ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.105
Committed: Thu Nov 6 16:16:44 2008 UTC (15 years, 6 months ago) by root
Branch: MAIN
Changes since 1.104: +5 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.104 our $VERSION = 4.32;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163     restart the timeout.
164 root 1.43
165     Zero (the default) disables this timeout.
166    
167     =item on_timeout => $cb->($handle)
168    
169     Called whenever the inactivity timeout passes. If you return from this
170     callback, then the timeout will be reset as if some activity had happened,
171     so this condition is not fatal in any way.
172    
173 root 1.8 =item rbuf_max => <bytes>
174 elmex 1.2
175 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
176     when the read buffer ever (strictly) exceeds this size. This is useful to
177 root 1.88 avoid some forms of denial-of-service attacks.
178 elmex 1.2
179 root 1.8 For example, a server accepting connections from untrusted sources should
180     be configured to accept only so-and-so much data that it cannot act on
181     (for example, when expecting a line, an attacker could send an unlimited
182     amount of data without a callback ever being called as long as the line
183     isn't finished).
184 elmex 1.2
185 root 1.70 =item autocork => <boolean>
186    
187     When disabled (the default), then C<push_write> will try to immediately
188 root 1.88 write the data to the handle, if possible. This avoids having to register
189     a write watcher and wait for the next event loop iteration, but can
190     be inefficient if you write multiple small chunks (on the wire, this
191     disadvantage is usually avoided by your kernel's nagle algorithm, see
192     C<no_delay>, but this option can save costly syscalls).
193 root 1.70
194     When enabled, then writes will always be queued till the next event loop
195     iteration. This is efficient when you do many small writes per iteration,
196 root 1.88 but less efficient when you do a single write only per iteration (or when
197     the write buffer often is full). It also increases write latency.
198 root 1.70
199     =item no_delay => <boolean>
200    
201     When doing small writes on sockets, your operating system kernel might
202     wait a bit for more data before actually sending it out. This is called
203     the Nagle algorithm, and usually it is beneficial.
204    
205 root 1.88 In some situations you want as low a delay as possible, which can be
206     accomplishd by setting this option to a true value.
207 root 1.70
208 root 1.88 The default is your opertaing system's default behaviour (most likely
209     enabled), this option explicitly enables or disables it, if possible.
210 root 1.70
211 root 1.8 =item read_size => <bytes>
212 elmex 1.2
213 root 1.88 The default read block size (the amount of bytes this module will
214     try to read during each loop iteration, which affects memory
215     requirements). Default: C<8192>.
216 root 1.8
217     =item low_water_mark => <bytes>
218    
219     Sets the amount of bytes (default: C<0>) that make up an "empty" write
220     buffer: If the write reaches this size or gets even samller it is
221     considered empty.
222 elmex 1.2
223 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
224     the write buffer before it is fully drained, but this is a rare case, as
225     the operating system kernel usually buffers data as well, so the default
226     is good in almost all cases.
227    
228 root 1.62 =item linger => <seconds>
229    
230     If non-zero (default: C<3600>), then the destructor of the
231 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
232     write data and will install a watcher that will write this data to the
233     socket. No errors will be reported (this mostly matches how the operating
234     system treats outstanding data at socket close time).
235 root 1.62
236 root 1.88 This will not work for partial TLS data that could not be encoded
237 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
238     help.
239 root 1.62
240 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
241    
242 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
243 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
244     established and will transparently encrypt/decrypt data afterwards.
245 root 1.19
246 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
247 root 1.88 automatically when you try to create a TLS handle): this module doesn't
248     have a dependency on that module, so if your module requires it, you have
249     to add the dependency yourself.
250 root 1.26
251 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
252     C<accept>, and for the TLS client side of a connection, use C<connect>
253     mode.
254 root 1.19
255     You can also provide your own TLS connection object, but you have
256     to make sure that you call either C<Net::SSLeay::set_connect_state>
257     or C<Net::SSLeay::set_accept_state> on it before you pass it to
258     AnyEvent::Handle.
259    
260 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 root 1.26
262 root 1.19 =item tls_ctx => $ssl_ctx
263    
264 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
265 root 1.19 (unless a connection object was specified directly). If this parameter is
266     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
267    
268 root 1.40 =item json => JSON or JSON::XS object
269    
270     This is the json coder object used by the C<json> read and write types.
271    
272 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
273 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
274     texts.
275 root 1.40
276     Note that you are responsible to depend on the JSON module if you want to
277     use this functionality, as AnyEvent does not have a dependency itself.
