ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.116
Committed: Tue Feb 10 14:07:43 2009 UTC (15 years, 3 months ago) by root
Branch: MAIN
Changes since 1.115: +3 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.108 our $VERSION = 4.331;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.40 method or access the C<$handle->{rbuf}> member directly.
133 root 1.8
134     When an EOF condition is detected then AnyEvent::Handle will first try to
135     feed all the remaining data to the queued callbacks and C<on_read> before
136     calling the C<on_eof> callback. If no progress can be made, then a fatal
137     error will be raised (with C<$!> set to C<EPIPE>).
138 elmex 1.1
139 root 1.40 =item on_drain => $cb->($handle)
140 elmex 1.1
141 root 1.8 This sets the callback that is called when the write buffer becomes empty
142     (or when the callback is set and the buffer is empty already).
143 elmex 1.1
144 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
145 elmex 1.2
146 root 1.69 This callback is useful when you don't want to put all of your write data
147     into the queue at once, for example, when you want to write the contents
148     of some file to the socket you might not want to read the whole file into
149     memory and push it into the queue, but instead only read more data from
150     the file when the write queue becomes empty.
151    
152 root 1.43 =item timeout => $fractional_seconds
153    
154     If non-zero, then this enables an "inactivity" timeout: whenever this many
155     seconds pass without a successful read or write on the underlying file
156     handle, the C<on_timeout> callback will be invoked (and if that one is
157 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
158 root 1.43
159     Note that timeout processing is also active when you currently do not have
160     any outstanding read or write requests: If you plan to keep the connection
161     idle then you should disable the timout temporarily or ignore the timeout
162 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
163     restart the timeout.
164 root 1.43
165     Zero (the default) disables this timeout.
166    
167     =item on_timeout => $cb->($handle)
168    
169     Called whenever the inactivity timeout passes. If you return from this
170     callback, then the timeout will be reset as if some activity had happened,
171     so this condition is not fatal in any way.
172    
173 root 1.8 =item rbuf_max => <bytes>
174 elmex 1.2
175 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
176     when the read buffer ever (strictly) exceeds this size. This is useful to
177 root 1.88 avoid some forms of denial-of-service attacks.
178 elmex 1.2
179 root 1.8 For example, a server accepting connections from untrusted sources should
180     be configured to accept only so-and-so much data that it cannot act on
181     (for example, when expecting a line, an attacker could send an unlimited
182     amount of data without a callback ever being called as long as the line
183     isn't finished).
184 elmex 1.2
185 root 1.70 =item autocork => <boolean>
186    
187     When disabled (the default), then C<push_write> will try to immediately
188 root 1.88 write the data to the handle, if possible. This avoids having to register
189     a write watcher and wait for the next event loop iteration, but can
190     be inefficient if you write multiple small chunks (on the wire, this
191     disadvantage is usually avoided by your kernel's nagle algorithm, see
192     C<no_delay>, but this option can save costly syscalls).
193 root 1.70
194     When enabled, then writes will always be queued till the next event loop
195     iteration. This is efficient when you do many small writes per iteration,
196 root 1.88 but less efficient when you do a single write only per iteration (or when
197     the write buffer often is full). It also increases write latency.
198 root 1.70
199     =item no_delay => <boolean>
200    
201     When doing small writes on sockets, your operating system kernel might
202     wait a bit for more data before actually sending it out. This is called
203     the Nagle algorithm, and usually it is beneficial.
204    
205 root 1.88 In some situations you want as low a delay as possible, which can be
206     accomplishd by setting this option to a true value.
207 root 1.70
208 root 1.88 The default is your opertaing system's default behaviour (most likely
209     enabled), this option explicitly enables or disables it, if possible.
210 root 1.70
211 root 1.8 =item read_size => <bytes>
212 elmex 1.2
213 root 1.88 The default read block size (the amount of bytes this module will
214     try to read during each loop iteration, which affects memory
215     requirements). Default: C<8192>.
216 root 1.8
217     =item low_water_mark => <bytes>
218    
219     Sets the amount of bytes (default: C<0>) that make up an "empty" write
220     buffer: If the write reaches this size or gets even samller it is
221     considered empty.
222 elmex 1.2
223 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
224     the write buffer before it is fully drained, but this is a rare case, as
225     the operating system kernel usually buffers data as well, so the default
226     is good in almost all cases.
227    
228 root 1.62 =item linger => <seconds>
229    
230     If non-zero (default: C<3600>), then the destructor of the
231 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
232     write data and will install a watcher that will write this data to the
233     socket. No errors will be reported (this mostly matches how the operating
234     system treats outstanding data at socket close time).
235 root 1.62
236 root 1.88 This will not work for partial TLS data that could not be encoded
237 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
238     help.
239 root 1.62
240 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
241    
242 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
243 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
244     established and will transparently encrypt/decrypt data afterwards.
245 root 1.19
246 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
247 root 1.88 automatically when you try to create a TLS handle): this module doesn't
248     have a dependency on that module, so if your module requires it, you have
249     to add the dependency yourself.
250 root 1.26
251 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
252     C<accept>, and for the TLS client side of a connection, use C<connect>
253     mode.
254 root 1.19
255     You can also provide your own TLS connection object, but you have
256     to make sure that you call either C<Net::SSLeay::set_connect_state>
257     or C<Net::SSLeay::set_accept_state> on it before you pass it to
258     AnyEvent::Handle.
259    
260 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261     passing in the wrong integer will lead to certain crash. This most often
262     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263     segmentation fault.
264    
265 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 root 1.26
267 root 1.19 =item tls_ctx => $ssl_ctx
268    
269 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
270 root 1.19 (unless a connection object was specified directly). If this parameter is
271     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
272    
273 root 1.40 =item json => JSON or JSON::XS object
274    
275     This is the json coder object used by the C<json> read and write types.
276    
277 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
278 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
279     texts.
280 root 1.40
281     Note that you are responsible to depend on the JSON module if you want to
282     use this functionality, as AnyEvent does not have a dependency itself.
