 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
159 root 1.63 autocork => $config->{autocork},
160     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
161 root 1.48 keepalive => 1,
162     on_error => sub {
163 root 1.1 $self->error ($_[2]);
164     },
165 root 1.49 rtimeout => $timeout,
166 root 1.1 ;
167    
168 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
169 root 1.24
170 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
171 root 1.75 $greeting_kv->{provider} = "AE-$AnyEvent::MP::Config::VERSION";
172 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
173 root 1.23
174 root 1.58 my $protocol = $self->{protocol} || "aemp";
175    
176 root 1.52 # can modify greeting_kv
177 root 1.75 $_->($self) for $protocol eq "aemp" ? @HOOK_GREET : ();
178     (delete $self->{on_greet})->($self)
179     if exists $self->{on_greet};
180 root 1.52
181 root 1.1 # send greeting
182 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
183 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
184 root 1.50 . ";" . (join ",", @$auth_rcv)
185     . ";" . (join ",", @$lframing)
186 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
187 root 1.12
188 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
189 root 1.1
190 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
191 root 1.72 return unless $self;
192 root 1.1
193     # expect greeting
194 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
195 root 1.1 $self->{hdl}->push_read (line => sub {
196 root 1.7 my $rgreeting1 = $_[1];
197 root 1.1
198 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
199 root 1.1
200 root 1.53 $self->{remote_node} = $rnode;
201    
202     $self->{remote_greeting} = {
203     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
204     @kv
205     };
206    
207 root 1.60 # maybe upgrade the protocol
208     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
209     # maybe check for existence of the protocol handler?
210     $self->{protocol} = $protocol = $aemp;
211     }
212    
213 root 1.75 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETED : ();
214     (delete $self->{on_greeted})->($self)
215     if exists $self->{on_greeted};
216 root 1.54
217 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
218 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
219 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
220     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
221 root 1.60 } elsif ($protocol eq "aemp") {
222     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
223     return $self->error ("I refuse to talk to myself");
224     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
225     return $self->error ("$rnode already connected, not connecting again.");
226     }
227 root 1.1 }
228    
229 root 1.7 # read nonce
230     $self->{hdl}->push_read (line => sub {
231     my $rgreeting2 = $_[1];
232    
233 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
234     or return $self->error ("authentication error, echo attack?");
235    
236 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
237    
238     my $s_auth;
239     for my $auth_ (split /,/, $auths) {
240 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
241 root 1.41 $s_auth = $auth_;
242     last;
243     }
244     }
245    
246     defined $s_auth
247     or return $self->error ("$auths: no common auth type supported");
248    
249     my $s_framing;
250     for my $framing_ (split /,/, $framings) {
251 root 1.50 if (grep $framing_ eq $_, @$lframing) {
252 root 1.41 $s_framing = $framing_;
253     last;
254     }
255     }
256    
257     defined $s_framing
258     or return $self->error ("$framings: no common framing method supported");
259    
260 root 1.30 my $key;
261 root 1.19 my $lauth;
262    
263 root 1.41 if ($tls) {
264 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
265     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
266 root 1.66 return unless $self->{hdl}; # starttls might destruct us
267 root 1.41
268     $lauth =
269     $s_auth eq "tls_anon" ? ""
270     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
271     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
272    
273 root 1.30 } elsif (length $secret) {
274 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
275     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
276    
277 root 1.30 $key = Digest::MD6::md6 $secret;
278 root 1.19 # we currently only support hmac_md6_64_256
279     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
280 root 1.41
281 root 1.30 } else {
282     return $self->error ("unable to handshake TLS and no shared secret configured");
283 root 1.8 }
284 root 1.2
285 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
286 root 1.72 return unless $self;
287 root 1.2
288 root 1.19 # read the authentication response
289 root 1.7 $self->{hdl}->push_read (line => sub {
