ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.123
Committed: Mon Apr 20 14:34:18 2009 UTC (15 years, 1 month ago) by root
Branch: MAIN
CVS Tags: rel-4_352
Changes since 1.122: +1 -1 lines
Log Message:
4.352

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.123 our $VERSION = 4.352;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32 root 1.107 $cv->send;
33 elmex 1.2 },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68     =item B<new (%args)>
69    
70 root 1.8 The constructor supports these arguments (all as key => value pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.8 =item fh => $filehandle [MANDATORY]
75 elmex 1.1
76     The filehandle this L<AnyEvent::Handle> object will operate on.
77    
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.40 =item on_eof => $cb->($handle)
83 root 1.10
84 root 1.74 Set the callback to be called when an end-of-file condition is detected,
85 root 1.52 i.e. in the case of a socket, when the other side has closed the
86     connection cleanly.
87 root 1.8
88 root 1.82 For sockets, this just means that the other side has stopped sending data,
89 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
90 root 1.82 callback and continue writing data, as only the read part has been shut
91     down.
92    
93 root 1.101 While not mandatory, it is I<highly> recommended to set an EOF callback,
94 root 1.16 otherwise you might end up with a closed socket while you are still
95     waiting for data.
96    
97 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
98     set, then a fatal error will be raised with C<$!> set to <0>.
99    
100 root 1.52 =item on_error => $cb->($handle, $fatal)
101 root 1.10
102 root 1.52 This is the error callback, which is called when, well, some error
103     occured, such as not being able to resolve the hostname, failure to
104     connect or a read error.
105    
106     Some errors are fatal (which is indicated by C<$fatal> being true). On
107 root 1.82 fatal errors the handle object will be shut down and will not be usable
108 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
110     (C<EPIPE>) or I/O errors.
111    
112     Non-fatal errors can be retried by simply returning, but it is recommended
113     to simply ignore this parameter and instead abondon the handle object
114     when this callback is invoked. Examples of non-fatal errors are timeouts
115     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 root 1.8
117 root 1.10 On callback entrance, the value of C<$!> contains the operating system
118 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119 root 1.8
120 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
121     you will not be notified of errors otherwise. The default simply calls
122 root 1.52 C<croak>.
123 root 1.8
124 root 1.40 =item on_read => $cb->($handle)
125 root 1.8
126     This sets the default read callback, which is called when data arrives
127 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
128     callback will only be called when at least one octet of data is in the
129     read buffer).
130 root 1.8
131     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132 root 1.117 method or access the C<$handle->{rbuf}> member directly. Note that you
133     must not enlarge or modify the read buffer, you can only remove data at
134     the beginning from it.
135 root 1.8
136     When an EOF condition is detected then AnyEvent::Handle will first try to
137     feed all the remaining data to the queued callbacks and C<on_read> before
138     calling the C<on_eof> callback. If no progress can be made, then a fatal
139     error will be raised (with C<$!> set to C<EPIPE>).
140 elmex 1.1
141 root 1.40 =item on_drain => $cb->($handle)
142 elmex 1.1
143 root 1.8 This sets the callback that is called when the write buffer becomes empty
144     (or when the callback is set and the buffer is empty already).
145 elmex 1.1
146 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
147 elmex 1.2
148 root 1.69 This callback is useful when you don't want to put all of your write data
149     into the queue at once, for example, when you want to write the contents
150     of some file to the socket you might not want to read the whole file into
151     memory and push it into the queue, but instead only read more data from
152     the file when the write queue becomes empty.
153    
154 root 1.43 =item timeout => $fractional_seconds
155    
156     If non-zero, then this enables an "inactivity" timeout: whenever this many
157     seconds pass without a successful read or write on the underlying file
158     handle, the C<on_timeout> callback will be invoked (and if that one is
159 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
160 root 1.43
161     Note that timeout processing is also active when you currently do not have
162     any outstanding read or write requests: If you plan to keep the connection
163     idle then you should disable the timout temporarily or ignore the timeout
164 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
165     restart the timeout.
166 root 1.43
167     Zero (the default) disables this timeout.
168    
169     =item on_timeout => $cb->($handle)
170    
171     Called whenever the inactivity timeout passes. If you return from this
172     callback, then the timeout will be reset as if some activity had happened,
173     so this condition is not fatal in any way.
174    
175 root 1.8 =item rbuf_max => <bytes>
176 elmex 1.2
177 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
178     when the read buffer ever (strictly) exceeds this size. This is useful to
179 root 1.88 avoid some forms of denial-of-service attacks.
180 elmex 1.2
181 root 1.8 For example, a server accepting connections from untrusted sources should
182     be configured to accept only so-and-so much data that it cannot act on
183     (for example, when expecting a line, an attacker could send an unlimited
184     amount of data without a callback ever being called as long as the line
185     isn't finished).
186 elmex 1.2
187 root 1.70 =item autocork => <boolean>
188    
189     When disabled (the default), then C<push_write> will try to immediately
190 root 1.88 write the data to the handle, if possible. This avoids having to register
191     a write watcher and wait for the next event loop iteration, but can
192     be inefficient if you write multiple small chunks (on the wire, this
193     disadvantage is usually avoided by your kernel's nagle algorithm, see
194     C<no_delay>, but this option can save costly syscalls).
195 root 1.70
196     When enabled, then writes will always be queued till the next event loop
197     iteration. This is efficient when you do many small writes per iteration,
198 root 1.88 but less efficient when you do a single write only per iteration (or when
199     the write buffer often is full). It also increases write latency.
200 root 1.70
201     =item no_delay => <boolean>
202    
203     When doing small writes on sockets, your operating system kernel might
204     wait a bit for more data before actually sending it out. This is called
205     the Nagle algorithm, and usually it is beneficial.
206    
207 root 1.88 In some situations you want as low a delay as possible, which can be
208     accomplishd by setting this option to a true value.
209 root 1.70
210 root 1.88 The default is your opertaing system's default behaviour (most likely
211     enabled), this option explicitly enables or disables it, if possible.
212 root 1.70
213 root 1.8 =item read_size => <bytes>
214 elmex 1.2
215 root 1.88 The default read block size (the amount of bytes this module will
216     try to read during each loop iteration, which affects memory
217     requirements). Default: C<8192>.