283    
284 elmex 1.1 =back
285    
286     =cut
287    
288     sub new {
289 root 1.8 my $class = shift;
290    
291     my $self = bless { @_ }, $class;
292    
293     $self->{fh} or Carp::croak "mandatory argument fh is missing";
294    
295     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
296 elmex 1.1
297 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298     if $self->{tls};
299 root 1.19
300 root 1.44 $self->{_activity} = AnyEvent->now;
301 root 1.43 $self->_timeout;
302 elmex 1.1
303 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
304     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 root 1.10
306 root 1.66 $self->start_read
307 root 1.67 if $self->{on_read};
308 root 1.66
309 root 1.8 $self
310     }
311 elmex 1.2
312 root 1.8 sub _shutdown {
313     my ($self) = @_;
314 elmex 1.2
315 root 1.46 delete $self->{_tw};
316 root 1.38 delete $self->{_rw};
317     delete $self->{_ww};
318 root 1.8 delete $self->{fh};
319 root 1.52
320 root 1.92 &_freetls;
321 root 1.82
322     delete $self->{on_read};
323     delete $self->{_queue};
324 root 1.8 }
325    
326 root 1.52 sub _error {
327     my ($self, $errno, $fatal) = @_;
328 root 1.8
329 root 1.52 $self->_shutdown
330     if $fatal;
331 elmex 1.1
332 root 1.52 $! = $errno;
333 root 1.37
334 root 1.52 if ($self->{on_error}) {
335     $self->{on_error}($self, $fatal);
336 root 1.100 } elsif ($self->{fh}) {
337 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
338     }
339 elmex 1.1 }
340    
341 root 1.8 =item $fh = $handle->fh
342 elmex 1.1
343 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
344 elmex 1.1
345     =cut
346    
347 root 1.38 sub fh { $_[0]{fh} }
348 elmex 1.1
349 root 1.8 =item $handle->on_error ($cb)
350 elmex 1.1
351 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
352 elmex 1.1
353 root 1.8 =cut
354    
355     sub on_error {
356     $_[0]{on_error} = $_[1];
357     }
358    
359     =item $handle->on_eof ($cb)
360    
361     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
362 elmex 1.1
363     =cut
364    
365 root 1.8 sub on_eof {
366     $_[0]{on_eof} = $_[1];
367     }
368    
369 root 1.43 =item $handle->on_timeout ($cb)
370    
371 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
372     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
373     argument and method.
374 root 1.43
375     =cut
376    
377     sub on_timeout {
378     $_[0]{on_timeout} = $_[1];
379     }
380    
381 root 1.70 =item $handle->autocork ($boolean)
382    
383     Enables or disables the current autocork behaviour (see C<autocork>
384 root 1.105 constructor argument). Changes will only take effect on the next write.
385 root 1.70
386     =cut
387    
388 root 1.105 sub autocork {
389     $_[0]{autocork} = $_[1];
390     }
391    
392 root 1.70 =item $handle->no_delay ($boolean)
393    
394     Enables or disables the C<no_delay> setting (see constructor argument of
395     the same name for details).
396    
397     =cut
398    
399     sub no_delay {
400     $_[0]{no_delay} = $_[1];
401    
402     eval {
403     local $SIG{__DIE__};
404     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
405     };
406     }
407    
408 root 1.43 #############################################################################
409    
410     =item $handle->timeout ($seconds)
411    
412     Configures (or disables) the inactivity timeout.
413    
414     =cut
415    
416     sub timeout {
417     my ($self, $timeout) = @_;
418    
419     $self->{timeout} = $timeout;
420     $self->_timeout;
421     }
422    
423     # reset the timeout watcher, as neccessary
424     # also check for time-outs
425     sub _timeout {
426     my ($self) = @_;
427    
428     if ($self->{timeout}) {
429 root 1.44 my $NOW = AnyEvent->now;
430 root 1.43
431     # when would the timeout trigger?
432     my $after = $self->{_activity} + $self->{timeout} - $NOW;
433    
434     # now or in the past already?
435     if ($after <= 0) {
436     $self->{_activity} = $NOW;
437    
438     if ($self->{on_timeout}) {
439 root 1.48 $self->{on_timeout}($self);
440 root 1.43 } else {
441 root 1.52 $self->_error (&Errno::ETIMEDOUT);
442 root 1.43 }
443    
444 root 1.56 # callback could have changed timeout value, optimise
445 root 1.43 return unless $self->{timeout};
446    
447     # calculate new after
448     $after = $self->{timeout};
449     }
450    
451     Scalar::Util::weaken $self;
452 root 1.56 return unless $self; # ->error could have destroyed $self
453 root 1.43
454     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
455     delete $self->{_tw};
456     $self->_timeout;
457     });
458     } else {
459     delete $self->{_tw};
460     }
461     }
462    
463 root 1.9 #############################################################################
464    
465     =back
466    
467     =head2 WRITE QUEUE
468    
469     AnyEvent::Handle manages two queues per handle, one for writing and one
470     for reading.
471    
472     The write queue is very simple: you can add data to its end, and
473     AnyEvent::Handle will automatically try to get rid of it for you.
474    
475 elmex 1.20 When data could be written and the write buffer is shorter then the low
476 root 1.9 water mark, the C<on_drain> callback will be invoked.
477    
478     =over 4
479    
480 root 1.8 =item $handle->on_drain ($cb)
481    
482     Sets the C<on_drain> callback or clears it (see the description of
483     C<on_drain> in the constructor).
484    
485     =cut
486    
487     sub on_drain {
488 elmex 1.1 my ($self, $cb) = @_;
489    
490 root 1.8 $self->{on_drain} = $cb;
491    
492     $cb->($self)
493 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
494 root 1.8 }
495    
496     =item $handle->push_write ($data)
497    
498     Queues the given scalar to be written. You can push as much data as you
499     want (only limited by the available memory), as C<AnyEvent::Handle>
500     buffers it independently of the kernel.