290     my ($hdl, $rline) = @_;
291 root 1.2
292 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
293 root 1.1
294 root 1.19 my $rauth =
295     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
296     : $auth_method eq "cleartext" ? unpack "H*", $secret
297 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
298     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
299     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
300 root 1.19
301 root 1.7 if ($rauth2 ne $rauth) {
302     return $self->error ("authentication failure/shared secret mismatch");
303     }
304 root 1.1
305 root 1.79 $self->{r_framing} = $r_framing;
306 root 1.7 $self->{s_framing} = $s_framing;
307 root 1.2
308 root 1.7 $hdl->rbuf_max (undef);
309 root 1.1
310 root 1.49 # we rely on TCP retransmit timeouts and keepalives
311     $self->{hdl}->rtimeout (undef);
312    
313     $self->{remote_greeting}{untrusted} = 1
314     if $auth_method eq "tls_anon";
315 root 1.24
316 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
317 root 1.77 # listener-less nodes need to continuously probe
318 root 1.78 # unless (@$AnyEvent::MP::Kernel::BINDS) {
319     # $self->{hdl}->wtimeout ($timeout);
320     # $self->{hdl}->on_wtimeout (sub { $self->{send}->([]) });
321     # }
322 root 1.58
323     # receive handling
324 root 1.79 $self->set_snd_framing;
325     $self->set_rcv_framing;
326 root 1.58 }
327 root 1.67
328     $self->connected;
329 root 1.7 });
330 root 1.1 });
331     });
332     }
333    
334     $self
335     }
336    
337 root 1.79 sub set_snd_framing {
338     my ($self) = @_;
339    
340     my $framing = $self->{s_framing};
341     my $hdl = $self->{hdl};
342     my $push_write = $hdl->can ("push_write");
343    
344     if ($framing eq "json") {
345     $self->{send} = sub {
346     $push_write->($hdl, JSON::XS::encode_json $_[0]);
347     };
348     } else {
349     $self->{send} = sub {
350     $push_write->($hdl, $framing => $_[0]);
351     };
352     }
353     }
354    
355     sub set_rcv_framing {
356     my ($self) = @_;
357    
358     my $node = $self->{remote_node};
359     my $framing = $self->{r_framing};
360     my $hdl = $self->{hdl};
361     my $push_read = $hdl->can ("push_read");
362    
363     if ($framing eq "json") {
364     my $coder = JSON::XS->new->utf8;
365    
366     $hdl->on_read (sub {
367     $AnyEvent::MP::Kernel::SRCNODE = $node;
368    
369     AnyEvent::MP::Kernel::_inject (@$_)
370     for $coder->incr_parse (delete $_[0]{rbuf});
371    
372     ()
373     });
374     } else {
375     my $rmsg; $rmsg = $self->{rmsg} = sub {
376     $push_read->($_[0], $framing => $rmsg);
377    
378     $AnyEvent::MP::Kernel::SRCNODE = $node;
379     AnyEvent::MP::Kernel::_inject (@{ $_[1] });
380     };
381     eval {
382     $push_read->($hdl, $framing => $rmsg);
383     };
384     Scalar::Util::weaken $rmsg;
385     return $self->error ("$framing: unusable remote framing")
386     if $@;
387     }
388     }
389    
390 root 1.1 sub error {
391     my ($self, $msg) = @_;
392    
393 root 1.39 delete $self->{keepalive};
394    
395 root 1.58 if ($self->{protocol}) {
396 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
397 root 1.58 } else {
398     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
399 root 1.39
400 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
401     if $self->{node} && $self->{node}{transport} == $self;
402     }
403 root 1.31
404     (delete $self->{release})->()
405     if exists $self->{release};
406    
407 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
408 root 1.4 $self->destroy;
409 root 1.1 }
410    
411 root 1.2 sub connected {
412     my ($self) = @_;
413    
414 root 1.39 delete $self->{keepalive};
415    
416 root 1.58 if ($self->{protocol}) {
417 root 1.59 $self->{hdl}->on_error (undef);
418     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
419 root 1.58 } else {
420     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
421    
422     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
423     Scalar::Util::weaken ($self->{node} = $node);
424     $node->transport_connect ($self);
425 root 1.39
426 root 1.75 $_->($self) for @HOOK_CONNECT;
427 root 1.58 }
428 root 1.61
429     (delete $self->{release})->()
430     if exists $self->{release};
431 root 1.75
432     (delete $self->{on_connect})->($self)
433     if exists $self->{on_connect};
434 root 1.2 }
435    
436 root 1.1 sub destroy {
437     my ($self) = @_;
438    
439 root 1.42 (delete $self->{release})->()
440     if exists $self->{release};
441    
442 root 1.2 $self->{hdl}->destroy
443     if $self->{hdl};
444 root 1.52
445 root 1.75 (delete $self->{on_destroy})->($self)
446     if exists $self->{on_destroy};
447 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
448 root 1.74
449     $self->{protocol} = "destroyed"; # to keep hooks from invoked twice.