278    
279 elmex 1.1 =back
280    
281     =cut
282    
283     sub new {
284 root 1.8 my $class = shift;
285    
286     my $self = bless { @_ }, $class;
287    
288     $self->{fh} or Carp::croak "mandatory argument fh is missing";
289    
290     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
291 elmex 1.1
292 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293     if $self->{tls};
294 root 1.19
295 root 1.44 $self->{_activity} = AnyEvent->now;
296 root 1.43 $self->_timeout;
297 elmex 1.1
298 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
299     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 root 1.10
301 root 1.66 $self->start_read
302 root 1.67 if $self->{on_read};
303 root 1.66
304 root 1.8 $self
305     }
306 elmex 1.2
307 root 1.8 sub _shutdown {
308     my ($self) = @_;
309 elmex 1.2
310 root 1.46 delete $self->{_tw};
311 root 1.38 delete $self->{_rw};
312     delete $self->{_ww};
313 root 1.8 delete $self->{fh};
314 root 1.52
315 root 1.92 &_freetls;
316 root 1.82
317     delete $self->{on_read};
318     delete $self->{_queue};
319 root 1.8 }
320    
321 root 1.52 sub _error {
322     my ($self, $errno, $fatal) = @_;
323 root 1.8
324 root 1.52 $self->_shutdown
325     if $fatal;
326 elmex 1.1
327 root 1.52 $! = $errno;
328 root 1.37
329 root 1.52 if ($self->{on_error}) {
330     $self->{on_error}($self, $fatal);
331 root 1.100 } elsif ($self->{fh}) {
332 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
333     }
334 elmex 1.1 }
335    
336 root 1.8 =item $fh = $handle->fh
337 elmex 1.1
338 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
339 elmex 1.1
340     =cut
341    
342 root 1.38 sub fh { $_[0]{fh} }
343 elmex 1.1
344 root 1.8 =item $handle->on_error ($cb)
345 elmex 1.1
346 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
347 elmex 1.1
348 root 1.8 =cut
349    
350     sub on_error {
351     $_[0]{on_error} = $_[1];
352     }
353    
354     =item $handle->on_eof ($cb)
355    
356     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
357 elmex 1.1
358     =cut
359    
360 root 1.8 sub on_eof {
361     $_[0]{on_eof} = $_[1];
362     }
363    
364 root 1.43 =item $handle->on_timeout ($cb)
365    
366 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
367     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
368     argument and method.
369 root 1.43
370     =cut
371    
372     sub on_timeout {
373     $_[0]{on_timeout} = $_[1];
374     }
375    
376 root 1.70 =item $handle->autocork ($boolean)
377    
378     Enables or disables the current autocork behaviour (see C<autocork>
379 root 1.105 constructor argument). Changes will only take effect on the next write.
380 root 1.70
381     =cut
382    
383 root 1.105 sub autocork {
384     $_[0]{autocork} = $_[1];
385     }
386    
387 root 1.70 =item $handle->no_delay ($boolean)
388    
389     Enables or disables the C<no_delay> setting (see constructor argument of
390     the same name for details).
391    
392     =cut
393    
394     sub no_delay {
395     $_[0]{no_delay} = $_[1];
396    
397     eval {
398     local $SIG{__DIE__};
399     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
400     };
401     }
402    
403 root 1.43 #############################################################################
404    
405     =item $handle->timeout ($seconds)
406    
407     Configures (or disables) the inactivity timeout.
408    
409     =cut
410    
411     sub timeout {
412     my ($self, $timeout) = @_;
413    
414     $self->{timeout} = $timeout;
415     $self->_timeout;
416     }
417    
418     # reset the timeout watcher, as neccessary
419     # also check for time-outs
420     sub _timeout {
421     my ($self) = @_;
422    
423     if ($self->{timeout}) {
424 root 1.44 my $NOW = AnyEvent->now;
425 root 1.43
426     # when would the timeout trigger?
427     my $after = $self->{_activity} + $self->{timeout} - $NOW;
428    
429     # now or in the past already?
430     if ($after <= 0) {
431     $self->{_activity} = $NOW;
432    
433     if ($self->{on_timeout}) {
434 root 1.48 $self->{on_timeout}($self);
435 root 1.43 } else {
436 root 1.52 $self->_error (&Errno::ETIMEDOUT);
437 root 1.43 }
438    
439 root 1.56 # callback could have changed timeout value, optimise
440 root 1.43 return unless $self->{timeout};
441    
442     # calculate new after
443     $after = $self->{timeout};
444     }
445    
446     Scalar::Util::weaken $self;
447 root 1.56 return unless $self; # ->error could have destroyed $self
448 root 1.43
449     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
450     delete $self->{_tw};
451     $self->_timeout;
452     });
453     } else {
454     delete $self->{_tw};
455     }
456     }
457    
458 root 1.9 #############################################################################
459    
460     =back
461    
462     =head2 WRITE QUEUE
463    
464     AnyEvent::Handle manages two queues per handle, one for writing and one
465     for reading.
466    
467     The write queue is very simple: you can add data to its end, and
468     AnyEvent::Handle will automatically try to get rid of it for you.
469    
470 elmex 1.20 When data could be written and the write buffer is shorter then the low
471 root 1.9 water mark, the C<on_drain> callback will be invoked.
472    
473     =over 4
474    
475 root 1.8 =item $handle->on_drain ($cb)
476    
477     Sets the C<on_drain> callback or clears it (see the description of
478     C<on_drain> in the constructor).
479    
480     =cut
481    
482     sub on_drain {
483 elmex 1.1 my ($self, $cb) = @_;
484    
485 root 1.8 $self->{on_drain} = $cb;
486    
487     $cb->($self)
488 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
489 root 1.8 }
490    
491     =item $handle->push_write ($data)
492    
493     Queues the given scalar to be written. You can push as much data as you
494     want (only limited by the available memory), as C<AnyEvent::Handle>
495     buffers it independently of the kernel.