501    
502     =cut
503    
504 root 1.17 sub _drain_wbuf {
505     my ($self) = @_;
506 root 1.8
507 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
508 root 1.35
509 root 1.8 Scalar::Util::weaken $self;
510 root 1.35
511 root 1.8 my $cb = sub {
512     my $len = syswrite $self->{fh}, $self->{wbuf};
513    
514 root 1.29 if ($len >= 0) {
515 root 1.8 substr $self->{wbuf}, 0, $len, "";
516    
517 root 1.44 $self->{_activity} = AnyEvent->now;
518 root 1.43
519 root 1.8 $self->{on_drain}($self)
520 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
521 root 1.8 && $self->{on_drain};
522    
523 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
524 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
525 root 1.52 $self->_error ($!, 1);
526 elmex 1.1 }
527 root 1.8 };
528    
529 root 1.35 # try to write data immediately
530 root 1.70 $cb->() unless $self->{autocork};
531 root 1.8
532 root 1.35 # if still data left in wbuf, we need to poll
533 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
534 root 1.35 if length $self->{wbuf};
535 root 1.8 };
536     }
537    
538 root 1.30 our %WH;
539    
540     sub register_write_type($$) {
541     $WH{$_[0]} = $_[1];
542     }
543    
544 root 1.17 sub push_write {
545     my $self = shift;
546    
547 root 1.29 if (@_ > 1) {
548     my $type = shift;
549    
550     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
551     ->($self, @_);
552     }
553    
554 root 1.93 if ($self->{tls}) {
555     $self->{_tls_wbuf} .= $_[0];
556 root 1.97
557 root 1.93 &_dotls ($self);
558 root 1.17 } else {
559     $self->{wbuf} .= $_[0];
560     $self->_drain_wbuf;
561     }
562     }
563    
564 root 1.29 =item $handle->push_write (type => @args)
565    
566     Instead of formatting your data yourself, you can also let this module do
567     the job by specifying a type and type-specific arguments.
568    
569 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
570     drop by and tell us):
571 root 1.29
572     =over 4
573    
574     =item netstring => $string
575    
576     Formats the given value as netstring
577     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
578    
579     =cut
580    
581     register_write_type netstring => sub {
582     my ($self, $string) = @_;
583    
584 root 1.96 (length $string) . ":$string,"
585 root 1.29 };
586    
587 root 1.61 =item packstring => $format, $data
588    
589     An octet string prefixed with an encoded length. The encoding C<$format>
590     uses the same format as a Perl C<pack> format, but must specify a single
591     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
592     optional C<!>, C<< < >> or C<< > >> modifier).
593    
594     =cut
595    
596     register_write_type packstring => sub {
597     my ($self, $format, $string) = @_;
598    
599 root 1.65 pack "$format/a*", $string
600 root 1.61 };
601    
602 root 1.39 =item json => $array_or_hashref
603    
604 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
605     provide your own JSON object, this means it will be encoded to JSON text
606     in UTF-8.
607    
608     JSON objects (and arrays) are self-delimiting, so you can write JSON at
609     one end of a handle and read them at the other end without using any
610     additional framing.
611    
612 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
613     this module doesn't need delimiters after or between JSON texts to be
614     able to read them, many other languages depend on that.
615    
616     A simple RPC protocol that interoperates easily with others is to send
617     JSON arrays (or objects, although arrays are usually the better choice as
618     they mimic how function argument passing works) and a newline after each
619     JSON text:
620    
621     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
622     $handle->push_write ("\012");
623    
624     An AnyEvent::Handle receiver would simply use the C<json> read type and
625     rely on the fact that the newline will be skipped as leading whitespace:
626    
627     $handle->push_read (json => sub { my $array = $_[1]; ... });
628    
629     Other languages could read single lines terminated by a newline and pass
630     this line into their JSON decoder of choice.
631    
632 root 1.40 =cut
633    
634     register_write_type json => sub {
635     my ($self, $ref) = @_;
636    
637     require JSON;
638    
639     $self->{json} ? $self->{json}->encode ($ref)
640     : JSON::encode_json ($ref)
641     };
642    
643 root 1.63 =item storable => $reference
644    
645     Freezes the given reference using L<Storable> and writes it to the
646     handle. Uses the C<nfreeze> format.
647    
648     =cut
649    
650     register_write_type storable => sub {
651     my ($self, $ref) = @_;
652    
653     require Storable;
654    
655 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
656 root 1.63 };
657    
658 root 1.53 =back
659    
660 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 root 1.30
662     This function (not method) lets you add your own types to C<push_write>.
663     Whenever the given C<type> is used, C<push_write> will invoke the code
664     reference with the handle object and the remaining arguments.
665 root 1.29
666 root 1.30 The code reference is supposed to return a single octet string that will
667     be appended to the write buffer.
668 root 1.29
669 root 1.30 Note that this is a function, and all types registered this way will be
670     global, so try to use unique names.
671 root 1.29
672 root 1.30 =cut
673 root 1.29
674 root 1.8 #############################################################################
675    
676 root 1.9 =back
677    
678     =head2 READ QUEUE
679    
680     AnyEvent::Handle manages two queues per handle, one for writing and one
681     for reading.
682    
683     The read queue is more complex than the write queue. It can be used in two
684     ways, the "simple" way, using only C<on_read> and the "complex" way, using
685     a queue.
686    
687     In the simple case, you just install an C<on_read> callback and whenever
688     new data arrives, it will be called. You can then remove some data (if
689 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
690     leave the data there if you want to accumulate more (e.g. when only a
691     partial message has been received so far).
692 root 1.9
693     In the more complex case, you want to queue multiple callbacks. In this
694     case, AnyEvent::Handle will call the first queued callback each time new
695 root 1.61 data arrives (also the first time it is queued) and removes it when it has
696     done its job (see C<push_read>, below).
