ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.101
Committed: Thu Oct 23 19:03:30 2008 UTC (15 years, 6 months ago) by root
Branch: MAIN
Changes since 1.100: +38 -22 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.91 our $VERSION = 4.3;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163     restart the timeout.
164 root 1.43
165     Zero (the default) disables this timeout.
166    
167     =item on_timeout => $cb->($handle)
168    
169     Called whenever the inactivity timeout passes. If you return from this
170     callback, then the timeout will be reset as if some activity had happened,
171     so this condition is not fatal in any way.
172    
173 root 1.8 =item rbuf_max => <bytes>
174 elmex 1.2
175 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
176     when the read buffer ever (strictly) exceeds this size. This is useful to
177 root 1.88 avoid some forms of denial-of-service attacks.
178 elmex 1.2
179 root 1.8 For example, a server accepting connections from untrusted sources should
180     be configured to accept only so-and-so much data that it cannot act on
181     (for example, when expecting a line, an attacker could send an unlimited
182     amount of data without a callback ever being called as long as the line
183     isn't finished).
184 elmex 1.2
185 root 1.70 =item autocork => <boolean>
186    
187     When disabled (the default), then C<push_write> will try to immediately
188 root 1.88 write the data to the handle, if possible. This avoids having to register
189     a write watcher and wait for the next event loop iteration, but can
190     be inefficient if you write multiple small chunks (on the wire, this
191     disadvantage is usually avoided by your kernel's nagle algorithm, see
192     C<no_delay>, but this option can save costly syscalls).
193 root 1.70
194     When enabled, then writes will always be queued till the next event loop
195     iteration. This is efficient when you do many small writes per iteration,
196 root 1.88 but less efficient when you do a single write only per iteration (or when
197     the write buffer often is full). It also increases write latency.
198 root 1.70
199     =item no_delay => <boolean>
200    
201     When doing small writes on sockets, your operating system kernel might
202     wait a bit for more data before actually sending it out. This is called
203     the Nagle algorithm, and usually it is beneficial.
204    
205 root 1.88 In some situations you want as low a delay as possible, which can be
206     accomplishd by setting this option to a true value.
207 root 1.70
208 root 1.88 The default is your opertaing system's default behaviour (most likely
209     enabled), this option explicitly enables or disables it, if possible.
210 root 1.70
211 root 1.8 =item read_size => <bytes>
212 elmex 1.2
213 root 1.88 The default read block size (the amount of bytes this module will
214     try to read during each loop iteration, which affects memory
215     requirements). Default: C<8192>.
216 root 1.8
217     =item low_water_mark => <bytes>
218    
219     Sets the amount of bytes (default: C<0>) that make up an "empty" write
220     buffer: If the write reaches this size or gets even samller it is
221     considered empty.
222 elmex 1.2
223 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
224     the write buffer before it is fully drained, but this is a rare case, as
225     the operating system kernel usually buffers data as well, so the default
226     is good in almost all cases.
227    
228 root 1.62 =item linger => <seconds>
229    
230     If non-zero (default: C<3600>), then the destructor of the
231 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
232     write data and will install a watcher that will write this data to the
233     socket. No errors will be reported (this mostly matches how the operating
234     system treats outstanding data at socket close time).
235 root 1.62
236 root 1.88 This will not work for partial TLS data that could not be encoded
237 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
238     help.
239 root 1.62
240 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
241    
242 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
243 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
244     established and will transparently encrypt/decrypt data afterwards.
245 root 1.19
246 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
247 root 1.88 automatically when you try to create a TLS handle): this module doesn't
248     have a dependency on that module, so if your module requires it, you have
249     to add the dependency yourself.
250 root 1.26
251 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
252     C<accept>, and for the TLS client side of a connection, use C<connect>
253     mode.
254 root 1.19
255     You can also provide your own TLS connection object, but you have
256     to make sure that you call either C<Net::SSLeay::set_connect_state>
257     or C<Net::SSLeay::set_accept_state> on it before you pass it to
258     AnyEvent::Handle.
259    
260 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 root 1.26
262 root 1.19 =item tls_ctx => $ssl_ctx
263    
264 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
265 root 1.19 (unless a connection object was specified directly). If this parameter is
266     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
267    
268 root 1.40 =item json => JSON or JSON::XS object
269    
270     This is the json coder object used by the C<json> read and write types.
271    
272 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
273 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
274     texts.
275 root 1.40
276     Note that you are responsible to depend on the JSON module if you want to
277     use this functionality, as AnyEvent does not have a dependency itself.