496    
497     =cut
498    
499 root 1.17 sub _drain_wbuf {
500     my ($self) = @_;
501 root 1.8
502 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
503 root 1.35
504 root 1.8 Scalar::Util::weaken $self;
505 root 1.35
506 root 1.8 my $cb = sub {
507     my $len = syswrite $self->{fh}, $self->{wbuf};
508    
509 root 1.29 if ($len >= 0) {
510 root 1.8 substr $self->{wbuf}, 0, $len, "";
511    
512 root 1.44 $self->{_activity} = AnyEvent->now;
513 root 1.43
514 root 1.8 $self->{on_drain}($self)
515 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
516 root 1.8 && $self->{on_drain};
517    
518 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
519 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
520 root 1.52 $self->_error ($!, 1);
521 elmex 1.1 }
522 root 1.8 };
523    
524 root 1.35 # try to write data immediately
525 root 1.70 $cb->() unless $self->{autocork};
526 root 1.8
527 root 1.35 # if still data left in wbuf, we need to poll
528 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
529 root 1.35 if length $self->{wbuf};
530 root 1.8 };
531     }
532    
533 root 1.30 our %WH;
534    
535     sub register_write_type($$) {
536     $WH{$_[0]} = $_[1];
537     }
538    
539 root 1.17 sub push_write {
540     my $self = shift;
541    
542 root 1.29 if (@_ > 1) {
543     my $type = shift;
544    
545     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
546     ->($self, @_);
547     }
548    
549 root 1.93 if ($self->{tls}) {
550     $self->{_tls_wbuf} .= $_[0];
551 root 1.97
552 root 1.93 &_dotls ($self);
553 root 1.17 } else {
554     $self->{wbuf} .= $_[0];
555     $self->_drain_wbuf;
556     }
557     }
558    
559 root 1.29 =item $handle->push_write (type => @args)
560    
561     Instead of formatting your data yourself, you can also let this module do
562     the job by specifying a type and type-specific arguments.
563    
564 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
565     drop by and tell us):
566 root 1.29
567     =over 4
568    
569     =item netstring => $string
570    
571     Formats the given value as netstring
572     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
573    
574     =cut
575    
576     register_write_type netstring => sub {
577     my ($self, $string) = @_;
578    
579 root 1.96 (length $string) . ":$string,"
580 root 1.29 };
581    
582 root 1.61 =item packstring => $format, $data
583    
584     An octet string prefixed with an encoded length. The encoding C<$format>
585     uses the same format as a Perl C<pack> format, but must specify a single
586     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
587     optional C<!>, C<< < >> or C<< > >> modifier).
588    
589     =cut
590    
591     register_write_type packstring => sub {
592     my ($self, $format, $string) = @_;
593    
594 root 1.65 pack "$format/a*", $string
595 root 1.61 };
596    
597 root 1.39 =item json => $array_or_hashref
598    
599 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
600     provide your own JSON object, this means it will be encoded to JSON text
601     in UTF-8.
602    
603     JSON objects (and arrays) are self-delimiting, so you can write JSON at
604     one end of a handle and read them at the other end without using any
605     additional framing.
606    
607 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
608     this module doesn't need delimiters after or between JSON texts to be
609     able to read them, many other languages depend on that.
610    
611     A simple RPC protocol that interoperates easily with others is to send
612     JSON arrays (or objects, although arrays are usually the better choice as
613     they mimic how function argument passing works) and a newline after each
614     JSON text:
615    
616     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
617     $handle->push_write ("\012");
618    
619     An AnyEvent::Handle receiver would simply use the C<json> read type and
620     rely on the fact that the newline will be skipped as leading whitespace:
621    
622     $handle->push_read (json => sub { my $array = $_[1]; ... });
623    
624     Other languages could read single lines terminated by a newline and pass
625     this line into their JSON decoder of choice.
626    
627 root 1.40 =cut
628    
629     register_write_type json => sub {
630     my ($self, $ref) = @_;
631    
632     require JSON;
633    
634     $self->{json} ? $self->{json}->encode ($ref)
635     : JSON::encode_json ($ref)
636     };
637    
638 root 1.63 =item storable => $reference
639    
640     Freezes the given reference using L<Storable> and writes it to the
641     handle. Uses the C<nfreeze> format.
642    
643     =cut
644    
645     register_write_type storable => sub {
646     my ($self, $ref) = @_;
647    
648     require Storable;
649    
650 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
651 root 1.63 };
652    
653 root 1.53 =back
654    
655 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
656 root 1.30
657     This function (not method) lets you add your own types to C<push_write>.
658     Whenever the given C<type> is used, C<push_write> will invoke the code
659     reference with the handle object and the remaining arguments.
660 root 1.29
661 root 1.30 The code reference is supposed to return a single octet string that will
662     be appended to the write buffer.
663 root 1.29
664 root 1.30 Note that this is a function, and all types registered this way will be
665     global, so try to use unique names.
666 root 1.29
667 root 1.30 =cut
668 root 1.29
669 root 1.8 #############################################################################
670    
671 root 1.9 =back
672    
673     =head2 READ QUEUE
674    
675     AnyEvent::Handle manages two queues per handle, one for writing and one
676     for reading.
677    
678     The read queue is more complex than the write queue. It can be used in two
679     ways, the "simple" way, using only C<on_read> and the "complex" way, using
680     a queue.
681    
682     In the simple case, you just install an C<on_read> callback and whenever
683     new data arrives, it will be called. You can then remove some data (if
684 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
685     leave the data there if you want to accumulate more (e.g. when only a
686     partial message has been received so far).
687 root 1.9
688     In the more complex case, you want to queue multiple callbacks. In this
689     case, AnyEvent::Handle will call the first queued callback each time new
690 root 1.61 data arrives (also the first time it is queued) and removes it when it has
691     done its job (see C<push_read>, below).
692 root 1.9
693     This way you can, for example, push three line-reads, followed by reading
694     a chunk of data, and AnyEvent::Handle will execute them in order.
695    
696     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
697     the specified number of bytes which give an XML datagram.
698    
699     # in the default state, expect some header bytes
700     $handle->on_read (sub {
701     # some data is here, now queue the length-header-read (4 octets)
702 root 1.52 shift->unshift_read (chunk => 4, sub {
703 root 1.9 # header arrived, decode
704     my $len = unpack "N", $_[1];
705    
706     # now read the payload
707 root 1.52 shift->unshift_read (chunk => $len, sub {
708 root 1.9 my $xml = $_[1];
709     # handle xml
710     });
711     });
712     });
713    
714 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
715     and another line or "ERROR" for the first request that is sent, and 64
716     bytes for the second request. Due to the availability of a queue, we can
717     just pipeline sending both requests and manipulate the queue as necessary
718     in the callbacks.