697 root 1.9
698     This way you can, for example, push three line-reads, followed by reading
699     a chunk of data, and AnyEvent::Handle will execute them in order.
700    
701     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
702     the specified number of bytes which give an XML datagram.
703    
704     # in the default state, expect some header bytes
705     $handle->on_read (sub {
706     # some data is here, now queue the length-header-read (4 octets)
707 root 1.52 shift->unshift_read (chunk => 4, sub {
708 root 1.9 # header arrived, decode
709     my $len = unpack "N", $_[1];
710    
711     # now read the payload
712 root 1.52 shift->unshift_read (chunk => $len, sub {
713 root 1.9 my $xml = $_[1];
714     # handle xml
715     });
716     });
717     });
718    
719 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
720     and another line or "ERROR" for the first request that is sent, and 64
721     bytes for the second request. Due to the availability of a queue, we can
722     just pipeline sending both requests and manipulate the queue as necessary
723     in the callbacks.
724    
725     When the first callback is called and sees an "OK" response, it will
726     C<unshift> another line-read. This line-read will be queued I<before> the
727     64-byte chunk callback.
728 root 1.9
729 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
730 root 1.9 $handle->push_write ("request 1\015\012");
731    
732     # we expect "ERROR" or "OK" as response, so push a line read
733 root 1.52 $handle->push_read (line => sub {
734 root 1.9 # if we got an "OK", we have to _prepend_ another line,
735     # so it will be read before the second request reads its 64 bytes
736     # which are already in the queue when this callback is called
737     # we don't do this in case we got an error
738     if ($_[1] eq "OK") {
739 root 1.52 $_[0]->unshift_read (line => sub {
740 root 1.9 my $response = $_[1];
741     ...
742     });
743     }
744     });
745    
746 root 1.69 # request two, simply returns 64 octets
747 root 1.9 $handle->push_write ("request 2\015\012");
748    
749     # simply read 64 bytes, always
750 root 1.52 $handle->push_read (chunk => 64, sub {
751 root 1.9 my $response = $_[1];
752     ...
753     });
754    
755     =over 4
756    
757 root 1.10 =cut
758    
759 root 1.8 sub _drain_rbuf {
760     my ($self) = @_;
761 elmex 1.1
762 root 1.59 local $self->{_in_drain} = 1;
763    
764 root 1.17 if (
765     defined $self->{rbuf_max}
766     && $self->{rbuf_max} < length $self->{rbuf}
767     ) {
768 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
769 root 1.17 }
770    
771 root 1.59 while () {
772 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
773 root 1.115
774 root 1.59 my $len = length $self->{rbuf};
775 elmex 1.1
776 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
777 root 1.29 unless ($cb->($self)) {
778 root 1.38 if ($self->{_eof}) {
779 root 1.10 # no progress can be made (not enough data and no data forthcoming)
780 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
781 root 1.10 }
782    
783 root 1.38 unshift @{ $self->{_queue} }, $cb;
784 root 1.55 last;
785 root 1.8 }
786     } elsif ($self->{on_read}) {
787 root 1.61 last unless $len;
788    
789 root 1.8 $self->{on_read}($self);
790    
791     if (
792 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
793     && !@{ $self->{_queue} } # and the queue is still empty
794     && $self->{on_read} # but we still have on_read
795 root 1.8 ) {
796 root 1.55 # no further data will arrive
797     # so no progress can be made
798 root 1.82 $self->_error (&Errno::EPIPE, 1), return
799 root 1.55 if $self->{_eof};
800    
801     last; # more data might arrive
802 elmex 1.1 }
803 root 1.8 } else {
804     # read side becomes idle
805 root 1.93 delete $self->{_rw} unless $self->{tls};
806 root 1.55 last;
807 root 1.8 }
808     }
809    
810 root 1.80 if ($self->{_eof}) {
811     if ($self->{on_eof}) {
812     $self->{on_eof}($self)
813     } else {
814     $self->_error (0, 1);
815     }
816     }
817 root 1.55
818     # may need to restart read watcher
819     unless ($self->{_rw}) {
820     $self->start_read
821     if $self->{on_read} || @{ $self->{_queue} };
822     }
823 elmex 1.1 }
824    
825 root 1.8 =item $handle->on_read ($cb)
826 elmex 1.1
827 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
828     the new callback is C<undef>). See the description of C<on_read> in the
829     constructor.
830 elmex 1.1
831 root 1.8 =cut
832    
833     sub on_read {
834     my ($self, $cb) = @_;
835 elmex 1.1
836 root 1.8 $self->{on_read} = $cb;
837 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
838 elmex 1.1 }
839    
840 root 1.8 =item $handle->rbuf
841    
842     Returns the read buffer (as a modifiable lvalue).
843 elmex 1.1
844 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
845     you want.
846 elmex 1.1
847 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
848     C<push_read> or C<unshift_read> methods are used. The other read methods
849     automatically manage the read buffer.
850 elmex 1.1
851     =cut
852    
853 elmex 1.2 sub rbuf : lvalue {
854 root 1.8 $_[0]{rbuf}
855 elmex 1.2 }
856 elmex 1.1
857 root 1.8 =item $handle->push_read ($cb)
858    
859     =item $handle->unshift_read ($cb)
860    
861     Append the given callback to the end of the queue (C<push_read>) or
862     prepend it (C<unshift_read>).
863    
864     The callback is called each time some additional read data arrives.
865 elmex 1.1
866 elmex 1.20 It must check whether enough data is in the read buffer already.
867 elmex 1.1
868 root 1.8 If not enough data is available, it must return the empty list or a false
869     value, in which case it will be called repeatedly until enough data is
870     available (or an error condition is detected).
871    
872     If enough data was available, then the callback must remove all data it is
873     interested in (which can be none at all) and return a true value. After returning
874     true, it will be removed from the queue.