218 root 1.8
219     =item low_water_mark => <bytes>
220    
221     Sets the amount of bytes (default: C<0>) that make up an "empty" write
222     buffer: If the write reaches this size or gets even samller it is
223     considered empty.
224 elmex 1.2
225 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
226     the write buffer before it is fully drained, but this is a rare case, as
227     the operating system kernel usually buffers data as well, so the default
228     is good in almost all cases.
229    
230 root 1.62 =item linger => <seconds>
231    
232     If non-zero (default: C<3600>), then the destructor of the
233 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
234     write data and will install a watcher that will write this data to the
235     socket. No errors will be reported (this mostly matches how the operating
236     system treats outstanding data at socket close time).
237 root 1.62
238 root 1.88 This will not work for partial TLS data that could not be encoded
239 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
240     help.
241 root 1.62
242 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
243    
244 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
245 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
246     established and will transparently encrypt/decrypt data afterwards.
247 root 1.19
248 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
249 root 1.88 automatically when you try to create a TLS handle): this module doesn't
250     have a dependency on that module, so if your module requires it, you have
251     to add the dependency yourself.
252 root 1.26
253 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
254     C<accept>, and for the TLS client side of a connection, use C<connect>
255     mode.
256 root 1.19
257     You can also provide your own TLS connection object, but you have
258     to make sure that you call either C<Net::SSLeay::set_connect_state>
259     or C<Net::SSLeay::set_accept_state> on it before you pass it to
260     AnyEvent::Handle.
261    
262 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
263     passing in the wrong integer will lead to certain crash. This most often
264     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
265     segmentation fault.
266    
267 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 root 1.26
269 root 1.19 =item tls_ctx => $ssl_ctx
270    
271 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
272 root 1.19 (unless a connection object was specified directly). If this parameter is
273     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
274    
275 root 1.40 =item json => JSON or JSON::XS object
276    
277     This is the json coder object used by the C<json> read and write types.
278    
279 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
280 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
281     texts.
282 root 1.40
283     Note that you are responsible to depend on the JSON module if you want to
284     use this functionality, as AnyEvent does not have a dependency itself.
285    
286 elmex 1.1 =back
287    
288     =cut
289    
290     sub new {
291 root 1.8 my $class = shift;
292    
293     my $self = bless { @_ }, $class;
294    
295     $self->{fh} or Carp::croak "mandatory argument fh is missing";
296    
297     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
298 elmex 1.1
299 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
300     if $self->{tls};
301 root 1.19
302 root 1.44 $self->{_activity} = AnyEvent->now;
303 root 1.43 $self->_timeout;
304 elmex 1.1
305 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
306     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
307 root 1.10
308 root 1.66 $self->start_read
309 root 1.67 if $self->{on_read};
310 root 1.66
311 root 1.8 $self
312     }
313 elmex 1.2
314 root 1.8 sub _shutdown {
315     my ($self) = @_;
316 elmex 1.2
317 root 1.46 delete $self->{_tw};
318 root 1.38 delete $self->{_rw};
319     delete $self->{_ww};
320 root 1.8 delete $self->{fh};
321 root 1.52
322 root 1.92 &_freetls;
323 root 1.82
324     delete $self->{on_read};
325     delete $self->{_queue};
326 root 1.8 }
327    
328 root 1.52 sub _error {
329     my ($self, $errno, $fatal) = @_;
330 root 1.8
331 root 1.52 $self->_shutdown
332     if $fatal;
333 elmex 1.1
334 root 1.52 $! = $errno;
335 root 1.37
336 root 1.52 if ($self->{on_error}) {
337     $self->{on_error}($self, $fatal);
338 root 1.100 } elsif ($self->{fh}) {
339 root 1.52 Carp::croak "AnyEvent::Handle uncaught error: $!";
340     }
341 elmex 1.1 }
342    
343 root 1.8 =item $fh = $handle->fh
344 elmex 1.1
345 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
346 elmex 1.1
347     =cut
348    
349 root 1.38 sub fh { $_[0]{fh} }
350 elmex 1.1
351 root 1.8 =item $handle->on_error ($cb)
352 elmex 1.1
353 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
354 elmex 1.1
355 root 1.8 =cut
356    
357     sub on_error {
358     $_[0]{on_error} = $_[1];
359     }
360    
361     =item $handle->on_eof ($cb)
362    
363     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
364 elmex 1.1
365     =cut
366    
367 root 1.8 sub on_eof {
368     $_[0]{on_eof} = $_[1];
369     }
370    
371 root 1.43 =item $handle->on_timeout ($cb)
372    
373 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
374     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
375     argument and method.
376 root 1.43
377     =cut
378    
379     sub on_timeout {
380     $_[0]{on_timeout} = $_[1];
381     }
382    
383 root 1.70 =item $handle->autocork ($boolean)
384    
385     Enables or disables the current autocork behaviour (see C<autocork>
386 root 1.105 constructor argument). Changes will only take effect on the next write.
387 root 1.70
388     =cut
389    
390 root 1.105 sub autocork {
391     $_[0]{autocork} = $_[1];
392     }
393    
394 root 1.70 =item $handle->no_delay ($boolean)
395    
396     Enables or disables the C<no_delay> setting (see constructor argument of
397     the same name for details).
398    
399     =cut
400    
401     sub no_delay {
402     $_[0]{no_delay} = $_[1];
403    
404     eval {
405     local $SIG{__DIE__};
406     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
407     };
408     }
409    
410 root 1.43 #############################################################################
411    
412     =item $handle->timeout ($seconds)
413    
414     Configures (or disables) the inactivity timeout.
415    
416     =cut
417    
418     sub timeout {
419     my ($self, $timeout) = @_;
420    
421     $self->{timeout} = $timeout;
422     $self->_timeout;
423     }
424    
425     # reset the timeout watcher, as neccessary
426     # also check for time-outs
427     sub _timeout {
428     my ($self) = @_;
429    
430     if ($self->{timeout}) {
431 root 1.44 my $NOW = AnyEvent->now;
432 root 1.43
433     # when would the timeout trigger?
434     my $after = $self->{_activity} + $self->{timeout} - $NOW;
435    
436     # now or in the past already?