719    
720     When the first callback is called and sees an "OK" response, it will
721     C<unshift> another line-read. This line-read will be queued I<before> the
722     64-byte chunk callback.
723 root 1.9
724 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
725 root 1.9 $handle->push_write ("request 1\015\012");
726    
727     # we expect "ERROR" or "OK" as response, so push a line read
728 root 1.52 $handle->push_read (line => sub {
729 root 1.9 # if we got an "OK", we have to _prepend_ another line,
730     # so it will be read before the second request reads its 64 bytes
731     # which are already in the queue when this callback is called
732     # we don't do this in case we got an error
733     if ($_[1] eq "OK") {
734 root 1.52 $_[0]->unshift_read (line => sub {
735 root 1.9 my $response = $_[1];
736     ...
737     });
738     }
739     });
740    
741 root 1.69 # request two, simply returns 64 octets
742 root 1.9 $handle->push_write ("request 2\015\012");
743    
744     # simply read 64 bytes, always
745 root 1.52 $handle->push_read (chunk => 64, sub {
746 root 1.9 my $response = $_[1];
747     ...
748     });
749    
750     =over 4
751    
752 root 1.10 =cut
753    
754 root 1.8 sub _drain_rbuf {
755     my ($self) = @_;
756 elmex 1.1
757 root 1.59 local $self->{_in_drain} = 1;
758    
759 root 1.17 if (
760     defined $self->{rbuf_max}
761     && $self->{rbuf_max} < length $self->{rbuf}
762     ) {
763 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
764 root 1.17 }
765    
766 root 1.59 while () {
767     my $len = length $self->{rbuf};
768 elmex 1.1
769 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
770 root 1.29 unless ($cb->($self)) {
771 root 1.38 if ($self->{_eof}) {
772 root 1.10 # no progress can be made (not enough data and no data forthcoming)
773 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
774 root 1.10 }
775    
776 root 1.38 unshift @{ $self->{_queue} }, $cb;
777 root 1.55 last;
778 root 1.8 }
779     } elsif ($self->{on_read}) {
780 root 1.61 last unless $len;
781    
782 root 1.8 $self->{on_read}($self);
783    
784     if (
785 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
786     && !@{ $self->{_queue} } # and the queue is still empty
787     && $self->{on_read} # but we still have on_read
788 root 1.8 ) {
789 root 1.55 # no further data will arrive
790     # so no progress can be made
791 root 1.82 $self->_error (&Errno::EPIPE, 1), return
792 root 1.55 if $self->{_eof};
793    
794     last; # more data might arrive
795 elmex 1.1 }
796 root 1.8 } else {
797     # read side becomes idle
798 root 1.93 delete $self->{_rw} unless $self->{tls};
799 root 1.55 last;
800 root 1.8 }
801     }
802    
803 root 1.80 if ($self->{_eof}) {
804     if ($self->{on_eof}) {
805     $self->{on_eof}($self)
806     } else {
807     $self->_error (0, 1);
808     }
809     }
810 root 1.55
811     # may need to restart read watcher
812     unless ($self->{_rw}) {
813     $self->start_read
814     if $self->{on_read} || @{ $self->{_queue} };
815     }
816 elmex 1.1 }
817    
818 root 1.8 =item $handle->on_read ($cb)
819 elmex 1.1
820 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
821     the new callback is C<undef>). See the description of C<on_read> in the
822     constructor.
823 elmex 1.1
824 root 1.8 =cut
825    
826     sub on_read {
827     my ($self, $cb) = @_;
828 elmex 1.1
829 root 1.8 $self->{on_read} = $cb;
830 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
831 elmex 1.1 }
832    
833 root 1.8 =item $handle->rbuf
834    
835     Returns the read buffer (as a modifiable lvalue).
836 elmex 1.1
837 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
838     you want.
839 elmex 1.1
840 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
841     C<push_read> or C<unshift_read> methods are used. The other read methods
842     automatically manage the read buffer.
843 elmex 1.1
844     =cut
845    
846 elmex 1.2 sub rbuf : lvalue {
847 root 1.8 $_[0]{rbuf}
848 elmex 1.2 }
849 elmex 1.1
850 root 1.8 =item $handle->push_read ($cb)
851    
852     =item $handle->unshift_read ($cb)
853    
854     Append the given callback to the end of the queue (C<push_read>) or
855     prepend it (C<unshift_read>).
856    
857     The callback is called each time some additional read data arrives.
858 elmex 1.1
859 elmex 1.20 It must check whether enough data is in the read buffer already.
860 elmex 1.1
861 root 1.8 If not enough data is available, it must return the empty list or a false
862     value, in which case it will be called repeatedly until enough data is
863     available (or an error condition is detected).
864    
865     If enough data was available, then the callback must remove all data it is
866     interested in (which can be none at all) and return a true value. After returning
867     true, it will be removed from the queue.
868 elmex 1.1
869     =cut
870    
871 root 1.30 our %RH;
872    
873     sub register_read_type($$) {
874     $RH{$_[0]} = $_[1];
875     }
876    
877 root 1.8 sub push_read {
878 root 1.28 my $self = shift;
879     my $cb = pop;
880    
881     if (@_) {
882     my $type = shift;
883    
884     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
885     ->($self, $cb, @_);
886     }
887 elmex 1.1
888 root 1.38 push @{ $self->{_queue} }, $cb;
889 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
890 elmex 1.1 }
891    
892 root 1.8 sub unshift_read {
893 root 1.28 my $self = shift;
894     my $cb = pop;
895    
896     if (@_) {
897     my $type = shift;
898    
899     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
900     ->($self, $cb, @_);
901     }
902    
903 root 1.8
904 root 1.38 unshift @{ $self->{_queue} }, $cb;
905 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
906 root 1.8 }
907 elmex 1.1
908 root 1.28 =item $handle->push_read (type => @args, $cb)
909 elmex 1.1
910 root 1.28 =item $handle->unshift_read (type => @args, $cb)
911 elmex 1.1
912 root 1.28 Instead of providing a callback that parses the data itself you can chose
913     between a number of predefined parsing formats, for chunks of data, lines
914     etc.