875 elmex 1.1
876     =cut
877    
878 root 1.30 our %RH;
879    
880     sub register_read_type($$) {
881     $RH{$_[0]} = $_[1];
882     }
883    
884 root 1.8 sub push_read {
885 root 1.28 my $self = shift;
886     my $cb = pop;
887    
888     if (@_) {
889     my $type = shift;
890    
891     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
892     ->($self, $cb, @_);
893     }
894 elmex 1.1
895 root 1.38 push @{ $self->{_queue} }, $cb;
896 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
897 elmex 1.1 }
898    
899 root 1.8 sub unshift_read {
900 root 1.28 my $self = shift;
901     my $cb = pop;
902    
903     if (@_) {
904     my $type = shift;
905    
906     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
907     ->($self, $cb, @_);
908     }
909    
910 root 1.8
911 root 1.38 unshift @{ $self->{_queue} }, $cb;
912 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
913 root 1.8 }
914 elmex 1.1
915 root 1.28 =item $handle->push_read (type => @args, $cb)
916 elmex 1.1
917 root 1.28 =item $handle->unshift_read (type => @args, $cb)
918 elmex 1.1
919 root 1.28 Instead of providing a callback that parses the data itself you can chose
920     between a number of predefined parsing formats, for chunks of data, lines
921     etc.
922 elmex 1.1
923 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
924     drop by and tell us):
925 root 1.28
926     =over 4
927    
928 root 1.40 =item chunk => $octets, $cb->($handle, $data)
929 root 1.28
930     Invoke the callback only once C<$octets> bytes have been read. Pass the
931     data read to the callback. The callback will never be called with less
932     data.
933    
934     Example: read 2 bytes.
935    
936     $handle->push_read (chunk => 2, sub {
937     warn "yay ", unpack "H*", $_[1];
938     });
939 elmex 1.1
940     =cut
941    
942 root 1.28 register_read_type chunk => sub {
943     my ($self, $cb, $len) = @_;
944 elmex 1.1
945 root 1.8 sub {
946     $len <= length $_[0]{rbuf} or return;
947 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
948 root 1.8 1
949     }
950 root 1.28 };
951 root 1.8
952 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
953 elmex 1.1
954 root 1.8 The callback will be called only once a full line (including the end of
955     line marker, C<$eol>) has been read. This line (excluding the end of line
956     marker) will be passed to the callback as second argument (C<$line>), and
957     the end of line marker as the third argument (C<$eol>).
958 elmex 1.1
959 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
960     will be interpreted as a fixed record end marker, or it can be a regex
961     object (e.g. created by C<qr>), in which case it is interpreted as a
962     regular expression.
963 elmex 1.1
964 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
965     undef), then C<qr|\015?\012|> is used (which is good for most internet
966     protocols).
967 elmex 1.1
968 root 1.8 Partial lines at the end of the stream will never be returned, as they are
969     not marked by the end of line marker.
970 elmex 1.1
971 root 1.8 =cut
972 elmex 1.1
973 root 1.28 register_read_type line => sub {
974     my ($self, $cb, $eol) = @_;
975 elmex 1.1
976 root 1.76 if (@_ < 3) {
977     # this is more than twice as fast as the generic code below
978     sub {
979     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
980 elmex 1.1
981 root 1.76 $cb->($_[0], $1, $2);
982     1
983     }
984     } else {
985     $eol = quotemeta $eol unless ref $eol;
986     $eol = qr|^(.*?)($eol)|s;
987    
988     sub {
989     $_[0]{rbuf} =~ s/$eol// or return;
990 elmex 1.1
991 root 1.76 $cb->($_[0], $1, $2);
992     1
993     }
994 root 1.8 }
995 root 1.28 };
996 elmex 1.1
997 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
998 root 1.36
999     Makes a regex match against the regex object C<$accept> and returns
1000     everything up to and including the match.
1001    
1002     Example: read a single line terminated by '\n'.
1003    
1004     $handle->push_read (regex => qr<\n>, sub { ... });
1005    
1006     If C<$reject> is given and not undef, then it determines when the data is
1007     to be rejected: it is matched against the data when the C<$accept> regex
1008     does not match and generates an C<EBADMSG> error when it matches. This is
1009     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1010     receive buffer overflow).
1011    
1012     Example: expect a single decimal number followed by whitespace, reject
1013     anything else (not the use of an anchor).
1014    
1015     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1016    
1017     If C<$skip> is given and not C<undef>, then it will be matched against
1018     the receive buffer when neither C<$accept> nor C<$reject> match,
1019     and everything preceding and including the match will be accepted
1020     unconditionally. This is useful to skip large amounts of data that you
1021     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1022     have to start matching from the beginning. This is purely an optimisation
1023     and is usually worth only when you expect more than a few kilobytes.
1024    
1025     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1026     expect the header to be very large (it isn't in practise, but...), we use
1027     a skip regex to skip initial portions. The skip regex is tricky in that
1028     it only accepts something not ending in either \015 or \012, as these are
1029     required for the accept regex.
1030    
1031     $handle->push_read (regex =>
1032     qr<\015\012\015\012>,
1033     undef, # no reject
1034     qr<^.*[^\015\012]>,
1035     sub { ... });
1036    
1037     =cut
1038    
1039     register_read_type regex => sub {
1040     my ($self, $cb, $accept, $reject, $skip) = @_;
1041    
1042     my $data;
1043     my $rbuf = \$self->{rbuf};
1044    
1045     sub {
1046     # accept
1047     if ($$rbuf =~ $accept) {
1048     $data .= substr $$rbuf, 0, $+[0], "";
1049     $cb->($self, $data);
1050     return 1;
1051     }
1052    
1053     # reject
1054     if ($reject && $$rbuf =~ $reject) {
1055 root 1.52 $self->_error (&Errno::EBADMSG);
1056 root 1.36 }
1057    
1058     # skip
1059     if ($skip && $$rbuf =~ $skip) {
1060     $data .= substr $$rbuf, 0, $+[0], "";
1061     }
1062    
1063     ()
1064     }
1065     };
1066    
1067 root 1.61 =item netstring => $cb->($handle, $string)