278    
279 elmex 1.1 =back
280    
281     =cut
282    
283     sub new {
284 root 1.8 my $class = shift;
285    
286     my $self = bless { @_ }, $class;
287    
288     $self->{fh} or Carp::croak "mandatory argument fh is missing";
289    
290     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
291 elmex 1.1
292 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293     if $self->{tls};
294 root 1.19
295 root 1.44 $self->{_activity} = AnyEvent->now;
296 root 1.43 $self->_timeout;
297 elmex 1.1
298 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
299     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 root 1.10
301 root 1.66 $self->start_read
302 root 1.67 if $self->{on_read};
303 root 1.66
304 root 1.8 $self
305     }
306 elmex 1.2
307 root 1.8 sub _shutdown {
308     my ($self) = @_;
309 elmex 1.2
310 root 1.46 delete $self->{_tw};
311 root 1.38 delete $self->{_rw};
312     delete $self->{_ww};
313 root 1.8 delete $self->{fh};
314 root 1.52
315 root 1.92 &_freetls;
316 root 1.82
317     delete $self->{on_read};
318     delete $self->{_queue};
319 root 1.8 }
320    
321 root 1.52 sub _error {
322     my ($self, $errno, $fatal) = @_;
323 root 1.8
324 root 1.52 $self->_shutdown
325     if $fatal;
326 elmex 1.1
327 root 1.52 $! = $errno;
328 root 1.37
329 root 1.52 if ($self->{on_error}) {
330     $self->{on_error}($self, $fatal);
331 root 1.100 } elsif ($self->{fh}) {
332 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
333     }
334 elmex 1.1 }
335    
336 root 1.8 =item $fh = $handle->fh
337 elmex 1.1
338 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
339 elmex 1.1
340     =cut
341    
342 root 1.38 sub fh { $_[0]{fh} }
343 elmex 1.1
344 root 1.8 =item $handle->on_error ($cb)
345 elmex 1.1
346 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
347 elmex 1.1
348 root 1.8 =cut
349    
350     sub on_error {
351     $_[0]{on_error} = $_[1];
352     }
353    
354     =item $handle->on_eof ($cb)
355    
356     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
357 elmex 1.1
358     =cut
359    
360 root 1.8 sub on_eof {
361     $_[0]{on_eof} = $_[1];
362     }
363    
364 root 1.43 =item $handle->on_timeout ($cb)
365    
366 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
367     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
368     argument and method.
369 root 1.43
370     =cut
371    
372     sub on_timeout {
373     $_[0]{on_timeout} = $_[1];
374     }
375    
376 root 1.70 =item $handle->autocork ($boolean)
377    
378     Enables or disables the current autocork behaviour (see C<autocork>
379     constructor argument).
380    
381     =cut
382    
383     =item $handle->no_delay ($boolean)
384    
385     Enables or disables the C<no_delay> setting (see constructor argument of
386     the same name for details).
387    
388     =cut
389    
390     sub no_delay {
391     $_[0]{no_delay} = $_[1];
392    
393     eval {
394     local $SIG{__DIE__};
395     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
396     };
397     }
398    
399 root 1.43 #############################################################################
400    
401     =item $handle->timeout ($seconds)
402    
403     Configures (or disables) the inactivity timeout.
404    
405     =cut
406    
407     sub timeout {
408     my ($self, $timeout) = @_;
409    
410     $self->{timeout} = $timeout;
411     $self->_timeout;
412     }
413    
414     # reset the timeout watcher, as neccessary
415     # also check for time-outs
416     sub _timeout {
417     my ($self) = @_;
418    
419     if ($self->{timeout}) {
420 root 1.44 my $NOW = AnyEvent->now;
421 root 1.43
422     # when would the timeout trigger?
423     my $after = $self->{_activity} + $self->{timeout} - $NOW;
424    
425     # now or in the past already?
426     if ($after <= 0) {
427     $self->{_activity} = $NOW;
428    
429     if ($self->{on_timeout}) {
430 root 1.48 $self->{on_timeout}($self);
431 root 1.43 } else {
432 root 1.52 $self->_error (&Errno::ETIMEDOUT);
433 root 1.43 }
434    
435 root 1.56 # callback could have changed timeout value, optimise
436 root 1.43 return unless $self->{timeout};
437    
438     # calculate new after
439     $after = $self->{timeout};
440     }
441    
442     Scalar::Util::weaken $self;
443 root 1.56 return unless $self; # ->error could have destroyed $self
444 root 1.43
445     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
446     delete $self->{_tw};
447     $self->_timeout;
448     });
449     } else {
450     delete $self->{_tw};
451     }
452     }
453    
454 root 1.9 #############################################################################
455    
456     =back
457    
458     =head2 WRITE QUEUE
459    
460     AnyEvent::Handle manages two queues per handle, one for writing and one
461     for reading.
462    
463     The write queue is very simple: you can add data to its end, and
464     AnyEvent::Handle will automatically try to get rid of it for you.
465    
466 elmex 1.20 When data could be written and the write buffer is shorter then the low
467 root 1.9 water mark, the C<on_drain> callback will be invoked.
468    
469     =over 4
470    
471 root 1.8 =item $handle->on_drain ($cb)
472    
473     Sets the C<on_drain> callback or clears it (see the description of
474     C<on_drain> in the constructor).
475    
476     =cut
477    
478     sub on_drain {
479 elmex 1.1 my ($self, $cb) = @_;
480    
481 root 1.8 $self->{on_drain} = $cb;
482    
483     $cb->($self)
484 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
485 root 1.8 }
486    
487     =item $handle->push_write ($data)
488    
489     Queues the given scalar to be written. You can push as much data as you
490     want (only limited by the available memory), as C<AnyEvent::Handle>
491     buffers it independently of the kernel.
492    
493     =cut
494    
495 root 1.17 sub _drain_wbuf {
496     my ($self) = @_;
497 root 1.8
498 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
499 root 1.35
500 root 1.8 Scalar::Util::weaken $self;
501 root 1.35
502 root 1.8 my $cb = sub {
503     my $len = syswrite $self->{fh}, $self->{wbuf};
504    
505 root 1.29 if ($len >= 0) {
506 root 1.8 substr $self->{wbuf}, 0, $len, "";
507    
508 root 1.44 $self->{_activity} = AnyEvent->now;
509 root 1.43
510 root 1.8 $self->{on_drain}($self)
511 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
512 root 1.8 && $self->{on_drain};
513    
514 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
515 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
516 root 1.52 $self->_error ($!, 1);
517 elmex 1.1 }
518 root 1.8 };
519    
520 root 1.35 # try to write data immediately
521 root 1.70 $cb->() unless $self->{autocork};
522 root 1.8
523 root 1.35 # if still data left in wbuf, we need to poll
524 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
525 root 1.35 if length $self->{wbuf};
526 root 1.8 };
527     }
528    
529 root 1.30 our %WH;
530    
531     sub register_write_type($$) {
532     $WH{$_[0]} = $_[1];
533     }
534    
535 root 1.17 sub push_write {
536     my $self = shift;
537    
538 root 1.29 if (@_ > 1) {
539     my $type = shift;
540    
541     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
542     ->($self, @_);
543     }
544    
545 root 1.93 if ($self->{tls}) {
546     $self->{_tls_wbuf} .= $_[0];
547 root 1.97
548 root 1.93 &_dotls ($self);
549 root 1.17 } else {
550     $self->{wbuf} .= $_[0];
551     $self->_drain_wbuf;
552     }
553     }
554    
555 root 1.29 =item $handle->push_write (type => @args)
556    
557     Instead of formatting your data yourself, you can also let this module do
558     the job by specifying a type and type-specific arguments.