915 elmex 1.1
916 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
917     drop by and tell us):
918 root 1.28
919     =over 4
920    
921 root 1.40 =item chunk => $octets, $cb->($handle, $data)
922 root 1.28
923     Invoke the callback only once C<$octets> bytes have been read. Pass the
924     data read to the callback. The callback will never be called with less
925     data.
926    
927     Example: read 2 bytes.
928    
929     $handle->push_read (chunk => 2, sub {
930     warn "yay ", unpack "H*", $_[1];
931     });
932 elmex 1.1
933     =cut
934    
935 root 1.28 register_read_type chunk => sub {
936     my ($self, $cb, $len) = @_;
937 elmex 1.1
938 root 1.8 sub {
939     $len <= length $_[0]{rbuf} or return;
940 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
941 root 1.8 1
942     }
943 root 1.28 };
944 root 1.8
945 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
946 elmex 1.1
947 root 1.8 The callback will be called only once a full line (including the end of
948     line marker, C<$eol>) has been read. This line (excluding the end of line
949     marker) will be passed to the callback as second argument (C<$line>), and
950     the end of line marker as the third argument (C<$eol>).
951 elmex 1.1
952 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
953     will be interpreted as a fixed record end marker, or it can be a regex
954     object (e.g. created by C<qr>), in which case it is interpreted as a
955     regular expression.
956 elmex 1.1
957 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
958     undef), then C<qr|\015?\012|> is used (which is good for most internet
959     protocols).
960 elmex 1.1
961 root 1.8 Partial lines at the end of the stream will never be returned, as they are
962     not marked by the end of line marker.
963 elmex 1.1
964 root 1.8 =cut
965 elmex 1.1
966 root 1.28 register_read_type line => sub {
967     my ($self, $cb, $eol) = @_;
968 elmex 1.1
969 root 1.76 if (@_ < 3) {
970     # this is more than twice as fast as the generic code below
971     sub {
972     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
973 elmex 1.1
974 root 1.76 $cb->($_[0], $1, $2);
975     1
976     }
977     } else {
978     $eol = quotemeta $eol unless ref $eol;
979     $eol = qr|^(.*?)($eol)|s;
980    
981     sub {
982     $_[0]{rbuf} =~ s/$eol// or return;
983 elmex 1.1
984 root 1.76 $cb->($_[0], $1, $2);
985     1
986     }
987 root 1.8 }
988 root 1.28 };
989 elmex 1.1
990 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
991 root 1.36
992     Makes a regex match against the regex object C<$accept> and returns
993     everything up to and including the match.
994    
995     Example: read a single line terminated by '\n'.
996    
997     $handle->push_read (regex => qr<\n>, sub { ... });
998    
999     If C<$reject> is given and not undef, then it determines when the data is
1000     to be rejected: it is matched against the data when the C<$accept> regex
1001     does not match and generates an C<EBADMSG> error when it matches. This is
1002     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1003     receive buffer overflow).
1004    
1005     Example: expect a single decimal number followed by whitespace, reject
1006     anything else (not the use of an anchor).
1007    
1008     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1009    
1010     If C<$skip> is given and not C<undef>, then it will be matched against
1011     the receive buffer when neither C<$accept> nor C<$reject> match,
1012     and everything preceding and including the match will be accepted
1013     unconditionally. This is useful to skip large amounts of data that you
1014     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1015     have to start matching from the beginning. This is purely an optimisation
1016     and is usually worth only when you expect more than a few kilobytes.
1017    
1018     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1019     expect the header to be very large (it isn't in practise, but...), we use
1020     a skip regex to skip initial portions. The skip regex is tricky in that
1021     it only accepts something not ending in either \015 or \012, as these are
1022     required for the accept regex.
1023    
1024     $handle->push_read (regex =>
1025     qr<\015\012\015\012>,
1026     undef, # no reject
1027     qr<^.*[^\015\012]>,
1028     sub { ... });
1029    
1030     =cut
1031    
1032     register_read_type regex => sub {
1033     my ($self, $cb, $accept, $reject, $skip) = @_;
1034    
1035     my $data;
1036     my $rbuf = \$self->{rbuf};
1037    
1038     sub {
1039     # accept
1040     if ($$rbuf =~ $accept) {
1041     $data .= substr $$rbuf, 0, $+[0], "";
1042     $cb->($self, $data);
1043     return 1;
1044     }
1045    
1046     # reject
1047     if ($reject && $$rbuf =~ $reject) {
1048 root 1.52 $self->_error (&Errno::EBADMSG);
1049 root 1.36 }
1050    
1051     # skip
1052     if ($skip && $$rbuf =~ $skip) {
1053     $data .= substr $$rbuf, 0, $+[0], "";
1054     }
1055    
1056     ()
1057     }
1058     };
1059    
1060 root 1.61 =item netstring => $cb->($handle, $string)