450 root 1.1 }
451    
452     sub DESTROY {
453     my ($self) = @_;
454    
455     $self->destroy;
456     }
457    
458     =back
459    
460 root 1.7 =head1 PROTOCOL
461    
462 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
463     which are symmetrical for both sides: greeting (followed by optionally
464     switching to TLS mode), authentication and packet exchange.
465 root 1.7
466 root 1.43 The protocol is designed to allow both full-text and binary streams.
467 root 1.7
468     The greeting consists of two text lines that are ended by either an ASCII
469     CR LF pair, or a single ASCII LF (recommended).
470    
471     =head2 GREETING
472    
473 root 1.15 All the lines until after authentication must not exceed 4kb in length,
474 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
475     that can be received.
476 root 1.15
477     =head3 First Greeting Line
478 root 1.12
479 root 1.16 Example:
480    
481 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
482 root 1.16
483     The first line contains strings separated (not ended) by C<;>
484 root 1.43 characters. The first five strings are fixed by the protocol, the
485 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
486 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
487     C<;> and C<%25> to represent C<%>)-
488 root 1.16
489 root 1.12 The fixed strings are:
490 root 1.7
491     =over 4
492    
493 root 1.18 =item protocol identification
494 root 1.7
495 root 1.43 The constant C<aemp> to identify this protocol.
496 root 1.7
497     =item protocol version
498    
499 root 1.55 The protocol version supported by this end, currently C<1>. If the
500 root 1.12 versions don't match then no communication is possible. Minor extensions
501 root 1.18 are supposed to be handled through additional key-value pairs.
502 root 1.7
503 root 1.43 =item the node ID
504 root 1.7
505 root 1.57 This is the node ID of the connecting node.
506 root 1.7
507     =item the acceptable authentication methods
508    
509     A comma-separated list of authentication methods supported by the
510     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
511 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
512     this authentication method itself.
513 root 1.7
514 root 1.43 The receiving side should choose the first authentication method it
515     supports.
516 root 1.7
517     =item the acceptable framing formats
518    
519 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
520 root 1.7 receiving side should choose the first framing format it supports for
521     sending packets (which might be different from the format it has to accept).
522    
523 root 1.10 =back
524 root 1.8
525     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
526     pairs are known at this time:
527    
528     =over 4
529    
530     =item provider=<module-version>
531    
532     The software provider for this implementation. For AnyEvent::MP, this is
533     C<AE-0.0> or whatever version it currently is at.
534    
535     =item peeraddr=<host>:<port>
536    
537 root 1.39 The peer address (socket address of the other side) as seen locally.
538 root 1.8
539     =item tls=<major>.<minor>
540    
541     Indicates that the other side supports TLS (version should be 1.0) and
542     wishes to do a TLS handshake.
543    
544 root 1.76 =item nproto=<major>.<fractional>
545    
546     Informs the other side of the node protocol implemented by this
547     node. Major version mismatches are fatal. If this key is missing, then it
548     is assumed that the node doesn't support the node protocol.