559    
560 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
561     drop by and tell us):
562 root 1.29
563     =over 4
564    
565     =item netstring => $string
566    
567     Formats the given value as netstring
568     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
569    
570     =cut
571    
572     register_write_type netstring => sub {
573     my ($self, $string) = @_;
574    
575 root 1.96 (length $string) . ":$string,"
576 root 1.29 };
577    
578 root 1.61 =item packstring => $format, $data
579    
580     An octet string prefixed with an encoded length. The encoding C<$format>
581     uses the same format as a Perl C<pack> format, but must specify a single
582     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
583     optional C<!>, C<< < >> or C<< > >> modifier).
584    
585     =cut
586    
587     register_write_type packstring => sub {
588     my ($self, $format, $string) = @_;
589    
590 root 1.65 pack "$format/a*", $string
591 root 1.61 };
592    
593 root 1.39 =item json => $array_or_hashref
594    
595 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
596     provide your own JSON object, this means it will be encoded to JSON text
597     in UTF-8.
598    
599     JSON objects (and arrays) are self-delimiting, so you can write JSON at
600     one end of a handle and read them at the other end without using any
601     additional framing.
602    
603 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
604     this module doesn't need delimiters after or between JSON texts to be
605     able to read them, many other languages depend on that.
606    
607     A simple RPC protocol that interoperates easily with others is to send
608     JSON arrays (or objects, although arrays are usually the better choice as
609     they mimic how function argument passing works) and a newline after each
610     JSON text:
611    
612     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
613     $handle->push_write ("\012");
614    
615     An AnyEvent::Handle receiver would simply use the C<json> read type and
616     rely on the fact that the newline will be skipped as leading whitespace:
617    
618     $handle->push_read (json => sub { my $array = $_[1]; ... });
619    
620     Other languages could read single lines terminated by a newline and pass
621     this line into their JSON decoder of choice.
622    
623 root 1.40 =cut
624    
625     register_write_type json => sub {
626     my ($self, $ref) = @_;
627    
628     require JSON;
629    
630     $self->{json} ? $self->{json}->encode ($ref)
631     : JSON::encode_json ($ref)
632     };
633    
634 root 1.63 =item storable => $reference
635    
636     Freezes the given reference using L<Storable> and writes it to the
637     handle. Uses the C<nfreeze> format.
638    
639     =cut
640    
641     register_write_type storable => sub {
642     my ($self, $ref) = @_;
643    
644     require Storable;
645    
646 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
647 root 1.63 };
648    
649 root 1.53 =back
650    
651 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
652 root 1.30
653     This function (not method) lets you add your own types to C<push_write>.
654     Whenever the given C<type> is used, C<push_write> will invoke the code
655     reference with the handle object and the remaining arguments.
656 root 1.29
657 root 1.30 The code reference is supposed to return a single octet string that will
658     be appended to the write buffer.
659 root 1.29
660 root 1.30 Note that this is a function, and all types registered this way will be
661     global, so try to use unique names.
662 root 1.29
663 root 1.30 =cut
664 root 1.29
665 root 1.8 #############################################################################
666    
667 root 1.9 =back
668    
669     =head2 READ QUEUE
670    
671     AnyEvent::Handle manages two queues per handle, one for writing and one
672     for reading.
673    
674     The read queue is more complex than the write queue. It can be used in two
675     ways, the "simple" way, using only C<on_read> and the "complex" way, using
676     a queue.
677    
678     In the simple case, you just install an C<on_read> callback and whenever
679     new data arrives, it will be called. You can then remove some data (if
680 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
681     leave the data there if you want to accumulate more (e.g. when only a
682     partial message has been received so far).
683 root 1.9
684     In the more complex case, you want to queue multiple callbacks. In this
685     case, AnyEvent::Handle will call the first queued callback each time new
686 root 1.61 data arrives (also the first time it is queued) and removes it when it has
687     done its job (see C<push_read>, below).
688 root 1.9
689     This way you can, for example, push three line-reads, followed by reading
690     a chunk of data, and AnyEvent::Handle will execute them in order.
691    
692     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
693     the specified number of bytes which give an XML datagram.
694    
695     # in the default state, expect some header bytes
696     $handle->on_read (sub {
697     # some data is here, now queue the length-header-read (4 octets)
698 root 1.52 shift->unshift_read (chunk => 4, sub {
699 root 1.9 # header arrived, decode
700     my $len = unpack "N", $_[1];
701    
702     # now read the payload
703 root 1.52 shift->unshift_read (chunk => $len, sub {
704 root 1.9 my $xml = $_[1];
705     # handle xml
706     });
707     });
708     });
709    
710 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
711     and another line or "ERROR" for the first request that is sent, and 64
712     bytes for the second request. Due to the availability of a queue, we can
713     just pipeline sending both requests and manipulate the queue as necessary
714     in the callbacks.