437     if ($after <= 0) {
438     $self->{_activity} = $NOW;
439    
440     if ($self->{on_timeout}) {
441 root 1.48 $self->{on_timeout}($self);
442 root 1.43 } else {
443 root 1.52 $self->_error (&Errno::ETIMEDOUT);
444 root 1.43 }
445    
446 root 1.56 # callback could have changed timeout value, optimise
447 root 1.43 return unless $self->{timeout};
448    
449     # calculate new after
450     $after = $self->{timeout};
451     }
452    
453     Scalar::Util::weaken $self;
454 root 1.56 return unless $self; # ->error could have destroyed $self
455 root 1.43
456     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
457     delete $self->{_tw};
458     $self->_timeout;
459     });
460     } else {
461     delete $self->{_tw};
462     }
463     }
464    
465 root 1.9 #############################################################################
466    
467     =back
468    
469     =head2 WRITE QUEUE
470    
471     AnyEvent::Handle manages two queues per handle, one for writing and one
472     for reading.
473    
474     The write queue is very simple: you can add data to its end, and
475     AnyEvent::Handle will automatically try to get rid of it for you.
476    
477 elmex 1.20 When data could be written and the write buffer is shorter then the low
478 root 1.9 water mark, the C<on_drain> callback will be invoked.
479    
480     =over 4
481    
482 root 1.8 =item $handle->on_drain ($cb)
483    
484     Sets the C<on_drain> callback or clears it (see the description of
485     C<on_drain> in the constructor).
486    
487     =cut
488    
489     sub on_drain {
490 elmex 1.1 my ($self, $cb) = @_;
491    
492 root 1.8 $self->{on_drain} = $cb;
493    
494     $cb->($self)
495 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
496 root 1.8 }
497    
498     =item $handle->push_write ($data)
499    
500     Queues the given scalar to be written. You can push as much data as you
501     want (only limited by the available memory), as C<AnyEvent::Handle>
502     buffers it independently of the kernel.
503    
504     =cut
505    
506 root 1.17 sub _drain_wbuf {
507     my ($self) = @_;
508 root 1.8
509 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
510 root 1.35
511 root 1.8 Scalar::Util::weaken $self;
512 root 1.35
513 root 1.8 my $cb = sub {
514     my $len = syswrite $self->{fh}, $self->{wbuf};
515    
516 root 1.29 if ($len >= 0) {
517 root 1.8 substr $self->{wbuf}, 0, $len, "";
518    
519 root 1.44 $self->{_activity} = AnyEvent->now;
520 root 1.43
521 root 1.8 $self->{on_drain}($self)
522 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
523 root 1.8 && $self->{on_drain};
524    
525 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
526 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
527 root 1.52 $self->_error ($!, 1);
528 elmex 1.1 }
529 root 1.8 };
530    
531 root 1.35 # try to write data immediately
532 root 1.70 $cb->() unless $self->{autocork};
533 root 1.8
534 root 1.35 # if still data left in wbuf, we need to poll
535 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
536 root 1.35 if length $self->{wbuf};
537 root 1.8 };
538     }
539    
540 root 1.30 our %WH;
541    
542     sub register_write_type($$) {
543     $WH{$_[0]} = $_[1];
544     }
545    
546 root 1.17 sub push_write {
547     my $self = shift;
548    
549 root 1.29 if (@_ > 1) {
550     my $type = shift;
551    
552     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
553     ->($self, @_);
554     }
555    
556 root 1.93 if ($self->{tls}) {
557     $self->{_tls_wbuf} .= $_[0];
558 root 1.97
559 root 1.93 &_dotls ($self);
560 root 1.17 } else {
561     $self->{wbuf} .= $_[0];
562     $self->_drain_wbuf;
563     }
564     }
565    
566 root 1.29 =item $handle->push_write (type => @args)
567    
568     Instead of formatting your data yourself, you can also let this module do
569     the job by specifying a type and type-specific arguments.
570    
571 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
572     drop by and tell us):
573 root 1.29
574     =over 4
575    
576     =item netstring => $string
577    
578     Formats the given value as netstring
579     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
580    
581     =cut
582    
583     register_write_type netstring => sub {
584     my ($self, $string) = @_;
585    
586 root 1.96 (length $string) . ":$string,"
587 root 1.29 };
588    
589 root 1.61 =item packstring => $format, $data
590    
591     An octet string prefixed with an encoded length. The encoding C<$format>
592     uses the same format as a Perl C<pack> format, but must specify a single
593     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
594     optional C<!>, C<< < >> or C<< > >> modifier).
595    
596     =cut
597    
598     register_write_type packstring => sub {
599     my ($self, $format, $string) = @_;
600    
601 root 1.65 pack "$format/a*", $string
602 root 1.61 };
603    
604 root 1.39 =item json => $array_or_hashref
605    
606 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
607     provide your own JSON object, this means it will be encoded to JSON text
608     in UTF-8.
609    
610     JSON objects (and arrays) are self-delimiting, so you can write JSON at
611     one end of a handle and read them at the other end without using any
612     additional framing.
613    
614 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
615     this module doesn't need delimiters after or between JSON texts to be
616     able to read them, many other languages depend on that.
617    
618     A simple RPC protocol that interoperates easily with others is to send
619     JSON arrays (or objects, although arrays are usually the better choice as
620     they mimic how function argument passing works) and a newline after each
621     JSON text:
622    
623     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
624     $handle->push_write ("\012");
625    
626     An AnyEvent::Handle receiver would simply use the C<json> read type and
627     rely on the fact that the newline will be skipped as leading whitespace:
628    
629     $handle->push_read (json => sub { my $array = $_[1]; ... });
630    
631     Other languages could read single lines terminated by a newline and pass
632     this line into their JSON decoder of choice.
633    
634 root 1.40 =cut
635    
636     register_write_type json => sub {
637     my ($self, $ref) = @_;
638    
639     require JSON;
640    
641     $self->{json} ? $self->{json}->encode ($ref)
642     : JSON::encode_json ($ref)
643     };
644    
645 root 1.63 =item storable => $reference
646    
647     Freezes the given reference using L<Storable> and writes it to the
648     handle. Uses the C<nfreeze> format.
649    
650     =cut
651    
652     register_write_type storable => sub {
653     my ($self, $ref) = @_;
654    
655     require Storable;
656    
657 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
658 root 1.63 };
659    
660 root 1.53 =back
661    
662 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
663 root 1.30
664     This function (not method) lets you add your own types to C<push_write>.
665     Whenever the given C<type> is used, C<push_write> will invoke the code
666     reference with the handle object and the remaining arguments.