1068    
1069     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1070    
1071     Throws an error with C<$!> set to EBADMSG on format violations.
1072    
1073     =cut
1074    
1075     register_read_type netstring => sub {
1076     my ($self, $cb) = @_;
1077    
1078     sub {
1079     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1080     if ($_[0]{rbuf} =~ /[^0-9]/) {
1081     $self->_error (&Errno::EBADMSG);
1082     }
1083     return;
1084     }
1085    
1086     my $len = $1;
1087    
1088     $self->unshift_read (chunk => $len, sub {
1089     my $string = $_[1];
1090     $_[0]->unshift_read (chunk => 1, sub {
1091     if ($_[1] eq ",") {
1092     $cb->($_[0], $string);
1093     } else {
1094     $self->_error (&Errno::EBADMSG);
1095     }
1096     });
1097     });
1098    
1099     1
1100     }
1101     };
1102    
1103     =item packstring => $format, $cb->($handle, $string)
1104    
1105     An octet string prefixed with an encoded length. The encoding C<$format>
1106     uses the same format as a Perl C<pack> format, but must specify a single
1107     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1108     optional C<!>, C<< < >> or C<< > >> modifier).
1109    
1110 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1111     EPP uses a prefix of C<N> (4 octtes).
1112 root 1.61
1113     Example: read a block of data prefixed by its length in BER-encoded
1114     format (very efficient).
1115    
1116     $handle->push_read (packstring => "w", sub {
1117     my ($handle, $data) = @_;
1118     });
1119    
1120     =cut
1121    
1122     register_read_type packstring => sub {
1123     my ($self, $cb, $format) = @_;
1124    
1125     sub {
1126     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1127 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1128 root 1.61 or return;
1129    
1130 root 1.77 $format = length pack $format, $len;
1131 root 1.61
1132 root 1.77 # bypass unshift if we already have the remaining chunk
1133     if ($format + $len <= length $_[0]{rbuf}) {
1134     my $data = substr $_[0]{rbuf}, $format, $len;
1135     substr $_[0]{rbuf}, 0, $format + $len, "";
1136     $cb->($_[0], $data);
1137     } else {
1138     # remove prefix
1139     substr $_[0]{rbuf}, 0, $format, "";
1140    
1141     # read remaining chunk
1142     $_[0]->unshift_read (chunk => $len, $cb);
1143     }
1144 root 1.61
1145     1
1146     }
1147     };
1148    
1149 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1150    
1151 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1152     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1153 root 1.40
1154     If a C<json> object was passed to the constructor, then that will be used
1155     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1156    
1157     This read type uses the incremental parser available with JSON version
1158     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1159     dependency on your own: this module will load the JSON module, but
1160     AnyEvent does not depend on it itself.
1161    
1162     Since JSON texts are fully self-delimiting, the C<json> read and write
1163 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1164     the C<json> write type description, above, for an actual example.
1165 root 1.40
1166     =cut
1167    
1168     register_read_type json => sub {
1169 root 1.63 my ($self, $cb) = @_;
1170 root 1.40
1171     require JSON;
1172    
1173     my $data;
1174     my $rbuf = \$self->{rbuf};
1175    
1176 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1177 root 1.40
1178     sub {
1179 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1180 root 1.110
1181 root 1.113 if ($ref) {
1182     $self->{rbuf} = $json->incr_text;
1183     $json->incr_text = "";
1184     $cb->($self, $ref);
1185 root 1.110
1186     1
1187 root 1.113 } elsif ($@) {
1188 root 1.111 # error case
1189 root 1.110 $json->incr_skip;
1190 root 1.40
1191     $self->{rbuf} = $json->incr_text;
1192     $json->incr_text = "";
1193    
1194 root 1.110 $self->_error (&Errno::EBADMSG);
1195 root 1.114
1196 root 1.113 ()
1197     } else {
1198     $self->{rbuf} = "";
1199 root 1.114
1200 root 1.113 ()
1201     }
1202 root 1.40 }
1203     };
1204    
1205 root 1.63 =item storable => $cb->($handle, $ref)
1206    
1207     Deserialises a L<Storable> frozen representation as written by the
1208     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1209     data).
1210    
1211     Raises C<EBADMSG> error if the data could not be decoded.
1212    
1213     =cut
1214    
1215     register_read_type storable => sub {
1216     my ($self, $cb) = @_;
1217    
1218     require Storable;
1219    
1220     sub {
1221     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1222 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1223 root 1.63 or return;
1224    
1225 root 1.77 my $format = length pack "w", $len;
1226 root 1.63
1227 root 1.77 # bypass unshift if we already have the remaining chunk
1228     if ($format + $len <= length $_[0]{rbuf}) {
1229     my $data = substr $_[0]{rbuf}, $format, $len;
1230     substr $_[0]{rbuf}, 0, $format + $len, "";
1231     $cb->($_[0], Storable::thaw ($data));
1232     } else {
1233     # remove prefix
1234     substr $_[0]{rbuf}, 0, $format, "";
1235    
1236     # read remaining chunk
1237     $_[0]->unshift_read (chunk => $len, sub {
1238     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1239     $cb->($_[0], $ref);
1240     } else {
1241     $self->_error (&Errno::EBADMSG);
1242     }
1243     });
1244     }
1245    
1246     1
1247 root 1.63 }
1248     };
1249    
1250 root 1.28 =back
1251    
1252 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1253 root 1.30
1254     This function (not method) lets you add your own types to C<push_read>.
1255    
1256     Whenever the given C<type> is used, C<push_read> will invoke the code
1257     reference with the handle object, the callback and the remaining
1258     arguments.
1259    
1260     The code reference is supposed to return a callback (usually a closure)
1261     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1262    
1263     It should invoke the passed callback when it is done reading (remember to
1264 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1265 root 1.30
1266     Note that this is a function, and all types registered this way will be
1267     global, so try to use unique names.
1268    
1269     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1270     search for C<register_read_type>)).