715    
716     When the first callback is called and sees an "OK" response, it will
717     C<unshift> another line-read. This line-read will be queued I<before> the
718     64-byte chunk callback.
719 root 1.9
720 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
721 root 1.9 $handle->push_write ("request 1\015\012");
722    
723     # we expect "ERROR" or "OK" as response, so push a line read
724 root 1.52 $handle->push_read (line => sub {
725 root 1.9 # if we got an "OK", we have to _prepend_ another line,
726     # so it will be read before the second request reads its 64 bytes
727     # which are already in the queue when this callback is called
728     # we don't do this in case we got an error
729     if ($_[1] eq "OK") {
730 root 1.52 $_[0]->unshift_read (line => sub {
731 root 1.9 my $response = $_[1];
732     ...
733     });
734     }
735     });
736    
737 root 1.69 # request two, simply returns 64 octets
738 root 1.9 $handle->push_write ("request 2\015\012");
739    
740     # simply read 64 bytes, always
741 root 1.52 $handle->push_read (chunk => 64, sub {
742 root 1.9 my $response = $_[1];
743     ...
744     });
745    
746     =over 4
747    
748 root 1.10 =cut
749    
750 root 1.8 sub _drain_rbuf {
751     my ($self) = @_;
752 elmex 1.1
753 root 1.59 local $self->{_in_drain} = 1;
754    
755 root 1.17 if (
756     defined $self->{rbuf_max}
757     && $self->{rbuf_max} < length $self->{rbuf}
758     ) {
759 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
760 root 1.17 }
761    
762 root 1.59 while () {
763     my $len = length $self->{rbuf};
764 elmex 1.1
765 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
766 root 1.29 unless ($cb->($self)) {
767 root 1.38 if ($self->{_eof}) {
768 root 1.10 # no progress can be made (not enough data and no data forthcoming)
769 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
770 root 1.10 }
771    
772 root 1.38 unshift @{ $self->{_queue} }, $cb;
773 root 1.55 last;
774 root 1.8 }
775     } elsif ($self->{on_read}) {
776 root 1.61 last unless $len;
777    
778 root 1.8 $self->{on_read}($self);
779    
780     if (
781 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
782     && !@{ $self->{_queue} } # and the queue is still empty
783     && $self->{on_read} # but we still have on_read
784 root 1.8 ) {
785 root 1.55 # no further data will arrive
786     # so no progress can be made
787 root 1.82 $self->_error (&Errno::EPIPE, 1), return
788 root 1.55 if $self->{_eof};
789    
790     last; # more data might arrive
791 elmex 1.1 }
792 root 1.8 } else {
793     # read side becomes idle
794 root 1.93 delete $self->{_rw} unless $self->{tls};
795 root 1.55 last;
796 root 1.8 }
797     }
798    
799 root 1.80 if ($self->{_eof}) {
800     if ($self->{on_eof}) {
801     $self->{on_eof}($self)
802     } else {
803     $self->_error (0, 1);
804     }
805     }
806 root 1.55
807     # may need to restart read watcher
808     unless ($self->{_rw}) {
809     $self->start_read
810     if $self->{on_read} || @{ $self->{_queue} };
811     }
812 elmex 1.1 }
813    
814 root 1.8 =item $handle->on_read ($cb)
815 elmex 1.1
816 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
817     the new callback is C<undef>). See the description of C<on_read> in the
818     constructor.
819 elmex 1.1
820 root 1.8 =cut
821    
822     sub on_read {
823     my ($self, $cb) = @_;
824 elmex 1.1
825 root 1.8 $self->{on_read} = $cb;
826 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
827 elmex 1.1 }
828    
829 root 1.8 =item $handle->rbuf
830    
831     Returns the read buffer (as a modifiable lvalue).
832 elmex 1.1
833 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
834     you want.
835 elmex 1.1
836 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
837     C<push_read> or C<unshift_read> methods are used. The other read methods
838     automatically manage the read buffer.
839 elmex 1.1
840     =cut
841    
842 elmex 1.2 sub rbuf : lvalue {
843 root 1.8 $_[0]{rbuf}
844 elmex 1.2 }
845 elmex 1.1
846 root 1.8 =item $handle->push_read ($cb)
847    
848     =item $handle->unshift_read ($cb)
849    
850     Append the given callback to the end of the queue (C<push_read>) or
851     prepend it (C<unshift_read>).
852    
853     The callback is called each time some additional read data arrives.
854 elmex 1.1
855 elmex 1.20 It must check whether enough data is in the read buffer already.
856 elmex 1.1
857 root 1.8 If not enough data is available, it must return the empty list or a false
858     value, in which case it will be called repeatedly until enough data is
859     available (or an error condition is detected).
860    
861     If enough data was available, then the callback must remove all data it is
862     interested in (which can be none at all) and return a true value. After returning
863     true, it will be removed from the queue.
864 elmex 1.1
865     =cut
866    
867 root 1.30 our %RH;
868    
869     sub register_read_type($$) {
870     $RH{$_[0]} = $_[1];
871     }
872    
873 root 1.8 sub push_read {
874 root 1.28 my $self = shift;
875     my $cb = pop;
876    
877     if (@_) {
878     my $type = shift;
879    
880     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
881     ->($self, $cb, @_);
882     }
883 elmex 1.1
884 root 1.38 push @{ $self->{_queue} }, $cb;
885 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
886 elmex 1.1 }
887    
888 root 1.8 sub unshift_read {
889 root 1.28 my $self = shift;
890     my $cb = pop;
891    
892     if (@_) {
893     my $type = shift;
894    
895     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
896     ->($self, $cb, @_);
897     }
898    
899 root 1.8
900 root 1.38 unshift @{ $self->{_queue} }, $cb;
901 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
902 root 1.8 }
903 elmex 1.1
904 root 1.28 =item $handle->push_read (type => @args, $cb)
905 elmex 1.1
906 root 1.28 =item $handle->unshift_read (type => @args, $cb)
907 elmex 1.1
908 root 1.28 Instead of providing a callback that parses the data itself you can chose
909     between a number of predefined parsing formats, for chunks of data, lines
910     etc.