667 root 1.29
668 root 1.30 The code reference is supposed to return a single octet string that will
669     be appended to the write buffer.
670 root 1.29
671 root 1.30 Note that this is a function, and all types registered this way will be
672     global, so try to use unique names.
673 root 1.29
674 root 1.30 =cut
675 root 1.29
676 root 1.8 #############################################################################
677    
678 root 1.9 =back
679    
680     =head2 READ QUEUE
681    
682     AnyEvent::Handle manages two queues per handle, one for writing and one
683     for reading.
684    
685     The read queue is more complex than the write queue. It can be used in two
686     ways, the "simple" way, using only C<on_read> and the "complex" way, using
687     a queue.
688    
689     In the simple case, you just install an C<on_read> callback and whenever
690     new data arrives, it will be called. You can then remove some data (if
691 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
692     leave the data there if you want to accumulate more (e.g. when only a
693     partial message has been received so far).
694 root 1.9
695     In the more complex case, you want to queue multiple callbacks. In this
696     case, AnyEvent::Handle will call the first queued callback each time new
697 root 1.61 data arrives (also the first time it is queued) and removes it when it has
698     done its job (see C<push_read>, below).
699 root 1.9
700     This way you can, for example, push three line-reads, followed by reading
701     a chunk of data, and AnyEvent::Handle will execute them in order.
702    
703     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
704     the specified number of bytes which give an XML datagram.
705    
706     # in the default state, expect some header bytes
707     $handle->on_read (sub {
708     # some data is here, now queue the length-header-read (4 octets)
709 root 1.52 shift->unshift_read (chunk => 4, sub {
710 root 1.9 # header arrived, decode
711     my $len = unpack "N", $_[1];
712    
713     # now read the payload
714 root 1.52 shift->unshift_read (chunk => $len, sub {
715 root 1.9 my $xml = $_[1];
716     # handle xml
717     });
718     });
719     });
720    
721 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
722     and another line or "ERROR" for the first request that is sent, and 64
723     bytes for the second request. Due to the availability of a queue, we can
724     just pipeline sending both requests and manipulate the queue as necessary
725     in the callbacks.
726    
727     When the first callback is called and sees an "OK" response, it will
728     C<unshift> another line-read. This line-read will be queued I<before> the
729     64-byte chunk callback.
730 root 1.9
731 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
732 root 1.9 $handle->push_write ("request 1\015\012");
733    
734     # we expect "ERROR" or "OK" as response, so push a line read
735 root 1.52 $handle->push_read (line => sub {
736 root 1.9 # if we got an "OK", we have to _prepend_ another line,
737     # so it will be read before the second request reads its 64 bytes
738     # which are already in the queue when this callback is called
739     # we don't do this in case we got an error
740     if ($_[1] eq "OK") {
741 root 1.52 $_[0]->unshift_read (line => sub {
742 root 1.9 my $response = $_[1];
743     ...
744     });
745     }
746     });
747    
748 root 1.69 # request two, simply returns 64 octets
749 root 1.9 $handle->push_write ("request 2\015\012");
750    
751     # simply read 64 bytes, always
752 root 1.52 $handle->push_read (chunk => 64, sub {
753 root 1.9 my $response = $_[1];
754     ...
755     });
756    
757     =over 4
758    
759 root 1.10 =cut
760    
761 root 1.8 sub _drain_rbuf {
762     my ($self) = @_;
763 elmex 1.1
764 root 1.59 local $self->{_in_drain} = 1;
765    
766 root 1.17 if (
767     defined $self->{rbuf_max}
768     && $self->{rbuf_max} < length $self->{rbuf}
769     ) {
770 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
771 root 1.17 }
772    
773 root 1.59 while () {
774 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
775     # we are draining the buffer, and this can only happen with TLS.
776 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
777 root 1.115
778 root 1.59 my $len = length $self->{rbuf};
779 elmex 1.1
780 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
781 root 1.29 unless ($cb->($self)) {
782 root 1.38 if ($self->{_eof}) {
783 root 1.10 # no progress can be made (not enough data and no data forthcoming)
784 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
785 root 1.10 }
786    
787 root 1.38 unshift @{ $self->{_queue} }, $cb;
788 root 1.55 last;
789 root 1.8 }
790     } elsif ($self->{on_read}) {
791 root 1.61 last unless $len;
792    
793 root 1.8 $self->{on_read}($self);
794    
795     if (
796 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
797     && !@{ $self->{_queue} } # and the queue is still empty
798     && $self->{on_read} # but we still have on_read
799 root 1.8 ) {
800 root 1.55 # no further data will arrive
801     # so no progress can be made
802 root 1.82 $self->_error (&Errno::EPIPE, 1), return
803 root 1.55 if $self->{_eof};
804    
805     last; # more data might arrive
806 elmex 1.1 }
807 root 1.8 } else {
808     # read side becomes idle
809 root 1.93 delete $self->{_rw} unless $self->{tls};
810 root 1.55 last;
811 root 1.8 }
812     }
813    
814 root 1.80 if ($self->{_eof}) {
815     if ($self->{on_eof}) {
816     $self->{on_eof}($self)
817     } else {
818     $self->_error (0, 1);
819     }
820     }
821 root 1.55
822     # may need to restart read watcher
823     unless ($self->{_rw}) {
824     $self->start_read
825     if $self->{on_read} || @{ $self->{_queue} };
826     }
827 elmex 1.1 }
828    
829 root 1.8 =item $handle->on_read ($cb)
830 elmex 1.1
831 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
832     the new callback is C<undef>). See the description of C<on_read> in the
833     constructor.
834 elmex 1.1
835 root 1.8 =cut
836    
837     sub on_read {
838     my ($self, $cb) = @_;
839 elmex 1.1
840 root 1.8 $self->{on_read} = $cb;
841 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
842 elmex 1.1 }
843    
844 root 1.8 =item $handle->rbuf
845    
846     Returns the read buffer (as a modifiable lvalue).
847 elmex 1.1
848 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
849     member, if you want. However, the only operation allowed on the
850     read buffer (apart from looking at it) is removing data from its
851     beginning. Otherwise modifying or appending to it is not allowed and will
852     lead to hard-to-track-down bugs.