1061    
1062     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1063    
1064     Throws an error with C<$!> set to EBADMSG on format violations.
1065    
1066     =cut
1067    
1068     register_read_type netstring => sub {
1069     my ($self, $cb) = @_;
1070    
1071     sub {
1072     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1073     if ($_[0]{rbuf} =~ /[^0-9]/) {
1074     $self->_error (&Errno::EBADMSG);
1075     }
1076     return;
1077     }
1078    
1079     my $len = $1;
1080    
1081     $self->unshift_read (chunk => $len, sub {
1082     my $string = $_[1];
1083     $_[0]->unshift_read (chunk => 1, sub {
1084     if ($_[1] eq ",") {
1085     $cb->($_[0], $string);
1086     } else {
1087     $self->_error (&Errno::EBADMSG);
1088     }
1089     });
1090     });
1091    
1092     1
1093     }
1094     };
1095    
1096     =item packstring => $format, $cb->($handle, $string)
1097    
1098     An octet string prefixed with an encoded length. The encoding C<$format>
1099     uses the same format as a Perl C<pack> format, but must specify a single
1100     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1101     optional C<!>, C<< < >> or C<< > >> modifier).
1102    
1103 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1104     EPP uses a prefix of C<N> (4 octtes).
1105 root 1.61
1106     Example: read a block of data prefixed by its length in BER-encoded
1107     format (very efficient).
1108    
1109     $handle->push_read (packstring => "w", sub {
1110     my ($handle, $data) = @_;
1111     });
1112    
1113     =cut
1114    
1115     register_read_type packstring => sub {
1116     my ($self, $cb, $format) = @_;
1117    
1118     sub {
1119     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1120 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1121 root 1.61 or return;
1122    
1123 root 1.77 $format = length pack $format, $len;
1124 root 1.61
1125 root 1.77 # bypass unshift if we already have the remaining chunk
1126     if ($format + $len <= length $_[0]{rbuf}) {
1127     my $data = substr $_[0]{rbuf}, $format, $len;
1128     substr $_[0]{rbuf}, 0, $format + $len, "";
1129     $cb->($_[0], $data);
1130     } else {
1131     # remove prefix
1132     substr $_[0]{rbuf}, 0, $format, "";
1133    
1134     # read remaining chunk
1135     $_[0]->unshift_read (chunk => $len, $cb);
1136     }
1137 root 1.61
1138     1
1139     }
1140     };
1141    
1142 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1143    
1144     Reads a JSON object or array, decodes it and passes it to the callback.
1145    
1146     If a C<json> object was passed to the constructor, then that will be used
1147     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1148    
1149     This read type uses the incremental parser available with JSON version
1150     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1151     dependency on your own: this module will load the JSON module, but
1152     AnyEvent does not depend on it itself.
1153    
1154     Since JSON texts are fully self-delimiting, the C<json> read and write
1155 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1156     the C<json> write type description, above, for an actual example.
1157 root 1.40
1158     =cut
1159    
1160     register_read_type json => sub {
1161 root 1.63 my ($self, $cb) = @_;
1162 root 1.40
1163     require JSON;
1164    
1165     my $data;
1166     my $rbuf = \$self->{rbuf};
1167    
1168 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1169 root 1.40
1170     sub {
1171     my $ref = $json->incr_parse ($self->{rbuf});
1172    
1173     if ($ref) {
1174     $self->{rbuf} = $json->incr_text;
1175     $json->incr_text = "";
1176     $cb->($self, $ref);
1177    
1178     1
1179     } else {
1180     $self->{rbuf} = "";
1181     ()
1182     }
1183     }
1184     };
1185    
1186 root 1.63 =item storable => $cb->($handle, $ref)
1187    
1188     Deserialises a L<Storable> frozen representation as written by the
1189     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1190     data).
1191    
1192     Raises C<EBADMSG> error if the data could not be decoded.
1193    
1194     =cut
1195    
1196     register_read_type storable => sub {
1197     my ($self, $cb) = @_;
1198    
1199     require Storable;
1200    
1201     sub {
1202     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1203 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1204 root 1.63 or return;
1205    
1206 root 1.77 my $format = length pack "w", $len;
1207 root 1.63
1208 root 1.77 # bypass unshift if we already have the remaining chunk
1209     if ($format + $len <= length $_[0]{rbuf}) {
1210     my $data = substr $_[0]{rbuf}, $format, $len;
1211     substr $_[0]{rbuf}, 0, $format + $len, "";
1212     $cb->($_[0], Storable::thaw ($data));
1213     } else {
1214     # remove prefix
1215     substr $_[0]{rbuf}, 0, $format, "";
1216    
1217     # read remaining chunk
1218     $_[0]->unshift_read (chunk => $len, sub {
1219     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1220     $cb->($_[0], $ref);
1221     } else {
1222     $self->_error (&Errno::EBADMSG);
1223     }
1224     });
1225     }
1226    
1227     1
1228 root 1.63 }
1229     };
1230    
1231 root 1.28 =back
1232    
1233 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1234 root 1.30
1235     This function (not method) lets you add your own types to C<push_read>.
1236    
1237     Whenever the given C<type> is used, C<push_read> will invoke the code
1238     reference with the handle object, the callback and the remaining
1239     arguments.
1240    
1241     The code reference is supposed to return a callback (usually a closure)
1242     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1243    
1244     It should invoke the passed callback when it is done reading (remember to
1245 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1246 root 1.30
1247     Note that this is a function, and all types registered this way will be
1248     global, so try to use unique names.
1249    
1250     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1251     search for C<register_read_type>)).
1252    
1253 root 1.10 =item $handle->stop_read
1254    
1255     =item $handle->start_read
1256    
1257 root 1.18 In rare cases you actually do not want to read anything from the
1258 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1259 root 1.22 any queued callbacks will be executed then. To start reading again, call
1260 root 1.10 C<start_read>.
1261    
1262 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1263     you change the C<on_read> callback or push/unshift a read callback, and it
1264     will automatically C<stop_read> for you when neither C<on_read> is set nor
1265     there are any read requests in the queue.