911 elmex 1.1
912 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
913     drop by and tell us):
914 root 1.28
915     =over 4
916    
917 root 1.40 =item chunk => $octets, $cb->($handle, $data)
918 root 1.28
919     Invoke the callback only once C<$octets> bytes have been read. Pass the
920     data read to the callback. The callback will never be called with less
921     data.
922    
923     Example: read 2 bytes.
924    
925     $handle->push_read (chunk => 2, sub {
926     warn "yay ", unpack "H*", $_[1];
927     });
928 elmex 1.1
929     =cut
930    
931 root 1.28 register_read_type chunk => sub {
932     my ($self, $cb, $len) = @_;
933 elmex 1.1
934 root 1.8 sub {
935     $len <= length $_[0]{rbuf} or return;
936 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
937 root 1.8 1
938     }
939 root 1.28 };
940 root 1.8
941 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
942 elmex 1.1
943 root 1.8 The callback will be called only once a full line (including the end of
944     line marker, C<$eol>) has been read. This line (excluding the end of line
945     marker) will be passed to the callback as second argument (C<$line>), and
946     the end of line marker as the third argument (C<$eol>).
947 elmex 1.1
948 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
949     will be interpreted as a fixed record end marker, or it can be a regex
950     object (e.g. created by C<qr>), in which case it is interpreted as a
951     regular expression.
952 elmex 1.1
953 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
954     undef), then C<qr|\015?\012|> is used (which is good for most internet
955     protocols).
956 elmex 1.1
957 root 1.8 Partial lines at the end of the stream will never be returned, as they are
958     not marked by the end of line marker.
959 elmex 1.1
960 root 1.8 =cut
961 elmex 1.1
962 root 1.28 register_read_type line => sub {
963     my ($self, $cb, $eol) = @_;
964 elmex 1.1
965 root 1.76 if (@_ < 3) {
966     # this is more than twice as fast as the generic code below
967     sub {
968     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
969 elmex 1.1
970 root 1.76 $cb->($_[0], $1, $2);
971     1
972     }
973     } else {
974     $eol = quotemeta $eol unless ref $eol;
975     $eol = qr|^(.*?)($eol)|s;
976    
977     sub {
978     $_[0]{rbuf} =~ s/$eol// or return;
979 elmex 1.1
980 root 1.76 $cb->($_[0], $1, $2);
981     1
982     }
983 root 1.8 }
984 root 1.28 };
985 elmex 1.1
986 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
987 root 1.36
988     Makes a regex match against the regex object C<$accept> and returns
989     everything up to and including the match.
990    
991     Example: read a single line terminated by '\n'.
992    
993     $handle->push_read (regex => qr<\n>, sub { ... });
994    
995     If C<$reject> is given and not undef, then it determines when the data is
996     to be rejected: it is matched against the data when the C<$accept> regex
997     does not match and generates an C<EBADMSG> error when it matches. This is
998     useful to quickly reject wrong data (to avoid waiting for a timeout or a
999     receive buffer overflow).
1000    
1001     Example: expect a single decimal number followed by whitespace, reject
1002     anything else (not the use of an anchor).
1003    
1004     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1005    
1006     If C<$skip> is given and not C<undef>, then it will be matched against
1007     the receive buffer when neither C<$accept> nor C<$reject> match,
1008     and everything preceding and including the match will be accepted
1009     unconditionally. This is useful to skip large amounts of data that you
1010     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1011     have to start matching from the beginning. This is purely an optimisation
1012     and is usually worth only when you expect more than a few kilobytes.
1013    
1014     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1015     expect the header to be very large (it isn't in practise, but...), we use
1016     a skip regex to skip initial portions. The skip regex is tricky in that
1017     it only accepts something not ending in either \015 or \012, as these are
1018     required for the accept regex.
1019    
1020     $handle->push_read (regex =>
1021     qr<\015\012\015\012>,
1022     undef, # no reject
1023     qr<^.*[^\015\012]>,
1024     sub { ... });
1025    
1026     =cut
1027    
1028     register_read_type regex => sub {
1029     my ($self, $cb, $accept, $reject, $skip) = @_;
1030    
1031     my $data;
1032     my $rbuf = \$self->{rbuf};
1033    
1034     sub {
1035     # accept
1036     if ($$rbuf =~ $accept) {
1037     $data .= substr $$rbuf, 0, $+[0], "";
1038     $cb->($self, $data);
1039     return 1;
1040     }
1041    
1042     # reject
1043     if ($reject && $$rbuf =~ $reject) {
1044 root 1.52 $self->_error (&Errno::EBADMSG);
1045 root 1.36 }
1046    
1047     # skip
1048     if ($skip && $$rbuf =~ $skip) {
1049     $data .= substr $$rbuf, 0, $+[0], "";
1050     }
1051    
1052     ()
1053     }
1054     };
1055    
1056 root 1.61 =item netstring => $cb->($handle, $string)
1057    
1058     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1059    
1060     Throws an error with C<$!> set to EBADMSG on format violations.
1061    
1062     =cut
1063    
1064     register_read_type netstring => sub {
1065     my ($self, $cb) = @_;
1066    
1067     sub {
1068     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069     if ($_[0]{rbuf} =~ /[^0-9]/) {
1070     $self->_error (&Errno::EBADMSG);
1071     }
1072     return;
1073     }
1074    
1075     my $len = $1;
1076    
1077     $self->unshift_read (chunk => $len, sub {
1078     my $string = $_[1];
1079     $_[0]->unshift_read (chunk => 1, sub {
1080     if ($_[1] eq ",") {
1081     $cb->($_[0], $string);
1082     } else {
1083     $self->_error (&Errno::EBADMSG);
1084     }
1085     });
1086     });
1087    
1088     1
1089     }
1090     };
1091    
1092     =item packstring => $format, $cb->($handle, $string)
1093    
1094     An octet string prefixed with an encoded length. The encoding C<$format>
1095     uses the same format as a Perl C<pack> format, but must specify a single
1096     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1097     optional C<!>, C<< < >> or C<< > >> modifier).