1271    
1272 root 1.10 =item $handle->stop_read
1273    
1274     =item $handle->start_read
1275    
1276 root 1.18 In rare cases you actually do not want to read anything from the
1277 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1278 root 1.22 any queued callbacks will be executed then. To start reading again, call
1279 root 1.10 C<start_read>.
1280    
1281 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1282     you change the C<on_read> callback or push/unshift a read callback, and it
1283     will automatically C<stop_read> for you when neither C<on_read> is set nor
1284     there are any read requests in the queue.
1285    
1286 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1287     half-duplex connections).
1288    
1289 root 1.10 =cut
1290    
1291     sub stop_read {
1292     my ($self) = @_;
1293 elmex 1.1
1294 root 1.93 delete $self->{_rw} unless $self->{tls};
1295 root 1.8 }
1296 elmex 1.1
1297 root 1.10 sub start_read {
1298     my ($self) = @_;
1299    
1300 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1301 root 1.10 Scalar::Util::weaken $self;
1302    
1303 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1304 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1305 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1306 root 1.10
1307     if ($len > 0) {
1308 root 1.44 $self->{_activity} = AnyEvent->now;
1309 root 1.43
1310 root 1.93 if ($self->{tls}) {
1311     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1312 root 1.97
1313 root 1.93 &_dotls ($self);
1314     } else {
1315     $self->_drain_rbuf unless $self->{_in_drain};
1316     }
1317 root 1.10
1318     } elsif (defined $len) {
1319 root 1.38 delete $self->{_rw};
1320     $self->{_eof} = 1;
1321 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1322 root 1.10
1323 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1324 root 1.52 return $self->_error ($!, 1);
1325 root 1.10 }
1326     });
1327     }
1328 elmex 1.1 }
1329    
1330 root 1.97 # poll the write BIO and send the data if applicable
1331 root 1.19 sub _dotls {
1332     my ($self) = @_;
1333    
1334 root 1.97 my $tmp;
1335 root 1.56
1336 root 1.38 if (length $self->{_tls_wbuf}) {
1337 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1338     substr $self->{_tls_wbuf}, 0, $tmp, "";
1339 root 1.22 }
1340 root 1.19 }
1341    
1342 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1343     unless (length $tmp) {
1344 root 1.56 # let's treat SSL-eof as we treat normal EOF
1345 root 1.91 delete $self->{_rw};
1346 root 1.56 $self->{_eof} = 1;
1347 root 1.92 &_freetls;
1348 root 1.56 }
1349 root 1.91
1350 root 1.116 $self->{_tls_rbuf} .= $tmp;
1351 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1352 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1353 root 1.23 }
1354    
1355 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1356 root 1.24
1357 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1358     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1359 root 1.52 return $self->_error ($!, 1);
1360 root 1.116 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1361 root 1.52 return $self->_error (&Errno::EIO, 1);
1362 root 1.19 }
1363 root 1.23
1364 root 1.97 # all other errors are fine for our purposes
1365 root 1.19 }
1366 root 1.91
1367 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1368     $self->{wbuf} .= $tmp;
1369 root 1.91 $self->_drain_wbuf;
1370     }
1371 root 1.19 }
1372    
1373 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1374    
1375     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1376     object is created, you can also do that at a later time by calling
1377     C<starttls>.
1378    
1379     The first argument is the same as the C<tls> constructor argument (either
1380     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1381    
1382     The second argument is the optional C<Net::SSLeay::CTX> object that is
1383     used when AnyEvent::Handle has to create its own TLS connection object.
1384    
1385 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1386     call and can be used or changed to your liking. Note that the handshake
1387     might have already started when this function returns.
1388    
1389 root 1.92 If it an error to start a TLS handshake more than once per
1390     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1391    
1392 root 1.25 =cut
1393    
1394 root 1.19 sub starttls {
1395     my ($self, $ssl, $ctx) = @_;
1396    
1397 root 1.94 require Net::SSLeay;
1398    
1399 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1400 root 1.92 if $self->{tls};
1401    
1402 root 1.19 if ($ssl eq "accept") {
1403     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1404     Net::SSLeay::set_accept_state ($ssl);
1405     } elsif ($ssl eq "connect") {
1406     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1407     Net::SSLeay::set_connect_state ($ssl);
1408     }
1409    
1410     $self->{tls} = $ssl;
1411    
1412 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1413     # but the openssl maintainers basically said: "trust us, it just works".
1414     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1415     # and mismaintained ssleay-module doesn't even offer them).
1416 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1417 root 1.87 #
1418     # in short: this is a mess.
1419     #
1420 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1421 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1422 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1423     # have identity issues in that area.
1424 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1425 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1426     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1427 root 1.21
1428 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1429     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1430 root 1.19
1431 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1432 root 1.19
1433 root 1.93 &_dotls; # need to trigger the initial handshake
1434     $self->start_read; # make sure we actually do read
1435 root 1.19 }
1436    
1437 root 1.25 =item $handle->stoptls
1438    
1439 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1440     sending a close notify to the other side, but since OpenSSL doesn't
1441     support non-blocking shut downs, it is not possible to re-use the stream
1442     afterwards.
1443 root 1.25
1444     =cut
1445    
1446     sub stoptls {
1447     my ($self) = @_;
1448    
1449 root 1.92 if ($self->{tls}) {
1450 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1451 root 1.92
1452     &_dotls;
1453    
1454     # we don't give a shit. no, we do, but we can't. no...