1266    
1267 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1268     half-duplex connections).
1269    
1270 root 1.10 =cut
1271    
1272     sub stop_read {
1273     my ($self) = @_;
1274 elmex 1.1
1275 root 1.93 delete $self->{_rw} unless $self->{tls};
1276 root 1.8 }
1277 elmex 1.1
1278 root 1.10 sub start_read {
1279     my ($self) = @_;
1280    
1281 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1282 root 1.10 Scalar::Util::weaken $self;
1283    
1284 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1285 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1286 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1287 root 1.10
1288     if ($len > 0) {
1289 root 1.44 $self->{_activity} = AnyEvent->now;
1290 root 1.43
1291 root 1.93 if ($self->{tls}) {
1292     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1293 root 1.97
1294 root 1.93 &_dotls ($self);
1295     } else {
1296     $self->_drain_rbuf unless $self->{_in_drain};
1297     }
1298 root 1.10
1299     } elsif (defined $len) {
1300 root 1.38 delete $self->{_rw};
1301     $self->{_eof} = 1;
1302 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1303 root 1.10
1304 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1305 root 1.52 return $self->_error ($!, 1);
1306 root 1.10 }
1307     });
1308     }
1309 elmex 1.1 }
1310    
1311 root 1.97 # poll the write BIO and send the data if applicable
1312 root 1.19 sub _dotls {
1313     my ($self) = @_;
1314    
1315 root 1.97 my $tmp;
1316 root 1.56
1317 root 1.38 if (length $self->{_tls_wbuf}) {
1318 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1319     substr $self->{_tls_wbuf}, 0, $tmp, "";
1320 root 1.22 }
1321 root 1.19 }
1322    
1323 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1324     unless (length $tmp) {
1325 root 1.56 # let's treat SSL-eof as we treat normal EOF
1326 root 1.91 delete $self->{_rw};
1327 root 1.56 $self->{_eof} = 1;
1328 root 1.92 &_freetls;
1329 root 1.56 }
1330 root 1.91
1331 root 1.97 $self->{rbuf} .= $tmp;
1332 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1333 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1334 root 1.23 }
1335    
1336 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1337 root 1.24
1338 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1339     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1340 root 1.52 return $self->_error ($!, 1);
1341 root 1.97 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1342 root 1.52 return $self->_error (&Errno::EIO, 1);
1343 root 1.19 }
1344 root 1.23
1345 root 1.97 # all other errors are fine for our purposes
1346 root 1.19 }
1347 root 1.91
1348 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1349     $self->{wbuf} .= $tmp;
1350 root 1.91 $self->_drain_wbuf;
1351     }
1352 root 1.19 }
1353    
1354 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1355    
1356     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1357     object is created, you can also do that at a later time by calling
1358     C<starttls>.
1359    
1360     The first argument is the same as the C<tls> constructor argument (either
1361     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1362    
1363     The second argument is the optional C<Net::SSLeay::CTX> object that is
1364     used when AnyEvent::Handle has to create its own TLS connection object.
1365    
1366 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1367     call and can be used or changed to your liking. Note that the handshake
1368     might have already started when this function returns.
1369    
1370 root 1.92 If it an error to start a TLS handshake more than once per
1371     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1372    
1373 root 1.25 =cut
1374    
1375 root 1.19 sub starttls {
1376     my ($self, $ssl, $ctx) = @_;
1377    
1378 root 1.94 require Net::SSLeay;
1379    
1380 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1381 root 1.92 if $self->{tls};
1382    
1383 root 1.19 if ($ssl eq "accept") {
1384     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1385     Net::SSLeay::set_accept_state ($ssl);
1386     } elsif ($ssl eq "connect") {
1387     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388     Net::SSLeay::set_connect_state ($ssl);
1389     }
1390    
1391     $self->{tls} = $ssl;
1392    
1393 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1394     # but the openssl maintainers basically said: "trust us, it just works".
1395     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396     # and mismaintained ssleay-module doesn't even offer them).
1397 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1398 root 1.87 #
1399     # in short: this is a mess.
1400     #
1401 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1402 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404     # have identity issues in that area.
1405 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1406 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1408 root 1.21
1409 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 root 1.19
1412 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1413 root 1.19
1414 root 1.93 &_dotls; # need to trigger the initial handshake
1415     $self->start_read; # make sure we actually do read
1416 root 1.19 }
1417    
1418 root 1.25 =item $handle->stoptls
1419    
1420 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1421     sending a close notify to the other side, but since OpenSSL doesn't
1422     support non-blocking shut downs, it is not possible to re-use the stream
1423     afterwards.
1424 root 1.25
1425     =cut
1426    
1427     sub stoptls {
1428     my ($self) = @_;
1429    
1430 root 1.92 if ($self->{tls}) {
1431 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1432 root 1.92
1433     &_dotls;
1434    
1435     # we don't give a shit. no, we do, but we can't. no...
1436     # we, we... have to use openssl :/
1437     &_freetls;
1438     }
1439     }
1440    
1441     sub _freetls {
1442     my ($self) = @_;
1443    
1444     return unless $self->{tls};
1445 root 1.38
1446 root 1.92 Net::SSLeay::free (delete $self->{tls});
1447    
1448 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1449 root 1.25 }
1450    
1451 root 1.19 sub DESTROY {
1452     my $self = shift;
1453    
1454 root 1.92 &_freetls;
1455 root 1.62
1456     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457    
1458     if ($linger && length $self->{wbuf}) {
1459     my $fh = delete $self->{fh};
1460     my $wbuf = delete $self->{wbuf};
1461    
1462     my @linger;
1463    
1464     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1465     my $len = syswrite $fh, $wbuf, length $wbuf;
1466    
1467     if ($len > 0) {
1468     substr $wbuf, 0, $len, "";
1469     } else {
1470     @linger = (); # end
1471     }
1472     });
1473     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1474     @linger = ();
1475     });
1476     }
1477 root 1.19 }
1478    
1479 root 1.99 =item $handle->destroy
1480    
1481 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1482 root 1.99 no further callbacks will be invoked and resources will be freed as much
1483     as possible. You must not call any methods on the object afterwards.