1098    
1099 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1100     EPP uses a prefix of C<N> (4 octtes).
1101 root 1.61
1102     Example: read a block of data prefixed by its length in BER-encoded
1103     format (very efficient).
1104    
1105     $handle->push_read (packstring => "w", sub {
1106     my ($handle, $data) = @_;
1107     });
1108    
1109     =cut
1110    
1111     register_read_type packstring => sub {
1112     my ($self, $cb, $format) = @_;
1113    
1114     sub {
1115     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1116 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1117 root 1.61 or return;
1118    
1119 root 1.77 $format = length pack $format, $len;
1120 root 1.61
1121 root 1.77 # bypass unshift if we already have the remaining chunk
1122     if ($format + $len <= length $_[0]{rbuf}) {
1123     my $data = substr $_[0]{rbuf}, $format, $len;
1124     substr $_[0]{rbuf}, 0, $format + $len, "";
1125     $cb->($_[0], $data);
1126     } else {
1127     # remove prefix
1128     substr $_[0]{rbuf}, 0, $format, "";
1129    
1130     # read remaining chunk
1131     $_[0]->unshift_read (chunk => $len, $cb);
1132     }
1133 root 1.61
1134     1
1135     }
1136     };
1137    
1138 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1139    
1140     Reads a JSON object or array, decodes it and passes it to the callback.
1141    
1142     If a C<json> object was passed to the constructor, then that will be used
1143     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1144    
1145     This read type uses the incremental parser available with JSON version
1146     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1147     dependency on your own: this module will load the JSON module, but
1148     AnyEvent does not depend on it itself.
1149    
1150     Since JSON texts are fully self-delimiting, the C<json> read and write
1151 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1152     the C<json> write type description, above, for an actual example.
1153 root 1.40
1154     =cut
1155    
1156     register_read_type json => sub {
1157 root 1.63 my ($self, $cb) = @_;
1158 root 1.40
1159     require JSON;
1160    
1161     my $data;
1162     my $rbuf = \$self->{rbuf};
1163    
1164 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1165 root 1.40
1166     sub {
1167     my $ref = $json->incr_parse ($self->{rbuf});
1168    
1169     if ($ref) {
1170     $self->{rbuf} = $json->incr_text;
1171     $json->incr_text = "";
1172     $cb->($self, $ref);
1173    
1174     1
1175     } else {
1176     $self->{rbuf} = "";
1177     ()
1178     }
1179     }
1180     };
1181    
1182 root 1.63 =item storable => $cb->($handle, $ref)
1183    
1184     Deserialises a L<Storable> frozen representation as written by the
1185     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1186     data).
1187    
1188     Raises C<EBADMSG> error if the data could not be decoded.
1189    
1190     =cut
1191    
1192     register_read_type storable => sub {
1193     my ($self, $cb) = @_;
1194    
1195     require Storable;
1196    
1197     sub {
1198     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1199 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1200 root 1.63 or return;
1201    
1202 root 1.77 my $format = length pack "w", $len;
1203 root 1.63
1204 root 1.77 # bypass unshift if we already have the remaining chunk
1205     if ($format + $len <= length $_[0]{rbuf}) {
1206     my $data = substr $_[0]{rbuf}, $format, $len;
1207     substr $_[0]{rbuf}, 0, $format + $len, "";
1208     $cb->($_[0], Storable::thaw ($data));
1209     } else {
1210     # remove prefix
1211     substr $_[0]{rbuf}, 0, $format, "";
1212    
1213     # read remaining chunk
1214     $_[0]->unshift_read (chunk => $len, sub {
1215     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216     $cb->($_[0], $ref);
1217     } else {
1218     $self->_error (&Errno::EBADMSG);
1219     }
1220     });
1221     }
1222    
1223     1
1224 root 1.63 }
1225     };
1226    
1227 root 1.28 =back
1228    
1229 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1230 root 1.30
1231     This function (not method) lets you add your own types to C<push_read>.
1232    
1233     Whenever the given C<type> is used, C<push_read> will invoke the code
1234     reference with the handle object, the callback and the remaining
1235     arguments.
1236    
1237     The code reference is supposed to return a callback (usually a closure)
1238     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1239    
1240     It should invoke the passed callback when it is done reading (remember to
1241 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1242 root 1.30
1243     Note that this is a function, and all types registered this way will be
1244     global, so try to use unique names.
1245    
1246     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1247     search for C<register_read_type>)).
1248    
1249 root 1.10 =item $handle->stop_read
1250    
1251     =item $handle->start_read
1252    
1253 root 1.18 In rare cases you actually do not want to read anything from the
1254 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1255 root 1.22 any queued callbacks will be executed then. To start reading again, call
1256 root 1.10 C<start_read>.
1257    
1258 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1259     you change the C<on_read> callback or push/unshift a read callback, and it
1260     will automatically C<stop_read> for you when neither C<on_read> is set nor
1261     there are any read requests in the queue.