853 elmex 1.1
854 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
855     C<push_read> or C<unshift_read> methods are used. The other read methods
856     automatically manage the read buffer.
857 elmex 1.1
858     =cut
859    
860 elmex 1.2 sub rbuf : lvalue {
861 root 1.8 $_[0]{rbuf}
862 elmex 1.2 }
863 elmex 1.1
864 root 1.8 =item $handle->push_read ($cb)
865    
866     =item $handle->unshift_read ($cb)
867    
868     Append the given callback to the end of the queue (C<push_read>) or
869     prepend it (C<unshift_read>).
870    
871     The callback is called each time some additional read data arrives.
872 elmex 1.1
873 elmex 1.20 It must check whether enough data is in the read buffer already.
874 elmex 1.1
875 root 1.8 If not enough data is available, it must return the empty list or a false
876     value, in which case it will be called repeatedly until enough data is
877     available (or an error condition is detected).
878    
879     If enough data was available, then the callback must remove all data it is
880     interested in (which can be none at all) and return a true value. After returning
881     true, it will be removed from the queue.
882 elmex 1.1
883     =cut
884    
885 root 1.30 our %RH;
886    
887     sub register_read_type($$) {
888     $RH{$_[0]} = $_[1];
889     }
890    
891 root 1.8 sub push_read {
892 root 1.28 my $self = shift;
893     my $cb = pop;
894    
895     if (@_) {
896     my $type = shift;
897    
898     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
899     ->($self, $cb, @_);
900     }
901 elmex 1.1
902 root 1.38 push @{ $self->{_queue} }, $cb;
903 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
904 elmex 1.1 }
905    
906 root 1.8 sub unshift_read {
907 root 1.28 my $self = shift;
908     my $cb = pop;
909    
910     if (@_) {
911     my $type = shift;
912    
913     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
914     ->($self, $cb, @_);
915     }
916    
917 root 1.8
918 root 1.38 unshift @{ $self->{_queue} }, $cb;
919 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
920 root 1.8 }
921 elmex 1.1
922 root 1.28 =item $handle->push_read (type => @args, $cb)
923 elmex 1.1
924 root 1.28 =item $handle->unshift_read (type => @args, $cb)
925 elmex 1.1
926 root 1.28 Instead of providing a callback that parses the data itself you can chose
927     between a number of predefined parsing formats, for chunks of data, lines
928     etc.
929 elmex 1.1
930 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
931     drop by and tell us):
932 root 1.28
933     =over 4
934    
935 root 1.40 =item chunk => $octets, $cb->($handle, $data)
936 root 1.28
937     Invoke the callback only once C<$octets> bytes have been read. Pass the
938     data read to the callback. The callback will never be called with less
939     data.
940    
941     Example: read 2 bytes.
942    
943     $handle->push_read (chunk => 2, sub {
944     warn "yay ", unpack "H*", $_[1];
945     });
946 elmex 1.1
947     =cut
948    
949 root 1.28 register_read_type chunk => sub {
950     my ($self, $cb, $len) = @_;
951 elmex 1.1
952 root 1.8 sub {
953     $len <= length $_[0]{rbuf} or return;
954 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
955 root 1.8 1
956     }
957 root 1.28 };
958 root 1.8
959 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
960 elmex 1.1
961 root 1.8 The callback will be called only once a full line (including the end of
962     line marker, C<$eol>) has been read. This line (excluding the end of line
963     marker) will be passed to the callback as second argument (C<$line>), and
964     the end of line marker as the third argument (C<$eol>).
965 elmex 1.1
966 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
967     will be interpreted as a fixed record end marker, or it can be a regex
968     object (e.g. created by C<qr>), in which case it is interpreted as a
969     regular expression.
970 elmex 1.1
971 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
972     undef), then C<qr|\015?\012|> is used (which is good for most internet
973     protocols).
974 elmex 1.1
975 root 1.8 Partial lines at the end of the stream will never be returned, as they are
976     not marked by the end of line marker.
977 elmex 1.1
978 root 1.8 =cut
979 elmex 1.1
980 root 1.28 register_read_type line => sub {
981     my ($self, $cb, $eol) = @_;
982 elmex 1.1
983 root 1.76 if (@_ < 3) {
984     # this is more than twice as fast as the generic code below
985     sub {
986     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
987 elmex 1.1
988 root 1.76 $cb->($_[0], $1, $2);
989     1
990     }
991     } else {
992     $eol = quotemeta $eol unless ref $eol;
993     $eol = qr|^(.*?)($eol)|s;
994    
995     sub {
996     $_[0]{rbuf} =~ s/$eol// or return;
997 elmex 1.1
998 root 1.76 $cb->($_[0], $1, $2);
999     1
1000     }
1001 root 1.8 }
1002 root 1.28 };
1003 elmex 1.1
1004 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1005 root 1.36
1006     Makes a regex match against the regex object C<$accept> and returns
1007     everything up to and including the match.
1008    
1009     Example: read a single line terminated by '\n'.
1010    
1011     $handle->push_read (regex => qr<\n>, sub { ... });
1012    
1013     If C<$reject> is given and not undef, then it determines when the data is
1014     to be rejected: it is matched against the data when the C<$accept> regex
1015     does not match and generates an C<EBADMSG> error when it matches. This is
1016     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1017     receive buffer overflow).
1018    
1019     Example: expect a single decimal number followed by whitespace, reject
1020     anything else (not the use of an anchor).
1021    
1022     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1023    
1024     If C<$skip> is given and not C<undef>, then it will be matched against
1025     the receive buffer when neither C<$accept> nor C<$reject> match,
1026     and everything preceding and including the match will be accepted
1027     unconditionally. This is useful to skip large amounts of data that you
1028     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1029     have to start matching from the beginning. This is purely an optimisation
1030     and is usually worth only when you expect more than a few kilobytes.
1031    
1032     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1033     expect the header to be very large (it isn't in practise, but...), we use
1034     a skip regex to skip initial portions. The skip regex is tricky in that
1035     it only accepts something not ending in either \015 or \012, as these are
1036     required for the accept regex.