1484    
1485 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1486     object and it will simply shut down. This works in fatal error and EOF
1487     callbacks, as well as code outside. It does I<NOT> work in a read or write
1488     callback, so when you want to destroy the AnyEvent::Handle object from
1489     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1490     that case.
1491    
1492 root 1.99 The handle might still linger in the background and write out remaining
1493     data, as specified by the C<linger> option, however.
1494    
1495     =cut
1496    
1497     sub destroy {
1498     my ($self) = @_;
1499    
1500     $self->DESTROY;
1501     %$self = ();
1502     }
1503    
1504 root 1.19 =item AnyEvent::Handle::TLS_CTX
1505    
1506     This function creates and returns the Net::SSLeay::CTX object used by
1507     default for TLS mode.
1508    
1509     The context is created like this:
1510    
1511     Net::SSLeay::load_error_strings;
1512     Net::SSLeay::SSLeay_add_ssl_algorithms;
1513     Net::SSLeay::randomize;
1514    
1515     my $CTX = Net::SSLeay::CTX_new;
1516    
1517     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1518    
1519     =cut
1520    
1521     our $TLS_CTX;
1522    
1523     sub TLS_CTX() {
1524     $TLS_CTX || do {
1525     require Net::SSLeay;
1526    
1527     Net::SSLeay::load_error_strings ();
1528     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1529     Net::SSLeay::randomize ();
1530    
1531     $TLS_CTX = Net::SSLeay::CTX_new ();
1532    
1533     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1534    
1535     $TLS_CTX
1536     }
1537     }
1538    
1539 elmex 1.1 =back
1540    
1541 root 1.95
1542     =head1 NONFREQUENTLY ASKED QUESTIONS
1543    
1544     =over 4
1545    
1546 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1547     still get further invocations!
1548    
1549     That's because AnyEvent::Handle keeps a reference to itself when handling
1550     read or write callbacks.
1551    
1552     It is only safe to "forget" the reference inside EOF or error callbacks,
1553     from within all other callbacks, you need to explicitly call the C<<
1554     ->destroy >> method.
1555    
1556     =item I get different callback invocations in TLS mode/Why can't I pause
1557     reading?
1558    
1559     Unlike, say, TCP, TLS connections do not consist of two independent
1560     communication channels, one for each direction. Or put differently. The
1561     read and write directions are not independent of each other: you cannot
1562     write data unless you are also prepared to read, and vice versa.
1563    
1564     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1565     callback invocations when you are not expecting any read data - the reason
1566     is that AnyEvent::Handle always reads in TLS mode.
1567    
1568     During the connection, you have to make sure that you always have a
1569     non-empty read-queue, or an C<on_read> watcher. At the end of the
1570     connection (or when you no longer want to use it) you can call the
1571     C<destroy> method.
1572    
1573 root 1.95 =item How do I read data until the other side closes the connection?
1574    
1575 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1576     to achieve this is by setting an C<on_read> callback that does nothing,
1577     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1578     will be in C<$_[0]{rbuf}>:
1579 root 1.95
1580     $handle->on_read (sub { });
1581     $handle->on_eof (undef);
1582     $handle->on_error (sub {
1583     my $data = delete $_[0]{rbuf};
1584     undef $handle;
1585     });
1586    
1587     The reason to use C<on_error> is that TCP connections, due to latencies
1588     and packets loss, might get closed quite violently with an error, when in
1589     fact, all data has been received.
1590    
1591 root 1.101 It is usually better to use acknowledgements when transferring data,
1592 root 1.95 to make sure the other side hasn't just died and you got the data
1593     intact. This is also one reason why so many internet protocols have an
1594     explicit QUIT command.
1595    
1596 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1597     all data has been written?
1598 root 1.95
1599     After writing your last bits of data, set the C<on_drain> callback
1600     and destroy the handle in there - with the default setting of
1601     C<low_water_mark> this will be called precisely when all data has been
1602     written to the socket:
1603    
1604     $handle->push_write (...);
1605     $handle->on_drain (sub {
1606     warn "all data submitted to the kernel\n";
1607     undef $handle;
1608     });
1609    
1610     =back
1611    
1612    
1613 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1614    
1615     In many cases, you might want to subclass AnyEvent::Handle.
1616    
1617     To make this easier, a given version of AnyEvent::Handle uses these
1618     conventions:
1619    
1620     =over 4
1621    
1622     =item * all constructor arguments become object members.
1623    
1624     At least initially, when you pass a C<tls>-argument to the constructor it
1625 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1626 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1627    
1628     =item * other object member names are prefixed with an C<_>.
1629    
1630     All object members not explicitly documented (internal use) are prefixed
1631     with an underscore character, so the remaining non-C<_>-namespace is free
1632     for use for subclasses.
1633    
1634     =item * all members not documented here and not prefixed with an underscore
1635     are free to use in subclasses.
1636    
1637     Of course, new versions of AnyEvent::Handle may introduce more "public"
1638     member variables, but thats just life, at least it is documented.
1639    
1640     =back
1641    
1642 elmex 1.1 =head1 AUTHOR
1643    
1644 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1645 elmex 1.1
1646     =cut
1647    
1648     1; # End of AnyEvent::Handle