1262    
1263 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1264     half-duplex connections).
1265    
1266 root 1.10 =cut
1267    
1268     sub stop_read {
1269     my ($self) = @_;
1270 elmex 1.1
1271 root 1.93 delete $self->{_rw} unless $self->{tls};
1272 root 1.8 }
1273 elmex 1.1
1274 root 1.10 sub start_read {
1275     my ($self) = @_;
1276    
1277 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1278 root 1.10 Scalar::Util::weaken $self;
1279    
1280 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1281 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1282 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1283 root 1.10
1284     if ($len > 0) {
1285 root 1.44 $self->{_activity} = AnyEvent->now;
1286 root 1.43
1287 root 1.93 if ($self->{tls}) {
1288     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1289 root 1.97
1290 root 1.93 &_dotls ($self);
1291     } else {
1292     $self->_drain_rbuf unless $self->{_in_drain};
1293     }
1294 root 1.10
1295     } elsif (defined $len) {
1296 root 1.38 delete $self->{_rw};
1297     $self->{_eof} = 1;
1298 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1299 root 1.10
1300 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1301 root 1.52 return $self->_error ($!, 1);
1302 root 1.10 }
1303     });
1304     }
1305 elmex 1.1 }
1306    
1307 root 1.97 # poll the write BIO and send the data if applicable
1308 root 1.19 sub _dotls {
1309     my ($self) = @_;
1310    
1311 root 1.97 my $tmp;
1312 root 1.56
1313 root 1.38 if (length $self->{_tls_wbuf}) {
1314 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1315     substr $self->{_tls_wbuf}, 0, $tmp, "";
1316 root 1.22 }
1317 root 1.19 }
1318    
1319 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320     unless (length $tmp) {
1321 root 1.56 # let's treat SSL-eof as we treat normal EOF
1322 root 1.91 delete $self->{_rw};
1323 root 1.56 $self->{_eof} = 1;
1324 root 1.92 &_freetls;
1325 root 1.56 }
1326 root 1.91
1327 root 1.97 $self->{rbuf} .= $tmp;
1328 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1329 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1330 root 1.23 }
1331    
1332 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333 root 1.24
1334 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 root 1.52 return $self->_error ($!, 1);
1337 root 1.97 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1338 root 1.52 return $self->_error (&Errno::EIO, 1);
1339 root 1.19 }
1340 root 1.23
1341 root 1.97 # all other errors are fine for our purposes
1342 root 1.19 }
1343 root 1.91
1344 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345     $self->{wbuf} .= $tmp;
1346 root 1.91 $self->_drain_wbuf;
1347     }
1348 root 1.19 }
1349    
1350 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1351    
1352     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1353     object is created, you can also do that at a later time by calling
1354     C<starttls>.
1355    
1356     The first argument is the same as the C<tls> constructor argument (either
1357     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1358    
1359     The second argument is the optional C<Net::SSLeay::CTX> object that is
1360     used when AnyEvent::Handle has to create its own TLS connection object.
1361    
1362 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1363     call and can be used or changed to your liking. Note that the handshake
1364     might have already started when this function returns.
1365    
1366 root 1.92 If it an error to start a TLS handshake more than once per
1367     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1368    
1369 root 1.25 =cut
1370    
1371 root 1.19 sub starttls {
1372     my ($self, $ssl, $ctx) = @_;
1373    
1374 root 1.94 require Net::SSLeay;
1375    
1376 root 1.92 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1377     if $self->{tls};
1378    
1379 root 1.19 if ($ssl eq "accept") {
1380     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1381     Net::SSLeay::set_accept_state ($ssl);
1382     } elsif ($ssl eq "connect") {
1383     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1384     Net::SSLeay::set_connect_state ($ssl);
1385     }
1386    
1387     $self->{tls} = $ssl;
1388    
1389 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1390     # but the openssl maintainers basically said: "trust us, it just works".
1391     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1392     # and mismaintained ssleay-module doesn't even offer them).
1393 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1394 root 1.87 #
1395     # in short: this is a mess.
1396     #
1397 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1398 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400     # have identity issues in that area.
1401 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1402 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1403     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1404 root 1.21
1405 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1406     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1407 root 1.19
1408 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1409 root 1.19
1410 root 1.93 &_dotls; # need to trigger the initial handshake
1411     $self->start_read; # make sure we actually do read
1412 root 1.19 }
1413    
1414 root 1.25 =item $handle->stoptls
1415    
1416 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1417     sending a close notify to the other side, but since OpenSSL doesn't
1418     support non-blocking shut downs, it is not possible to re-use the stream
1419     afterwards.
1420 root 1.25
1421     =cut
1422    
1423     sub stoptls {
1424     my ($self) = @_;
1425    
1426 root 1.92 if ($self->{tls}) {
1427 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1428 root 1.92
1429     &_dotls;
1430    
1431     # we don't give a shit. no, we do, but we can't. no...
1432     # we, we... have to use openssl :/
1433     &_freetls;
1434     }
1435     }
1436    
1437     sub _freetls {
1438     my ($self) = @_;
1439    
1440     return unless $self->{tls};
1441 root 1.38
1442 root 1.92 Net::SSLeay::free (delete $self->{tls});
1443    
1444 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1445 root 1.25 }
1446    
1447 root 1.19 sub DESTROY {
1448     my $self = shift;
1449    
1450 root 1.92 &_freetls;
1451 root 1.62
1452     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453    
1454     if ($linger && length $self->{wbuf}) {
1455     my $fh = delete $self->{fh};
1456     my $wbuf = delete $self->{wbuf};
1457    
1458     my @linger;
1459    
1460     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1461     my $len = syswrite $fh, $wbuf, length $wbuf;
1462    
1463     if ($len > 0) {
1464     substr $wbuf, 0, $len, "";
1465     } else {
1466     @linger = (); # end
1467     }
1468     });
1469     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1470     @linger = ();
1471     });
1472     }
1473 root 1.19 }
1474    
1475 root 1.99 =item $handle->destroy
1476    
1477 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1478 root 1.99 no further callbacks will be invoked and resources will be freed as much
1479     as possible. You must not call any methods on the object afterwards.