1037    
1038     $handle->push_read (regex =>
1039     qr<\015\012\015\012>,
1040     undef, # no reject
1041     qr<^.*[^\015\012]>,
1042     sub { ... });
1043    
1044     =cut
1045    
1046     register_read_type regex => sub {
1047     my ($self, $cb, $accept, $reject, $skip) = @_;
1048    
1049     my $data;
1050     my $rbuf = \$self->{rbuf};
1051    
1052     sub {
1053     # accept
1054     if ($$rbuf =~ $accept) {
1055     $data .= substr $$rbuf, 0, $+[0], "";
1056     $cb->($self, $data);
1057     return 1;
1058     }
1059    
1060     # reject
1061     if ($reject && $$rbuf =~ $reject) {
1062 root 1.52 $self->_error (&Errno::EBADMSG);
1063 root 1.36 }
1064    
1065     # skip
1066     if ($skip && $$rbuf =~ $skip) {
1067     $data .= substr $$rbuf, 0, $+[0], "";
1068     }
1069    
1070     ()
1071     }
1072     };
1073    
1074 root 1.61 =item netstring => $cb->($handle, $string)
1075    
1076     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1077    
1078     Throws an error with C<$!> set to EBADMSG on format violations.
1079    
1080     =cut
1081    
1082     register_read_type netstring => sub {
1083     my ($self, $cb) = @_;
1084    
1085     sub {
1086     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1087     if ($_[0]{rbuf} =~ /[^0-9]/) {
1088     $self->_error (&Errno::EBADMSG);
1089     }
1090     return;
1091     }
1092    
1093     my $len = $1;
1094    
1095     $self->unshift_read (chunk => $len, sub {
1096     my $string = $_[1];
1097     $_[0]->unshift_read (chunk => 1, sub {
1098     if ($_[1] eq ",") {
1099     $cb->($_[0], $string);
1100     } else {
1101     $self->_error (&Errno::EBADMSG);
1102     }
1103     });
1104     });
1105    
1106     1
1107     }
1108     };
1109    
1110     =item packstring => $format, $cb->($handle, $string)
1111    
1112     An octet string prefixed with an encoded length. The encoding C<$format>
1113     uses the same format as a Perl C<pack> format, but must specify a single
1114     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1115     optional C<!>, C<< < >> or C<< > >> modifier).
1116    
1117 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1118     EPP uses a prefix of C<N> (4 octtes).
1119 root 1.61
1120     Example: read a block of data prefixed by its length in BER-encoded
1121     format (very efficient).
1122    
1123     $handle->push_read (packstring => "w", sub {
1124     my ($handle, $data) = @_;
1125     });
1126    
1127     =cut
1128    
1129     register_read_type packstring => sub {
1130     my ($self, $cb, $format) = @_;
1131    
1132     sub {
1133     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1134 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1135 root 1.61 or return;
1136    
1137 root 1.77 $format = length pack $format, $len;
1138 root 1.61
1139 root 1.77 # bypass unshift if we already have the remaining chunk
1140     if ($format + $len <= length $_[0]{rbuf}) {
1141     my $data = substr $_[0]{rbuf}, $format, $len;
1142     substr $_[0]{rbuf}, 0, $format + $len, "";
1143     $cb->($_[0], $data);
1144     } else {
1145     # remove prefix
1146     substr $_[0]{rbuf}, 0, $format, "";
1147    
1148     # read remaining chunk
1149     $_[0]->unshift_read (chunk => $len, $cb);
1150     }
1151 root 1.61
1152     1
1153     }
1154     };
1155    
1156 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1157    
1158 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1159     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1160 root 1.40
1161     If a C<json> object was passed to the constructor, then that will be used
1162     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1163    
1164     This read type uses the incremental parser available with JSON version
1165     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1166     dependency on your own: this module will load the JSON module, but
1167     AnyEvent does not depend on it itself.
1168    
1169     Since JSON texts are fully self-delimiting, the C<json> read and write
1170 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1171     the C<json> write type description, above, for an actual example.
1172 root 1.40
1173     =cut
1174    
1175     register_read_type json => sub {
1176 root 1.63 my ($self, $cb) = @_;
1177 root 1.40
1178     require JSON;
1179    
1180     my $data;
1181     my $rbuf = \$self->{rbuf};
1182    
1183 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1184 root 1.40
1185     sub {
1186 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1187 root 1.110
1188 root 1.113 if ($ref) {
1189     $self->{rbuf} = $json->incr_text;
1190     $json->incr_text = "";
1191     $cb->($self, $ref);
1192 root 1.110
1193     1
1194 root 1.113 } elsif ($@) {
1195 root 1.111 # error case
1196 root 1.110 $json->incr_skip;
1197 root 1.40
1198     $self->{rbuf} = $json->incr_text;
1199     $json->incr_text = "";
1200    
1201 root 1.110 $self->_error (&Errno::EBADMSG);
1202 root 1.114
1203 root 1.113 ()
1204     } else {
1205     $self->{rbuf} = "";
1206 root 1.114
1207 root 1.113 ()
1208     }
1209 root 1.40 }
1210     };
1211    
1212 root 1.63 =item storable => $cb->($handle, $ref)
1213    
1214     Deserialises a L<Storable> frozen representation as written by the
1215     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1216     data).
1217    
1218     Raises C<EBADMSG> error if the data could not be decoded.
1219    
1220     =cut
1221    
1222     register_read_type storable => sub {
1223     my ($self, $cb) = @_;
1224    
1225     require Storable;
1226    
1227     sub {
1228     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1229 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1230 root 1.63 or return;
1231    
1232 root 1.77 my $format = length pack "w", $len;
1233 root 1.63
1234 root 1.77 # bypass unshift if we already have the remaining chunk
1235     if ($format + $len <= length $_[0]{rbuf}) {
1236     my $data = substr $_[0]{rbuf}, $format, $len;
1237     substr $_[0]{rbuf}, 0, $format + $len, "";
1238     $cb->($_[0], Storable::thaw ($data));
1239     } else {
1240     # remove prefix
1241     substr $_[0]{rbuf}, 0, $format, "";
1242    
1243     # read remaining chunk
1244     $_[0]->unshift_read (chunk => $len, sub {
1245     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1246     $cb->($_[0], $ref);
1247     } else {
1248     $self->_error (&Errno::EBADMSG);
1249     }
1250     });
1251     }
1252    
1253     1
1254 root 1.63 }
1255     };
1256    
1257 root 1.28 =back
1258    
1259 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1260 root 1.30
1261     This function (not method) lets you add your own types to C<push_read>.
1262    
1263     Whenever the given C<type> is used, C<push_read> will invoke the code
1264     reference with the handle object, the callback and the remaining
1265     arguments.