549    
550     The node protocol is currently undocumented, but includes port
551     monitoring, spawning and informational requests.
552    
553     =item gproto=<major>.<fractional>
554    
555     Informs the other side of the global protocol implemented by this
556     node. Major version mismatches are fatal. If this key is missing, then it
557     is assumed that the node doesn't support the global protocol.
558    
559     The global protocol is currently undocumented, but includes node address
560     lookup and shared database operations.
561    
562 root 1.8 =back
563    
564 root 1.15 =head3 Second Greeting Line
565    
566 root 1.8 After this greeting line there will be a second line containing a
567     cryptographic nonce, i.e. random data of high quality. To keep the
568     protocol text-only, these are usually 32 base64-encoded octets, but
569     it could be anything that doesn't contain any ASCII CR or ASCII LF
570     characters.
571    
572 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
573     B<must> check and fail when they are identical >>.
574    
575 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
576     data):
577 root 1.8
578 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
579 root 1.8
580     =head2 TLS handshake
581    
582 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
583 root 1.43 connection B<must> use TLS, or fail to continue. >>
584 root 1.8
585     Both sides compare their nonces, and the side who sent the lower nonce
586     value ("string" comparison on the raw octet values) becomes the client,
587     and the one with the higher nonce the server.
588    
589     =head2 AUTHENTICATION PHASE
590    
591     After the greeting is received (and the optional TLS handshake),
592     the authentication phase begins, which consists of sending a single
593     C<;>-separated line with three fixed strings and any number of
594     C<KEY=VALUE> pairs.
595    
596     The three fixed strings are:
597    
598     =over 4
599    
600     =item the authentication method chosen
601    
602     This must be one of the methods offered by the other side in the greeting.
603    
604 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
605     successfully handshaked (and to be secure the implementation must enforce
606     this).
607    
608 root 1.13 The currently supported authentication methods are:
609    
610     =over 4
611    
612     =item cleartext
613    
614     This is simply the shared secret, lowercase-hex-encoded. This method is of
615 root 1.43 course very insecure if TLS is not used (and not completely secure even
616     if TLS is used), which is why this module will accept, but not generate,
617     cleartext auth replies.
618 root 1.13
619     =item hmac_md6_64_256
620    
621 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
622     requires a shared secret. It is the preferred auth method when a shared
623     secret is available.
624    
625     First, the shared secret is hashed with MD6:
626 root 1.13
627     key = MD6 (secret)
628    
629     This secret is then used to generate the "local auth reply", by taking
630     the two local greeting lines and the two remote greeting lines (without
631     line endings), appending \012 to all of them, concatenating them and
632 root 1.43 calculating the MD6 HMAC with the key:
633 root 1.13
634     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
635    
636     This authentication token is then lowercase-hex-encoded and sent to the
637     other side.
638    
639     Then the remote auth reply is generated using the same method, but local
640     and remote greeting lines swapped:
641    
642     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
643    
644     This is the token that is expected from the other side.
645    
646 root 1.41 =item tls_anon
647 root 1.19
648 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
649 root 1.19 was successful. It has no authentication data, as the server/client
650     certificate was successfully verified.
651    
652 root 1.43 This authentication type is somewhat insecure, as it allows a
653     man-in-the-middle attacker to change some of the connection parameters
654     (such as the framing format), although there is no known attack that
655     exploits this in a way that is worse than just denying the service.
656 root 1.41
657 root 1.43 By default, this implementation accepts but never generates this auth
658     reply.
659 root 1.41
660     =item tls_md6_64_256
661    
662 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
663     successful.
664 root 1.41
665     This authentication type simply calculates:
666    
667     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
668    
669     and lowercase-hex encodes the result and sends it as authentication
670     data. No shared secret is required (authentication is done by TLS). The
671 root 1.43 checksum exists only to make tinkering with the greeting hard.