1480    
1481 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1482     object and it will simply shut down. This works in fatal error and EOF
1483     callbacks, as well as code outside. It does I<NOT> work in a read or write
1484     callback, so when you want to destroy the AnyEvent::Handle object from
1485     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1486     that case.
1487    
1488 root 1.99 The handle might still linger in the background and write out remaining
1489     data, as specified by the C<linger> option, however.
1490    
1491     =cut
1492    
1493     sub destroy {
1494     my ($self) = @_;
1495    
1496     $self->DESTROY;
1497     %$self = ();
1498     }
1499    
1500 root 1.19 =item AnyEvent::Handle::TLS_CTX
1501    
1502     This function creates and returns the Net::SSLeay::CTX object used by
1503     default for TLS mode.
1504    
1505     The context is created like this:
1506    
1507     Net::SSLeay::load_error_strings;
1508     Net::SSLeay::SSLeay_add_ssl_algorithms;
1509     Net::SSLeay::randomize;
1510    
1511     my $CTX = Net::SSLeay::CTX_new;
1512    
1513     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1514    
1515     =cut
1516    
1517     our $TLS_CTX;
1518    
1519     sub TLS_CTX() {
1520     $TLS_CTX || do {
1521     require Net::SSLeay;
1522    
1523     Net::SSLeay::load_error_strings ();
1524     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1525     Net::SSLeay::randomize ();
1526    
1527     $TLS_CTX = Net::SSLeay::CTX_new ();
1528    
1529     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1530    
1531     $TLS_CTX
1532     }
1533     }
1534    
1535 elmex 1.1 =back
1536    
1537 root 1.95
1538     =head1 NONFREQUENTLY ASKED QUESTIONS
1539    
1540     =over 4
1541    
1542 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1543     still get further invocations!
1544    
1545     That's because AnyEvent::Handle keeps a reference to itself when handling
1546     read or write callbacks.
1547    
1548     It is only safe to "forget" the reference inside EOF or error callbacks,
1549     from within all other callbacks, you need to explicitly call the C<<
1550     ->destroy >> method.
1551    
1552     =item I get different callback invocations in TLS mode/Why can't I pause
1553     reading?
1554    
1555     Unlike, say, TCP, TLS connections do not consist of two independent
1556     communication channels, one for each direction. Or put differently. The
1557     read and write directions are not independent of each other: you cannot
1558     write data unless you are also prepared to read, and vice versa.
1559    
1560     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1561     callback invocations when you are not expecting any read data - the reason
1562     is that AnyEvent::Handle always reads in TLS mode.
1563    
1564     During the connection, you have to make sure that you always have a
1565     non-empty read-queue, or an C<on_read> watcher. At the end of the
1566     connection (or when you no longer want to use it) you can call the
1567     C<destroy> method.
1568    
1569 root 1.95 =item How do I read data until the other side closes the connection?
1570    
1571 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1572     to achieve this is by setting an C<on_read> callback that does nothing,
1573     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1574     will be in C<$_[0]{rbuf}>:
1575 root 1.95
1576     $handle->on_read (sub { });
1577     $handle->on_eof (undef);
1578     $handle->on_error (sub {
1579     my $data = delete $_[0]{rbuf};
1580     undef $handle;
1581     });
1582    
1583     The reason to use C<on_error> is that TCP connections, due to latencies
1584     and packets loss, might get closed quite violently with an error, when in
1585     fact, all data has been received.
1586    
1587 root 1.101 It is usually better to use acknowledgements when transferring data,
1588 root 1.95 to make sure the other side hasn't just died and you got the data
1589     intact. This is also one reason why so many internet protocols have an
1590     explicit QUIT command.
1591    
1592 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1593     all data has been written?
1594 root 1.95
1595     After writing your last bits of data, set the C<on_drain> callback
1596     and destroy the handle in there - with the default setting of
1597     C<low_water_mark> this will be called precisely when all data has been
1598     written to the socket:
1599    
1600     $handle->push_write (...);
1601     $handle->on_drain (sub {
1602     warn "all data submitted to the kernel\n";
1603     undef $handle;
1604     });
1605    
1606     =back
1607    
1608    
1609 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1610    
1611     In many cases, you might want to subclass AnyEvent::Handle.
1612    
1613     To make this easier, a given version of AnyEvent::Handle uses these
1614     conventions:
1615    
1616     =over 4
1617    
1618     =item * all constructor arguments become object members.
1619    
1620     At least initially, when you pass a C<tls>-argument to the constructor it
1621 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1622 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1623    
1624     =item * other object member names are prefixed with an C<_>.
1625    
1626     All object members not explicitly documented (internal use) are prefixed
1627     with an underscore character, so the remaining non-C<_>-namespace is free
1628     for use for subclasses.
1629    
1630     =item * all members not documented here and not prefixed with an underscore
1631     are free to use in subclasses.
1632    
1633     Of course, new versions of AnyEvent::Handle may introduce more "public"
1634     member variables, but thats just life, at least it is documented.
1635    
1636     =back
1637    
1638 elmex 1.1 =head1 AUTHOR
1639    
1640 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1641 elmex 1.1
1642     =cut
1643    
1644     1; # End of AnyEvent::Handle