1266    
1267     The code reference is supposed to return a callback (usually a closure)
1268     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1269    
1270     It should invoke the passed callback when it is done reading (remember to
1271 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1272 root 1.30
1273     Note that this is a function, and all types registered this way will be
1274     global, so try to use unique names.
1275    
1276     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1277     search for C<register_read_type>)).
1278    
1279 root 1.10 =item $handle->stop_read
1280    
1281     =item $handle->start_read
1282    
1283 root 1.18 In rare cases you actually do not want to read anything from the
1284 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1285 root 1.22 any queued callbacks will be executed then. To start reading again, call
1286 root 1.10 C<start_read>.
1287    
1288 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1289     you change the C<on_read> callback or push/unshift a read callback, and it
1290     will automatically C<stop_read> for you when neither C<on_read> is set nor
1291     there are any read requests in the queue.
1292    
1293 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1294     half-duplex connections).
1295    
1296 root 1.10 =cut
1297    
1298     sub stop_read {
1299     my ($self) = @_;
1300 elmex 1.1
1301 root 1.93 delete $self->{_rw} unless $self->{tls};
1302 root 1.8 }
1303 elmex 1.1
1304 root 1.10 sub start_read {
1305     my ($self) = @_;
1306    
1307 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1308 root 1.10 Scalar::Util::weaken $self;
1309    
1310 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1311 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1312 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1313 root 1.10
1314     if ($len > 0) {
1315 root 1.44 $self->{_activity} = AnyEvent->now;
1316 root 1.43
1317 root 1.93 if ($self->{tls}) {
1318     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1319 root 1.97
1320 root 1.93 &_dotls ($self);
1321     } else {
1322     $self->_drain_rbuf unless $self->{_in_drain};
1323     }
1324 root 1.10
1325     } elsif (defined $len) {
1326 root 1.38 delete $self->{_rw};
1327     $self->{_eof} = 1;
1328 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1329 root 1.10
1330 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1331 root 1.52 return $self->_error ($!, 1);
1332 root 1.10 }
1333     });
1334     }
1335 elmex 1.1 }
1336    
1337 root 1.97 # poll the write BIO and send the data if applicable
1338 root 1.19 sub _dotls {
1339     my ($self) = @_;
1340    
1341 root 1.97 my $tmp;
1342 root 1.56
1343 root 1.38 if (length $self->{_tls_wbuf}) {
1344 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1345     substr $self->{_tls_wbuf}, 0, $tmp, "";
1346 root 1.22 }
1347 root 1.19 }
1348    
1349 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1350     unless (length $tmp) {
1351 root 1.56 # let's treat SSL-eof as we treat normal EOF
1352 root 1.91 delete $self->{_rw};
1353 root 1.56 $self->{_eof} = 1;
1354 root 1.92 &_freetls;
1355 root 1.56 }
1356 root 1.91
1357 root 1.116 $self->{_tls_rbuf} .= $tmp;
1358 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1359 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1360 root 1.23 }
1361    
1362 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1363 root 1.24
1364 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1365     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1366 root 1.52 return $self->_error ($!, 1);
1367 root 1.116 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1368 root 1.52 return $self->_error (&Errno::EIO, 1);
1369 root 1.19 }
1370 root 1.23
1371 root 1.97 # all other errors are fine for our purposes
1372 root 1.19 }
1373 root 1.91
1374 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1375     $self->{wbuf} .= $tmp;
1376 root 1.91 $self->_drain_wbuf;
1377     }
1378 root 1.19 }
1379    
1380 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1381    
1382     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1383     object is created, you can also do that at a later time by calling
1384     C<starttls>.
1385    
1386     The first argument is the same as the C<tls> constructor argument (either
1387     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1388    
1389     The second argument is the optional C<Net::SSLeay::CTX> object that is
1390     used when AnyEvent::Handle has to create its own TLS connection object.
1391    
1392 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1393     call and can be used or changed to your liking. Note that the handshake
1394     might have already started when this function returns.
1395    
1396 root 1.92 If it an error to start a TLS handshake more than once per
1397     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1398    
1399 root 1.25 =cut
1400    
1401 root 1.19 sub starttls {
1402     my ($self, $ssl, $ctx) = @_;
1403    
1404 root 1.94 require Net::SSLeay;
1405    
1406 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1407 root 1.92 if $self->{tls};
1408    
1409 root 1.19 if ($ssl eq "accept") {
1410     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1411     Net::SSLeay::set_accept_state ($ssl);
1412     } elsif ($ssl eq "connect") {
1413     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1414     Net::SSLeay::set_connect_state ($ssl);
1415     }
1416    
1417     $self->{tls} = $ssl;
1418    
1419 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1420     # but the openssl maintainers basically said: "trust us, it just works".
1421     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1422     # and mismaintained ssleay-module doesn't even offer them).
1423 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1424 root 1.87 #
1425     # in short: this is a mess.
1426     #
1427 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1428 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1429 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1430     # have identity issues in that area.
1431 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1432 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1433     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1434 root 1.21
1435 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1436     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1437 root 1.19
1438 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1439 root 1.19
1440 root 1.93 &_dotls; # need to trigger the initial handshake
1441     $self->start_read; # make sure we actually do read
1442 root 1.19 }
1443    
1444 root 1.25 =item $handle->stoptls
1445    
1446 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1447     sending a close notify to the other side, but since OpenSSL doesn't
1448     support non-blocking shut downs, it is not possible to re-use the stream
1449     afterwards.
1450 root 1.25
1451     =cut
1452    
1453     sub stoptls {
1454     my ($self) = @_;
1455    
1456 root 1.92 if ($self->{tls}) {
1457 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1458 root 1.92
1459     &_dotls;
1460    
1461     # we don't give a shit. no, we do, but we can't. no...