672 root 1.19
673 root 1.13 =back
674    
675 root 1.8 =item the authentication data
676    
677 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
678     above.
679 root 1.8
680     =item the framing protocol chosen
681    
682     This must be one of the framing protocols offered by the other side in the
683 root 1.43 greeting. Each side must accept the choice of the other side, and generate
684     packets in the format it chose itself.
685 root 1.8
686     =back
687    
688 root 1.16 Example of an authentication reply:
689 root 1.9
690 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
691 root 1.9
692 root 1.8 =head2 DATA PHASE
693    
694     After this, packets get exchanged using the chosen framing protocol. It is
695     quite possible that both sides use a different framing protocol.
696    
697 root 1.16 =head2 FULL EXAMPLE
698    
699 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
700 root 1.16 packet. The greater than/less than lines indicate the direction of the
701     transfer only.
702    
703 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
704     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
705    
706     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
707     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
708    
709     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
710    
711     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
712     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
713     ...
714    
715     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
716 root 1.16
717 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
718    
719     Implementing the full set of options for handshaking can be a daunting
720     task.
721    
722     If security is not so important (because you only connect locally and
723     control the host, a common case), and you want to interface with an AEMP
724     node from another programming language, then you can also implement a
725     simplified handshake.
726    
727     For example, in a simple implementation you could decide to simply not
728     check the authenticity of the other side and use cleartext authentication
729     yourself. The the handshake is as simple as sending three lines of text,
730     reading three lines of text, and then you can exchange JSON-formatted
731     messages:
732    
733     aemp;1;<nodename>;hmac_md6_64_256;json
734     <nonce>
735     cleartext;<hexencoded secret>;json
736    
737     The nodename should be unique within the network, preferably unique with
738     every connection, the <nonce> could be empty or some random data, and the
739     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
740     the secret is "geheim", the hex-encoded version would be "67656865696d").
741    
742     Note that apart from the low-level handshake and framing protocol, there
743     is a high-level protocol, e.g. for monitoring, building the mesh or
744     spawning. All these messages are sent to the node port (the empty string)
745     and can safely be ignored if you do not need the relevant functionality.
746    
747     =head3 USEFUL HINTS
748    
749     Since taking part in the global protocol to find port groups is
750     nontrivial, hardcoding port names should be considered as well, i.e. the
751     non-Perl node could simply listen to messages for a few well-known ports.
752    
753     Alternatively, the non-Perl node could call a (already loaded) function
754     in the Perl node by sending it a special message:
755    
756     ["", "Some::Function::name", "myownport", 1, 2, 3]
757    
758     This would call the function C<Some::Function::name> with the string
759     C<myownport> and some additional arguments.
760    
761 root 1.49 =head2 MONITORING
762    
763     Monitoring the connection itself is transport-specific. For TCP, all
764     connection monitoring is currently left to TCP retransmit time-outs
765     on a busy link, and TCP keepalive (which should be enabled) for idle
766     connections.
767    
768     This is not sufficient for listener-less nodes, however: they need
769     to regularly send data (30 seconds, or the monitoring interval, is
770     recommended), so TCP actively probes.
771    
772 elmex 1.73 Future implementations of AnyEvent::MP::Transport might query the kernel TCP
773 root 1.49 buffer after a write timeout occurs, and if it is non-empty, shut down the
774     connections, but this is an area of future research :)
775    
776     =head2 NODE PROTOCOL
777    
778     The transport simply transfers messages, but to implement a full node, a
779     special node port must exist that understands a number of requests.
780    
781     If you are interested in implementing this, drop us a note so we finish
782     the documentation.
783    
784 root 1.1 =head1 SEE ALSO
785    
786 root 1.29 L<AnyEvent::MP>.
787 root 1.1
788     =head1 AUTHOR
789    
790     Marc Lehmann <schmorp@schmorp.de>
791     http://home.schmorp.de/
792    
793     =cut
794    
795     1
796