1455     # we, we... have to use openssl :/
1456     &_freetls;
1457     }
1458     }
1459    
1460     sub _freetls {
1461     my ($self) = @_;
1462    
1463     return unless $self->{tls};
1464 root 1.38
1465 root 1.92 Net::SSLeay::free (delete $self->{tls});
1466    
1467 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1468 root 1.25 }
1469    
1470 root 1.19 sub DESTROY {
1471     my $self = shift;
1472    
1473 root 1.92 &_freetls;
1474 root 1.62
1475     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1476    
1477     if ($linger && length $self->{wbuf}) {
1478     my $fh = delete $self->{fh};
1479     my $wbuf = delete $self->{wbuf};
1480    
1481     my @linger;
1482    
1483     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1484     my $len = syswrite $fh, $wbuf, length $wbuf;
1485    
1486     if ($len > 0) {
1487     substr $wbuf, 0, $len, "";
1488     } else {
1489     @linger = (); # end
1490     }
1491     });
1492     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1493     @linger = ();
1494     });
1495     }
1496 root 1.19 }
1497    
1498 root 1.99 =item $handle->destroy
1499    
1500 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1501 root 1.99 no further callbacks will be invoked and resources will be freed as much
1502     as possible. You must not call any methods on the object afterwards.
1503    
1504 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1505     object and it will simply shut down. This works in fatal error and EOF
1506     callbacks, as well as code outside. It does I<NOT> work in a read or write
1507     callback, so when you want to destroy the AnyEvent::Handle object from
1508     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1509     that case.
1510    
1511 root 1.99 The handle might still linger in the background and write out remaining
1512     data, as specified by the C<linger> option, however.
1513    
1514     =cut
1515    
1516     sub destroy {
1517     my ($self) = @_;
1518    
1519     $self->DESTROY;
1520     %$self = ();
1521     }
1522    
1523 root 1.19 =item AnyEvent::Handle::TLS_CTX
1524    
1525     This function creates and returns the Net::SSLeay::CTX object used by
1526     default for TLS mode.
1527    
1528     The context is created like this:
1529    
1530     Net::SSLeay::load_error_strings;
1531     Net::SSLeay::SSLeay_add_ssl_algorithms;
1532     Net::SSLeay::randomize;
1533    
1534     my $CTX = Net::SSLeay::CTX_new;
1535    
1536     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1537    
1538     =cut
1539    
1540     our $TLS_CTX;
1541    
1542     sub TLS_CTX() {
1543     $TLS_CTX || do {
1544     require Net::SSLeay;
1545    
1546     Net::SSLeay::load_error_strings ();
1547     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1548     Net::SSLeay::randomize ();
1549    
1550     $TLS_CTX = Net::SSLeay::CTX_new ();
1551    
1552     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1553    
1554     $TLS_CTX
1555     }
1556     }
1557    
1558 elmex 1.1 =back
1559    
1560 root 1.95
1561     =head1 NONFREQUENTLY ASKED QUESTIONS
1562    
1563     =over 4
1564    
1565 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1566     still get further invocations!
1567    
1568     That's because AnyEvent::Handle keeps a reference to itself when handling
1569     read or write callbacks.
1570    
1571     It is only safe to "forget" the reference inside EOF or error callbacks,
1572     from within all other callbacks, you need to explicitly call the C<<
1573     ->destroy >> method.
1574    
1575     =item I get different callback invocations in TLS mode/Why can't I pause
1576     reading?
1577    
1578     Unlike, say, TCP, TLS connections do not consist of two independent
1579     communication channels, one for each direction. Or put differently. The
1580     read and write directions are not independent of each other: you cannot
1581     write data unless you are also prepared to read, and vice versa.
1582    
1583     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1584     callback invocations when you are not expecting any read data - the reason
1585     is that AnyEvent::Handle always reads in TLS mode.
1586    
1587     During the connection, you have to make sure that you always have a
1588     non-empty read-queue, or an C<on_read> watcher. At the end of the
1589     connection (or when you no longer want to use it) you can call the
1590     C<destroy> method.
1591    
1592 root 1.95 =item How do I read data until the other side closes the connection?
1593    
1594 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1595     to achieve this is by setting an C<on_read> callback that does nothing,
1596     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1597     will be in C<$_[0]{rbuf}>:
1598 root 1.95
1599     $handle->on_read (sub { });
1600     $handle->on_eof (undef);
1601     $handle->on_error (sub {
1602     my $data = delete $_[0]{rbuf};
1603     undef $handle;
1604     });
1605    
1606     The reason to use C<on_error> is that TCP connections, due to latencies
1607     and packets loss, might get closed quite violently with an error, when in
1608     fact, all data has been received.
1609    
1610 root 1.101 It is usually better to use acknowledgements when transferring data,
1611 root 1.95 to make sure the other side hasn't just died and you got the data
1612     intact. This is also one reason why so many internet protocols have an
1613     explicit QUIT command.
1614    
1615 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1616     all data has been written?
1617 root 1.95
1618     After writing your last bits of data, set the C<on_drain> callback
1619     and destroy the handle in there - with the default setting of
1620     C<low_water_mark> this will be called precisely when all data has been
1621     written to the socket:
1622    
1623     $handle->push_write (...);
1624     $handle->on_drain (sub {
1625     warn "all data submitted to the kernel\n";
1626     undef $handle;
1627     });
1628    
1629     =back
1630    
1631    
1632 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1633    
1634     In many cases, you might want to subclass AnyEvent::Handle.
1635    
1636     To make this easier, a given version of AnyEvent::Handle uses these
1637     conventions:
1638    
1639     =over 4
1640    
1641     =item * all constructor arguments become object members.
1642    
1643     At least initially, when you pass a C<tls>-argument to the constructor it
1644 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1645 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1646    
1647     =item * other object member names are prefixed with an C<_>.
1648    
1649     All object members not explicitly documented (internal use) are prefixed
1650     with an underscore character, so the remaining non-C<_>-namespace is free
1651     for use for subclasses.
1652    
1653     =item * all members not documented here and not prefixed with an underscore
1654     are free to use in subclasses.
1655    
1656     Of course, new versions of AnyEvent::Handle may introduce more "public"
1657     member variables, but thats just life, at least it is documented.
1658    
1659     =back
1660    
1661 elmex 1.1 =head1 AUTHOR
1662    
1663 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1664 elmex 1.1
1665     =cut
1666    
1667     1; # End of AnyEvent::Handle