1462     # we, we... have to use openssl :/
1463     &_freetls;
1464     }
1465     }
1466    
1467     sub _freetls {
1468     my ($self) = @_;
1469    
1470     return unless $self->{tls};
1471 root 1.38
1472 root 1.92 Net::SSLeay::free (delete $self->{tls});
1473    
1474 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1475 root 1.25 }
1476    
1477 root 1.19 sub DESTROY {
1478 root 1.120 my ($self) = @_;
1479 root 1.19
1480 root 1.92 &_freetls;
1481 root 1.62
1482     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1483    
1484     if ($linger && length $self->{wbuf}) {
1485     my $fh = delete $self->{fh};
1486     my $wbuf = delete $self->{wbuf};
1487    
1488     my @linger;
1489    
1490     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1491     my $len = syswrite $fh, $wbuf, length $wbuf;
1492    
1493     if ($len > 0) {
1494     substr $wbuf, 0, $len, "";
1495     } else {
1496     @linger = (); # end
1497     }
1498     });
1499     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1500     @linger = ();
1501     });
1502     }
1503 root 1.19 }
1504    
1505 root 1.99 =item $handle->destroy
1506    
1507 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1508 root 1.99 no further callbacks will be invoked and resources will be freed as much
1509     as possible. You must not call any methods on the object afterwards.
1510    
1511 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1512     object and it will simply shut down. This works in fatal error and EOF
1513     callbacks, as well as code outside. It does I<NOT> work in a read or write
1514     callback, so when you want to destroy the AnyEvent::Handle object from
1515     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1516     that case.
1517    
1518 root 1.99 The handle might still linger in the background and write out remaining
1519     data, as specified by the C<linger> option, however.
1520    
1521     =cut
1522    
1523     sub destroy {
1524     my ($self) = @_;
1525    
1526     $self->DESTROY;
1527     %$self = ();
1528     }
1529    
1530 root 1.19 =item AnyEvent::Handle::TLS_CTX
1531    
1532     This function creates and returns the Net::SSLeay::CTX object used by
1533     default for TLS mode.
1534    
1535     The context is created like this:
1536    
1537     Net::SSLeay::load_error_strings;
1538     Net::SSLeay::SSLeay_add_ssl_algorithms;
1539     Net::SSLeay::randomize;
1540    
1541     my $CTX = Net::SSLeay::CTX_new;
1542    
1543     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1544    
1545     =cut
1546    
1547     our $TLS_CTX;
1548    
1549     sub TLS_CTX() {
1550     $TLS_CTX || do {
1551     require Net::SSLeay;
1552    
1553     Net::SSLeay::load_error_strings ();
1554     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1555     Net::SSLeay::randomize ();
1556    
1557     $TLS_CTX = Net::SSLeay::CTX_new ();
1558    
1559     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1560    
1561     $TLS_CTX
1562     }
1563     }
1564    
1565 elmex 1.1 =back
1566    
1567 root 1.95
1568     =head1 NONFREQUENTLY ASKED QUESTIONS
1569    
1570     =over 4
1571    
1572 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1573     still get further invocations!
1574    
1575     That's because AnyEvent::Handle keeps a reference to itself when handling
1576     read or write callbacks.
1577    
1578     It is only safe to "forget" the reference inside EOF or error callbacks,
1579     from within all other callbacks, you need to explicitly call the C<<
1580     ->destroy >> method.
1581    
1582     =item I get different callback invocations in TLS mode/Why can't I pause
1583     reading?
1584    
1585     Unlike, say, TCP, TLS connections do not consist of two independent
1586     communication channels, one for each direction. Or put differently. The
1587     read and write directions are not independent of each other: you cannot
1588     write data unless you are also prepared to read, and vice versa.
1589    
1590     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1591     callback invocations when you are not expecting any read data - the reason
1592     is that AnyEvent::Handle always reads in TLS mode.
1593    
1594     During the connection, you have to make sure that you always have a
1595     non-empty read-queue, or an C<on_read> watcher. At the end of the
1596     connection (or when you no longer want to use it) you can call the
1597     C<destroy> method.
1598    
1599 root 1.95 =item How do I read data until the other side closes the connection?
1600    
1601 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1602     to achieve this is by setting an C<on_read> callback that does nothing,
1603     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1604     will be in C<$_[0]{rbuf}>:
1605 root 1.95
1606     $handle->on_read (sub { });
1607     $handle->on_eof (undef);
1608     $handle->on_error (sub {
1609     my $data = delete $_[0]{rbuf};
1610     undef $handle;
1611     });
1612    
1613     The reason to use C<on_error> is that TCP connections, due to latencies
1614     and packets loss, might get closed quite violently with an error, when in
1615     fact, all data has been received.
1616    
1617 root 1.101 It is usually better to use acknowledgements when transferring data,
1618 root 1.95 to make sure the other side hasn't just died and you got the data
1619     intact. This is also one reason why so many internet protocols have an
1620     explicit QUIT command.
1621    
1622 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1623     all data has been written?
1624 root 1.95
1625     After writing your last bits of data, set the C<on_drain> callback
1626     and destroy the handle in there - with the default setting of
1627     C<low_water_mark> this will be called precisely when all data has been
1628     written to the socket:
1629    
1630     $handle->push_write (...);
1631     $handle->on_drain (sub {
1632     warn "all data submitted to the kernel\n";
1633     undef $handle;
1634     });
1635    
1636     =back
1637    
1638    
1639 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1640    
1641     In many cases, you might want to subclass AnyEvent::Handle.
1642    
1643     To make this easier, a given version of AnyEvent::Handle uses these
1644     conventions:
1645    
1646     =over 4
1647    
1648     =item * all constructor arguments become object members.
1649    
1650     At least initially, when you pass a C<tls>-argument to the constructor it
1651 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1652 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1653    
1654     =item * other object member names are prefixed with an C<_>.
1655    
1656     All object members not explicitly documented (internal use) are prefixed
1657     with an underscore character, so the remaining non-C<_>-namespace is free
1658     for use for subclasses.
1659    
1660     =item * all members not documented here and not prefixed with an underscore
1661     are free to use in subclasses.
1662    
1663     Of course, new versions of AnyEvent::Handle may introduce more "public"
1664     member variables, but thats just life, at least it is documented.
1665    
1666     =back
1667    
1668 elmex 1.1 =head1 AUTHOR
1669    
1670 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1671 elmex 1.1
1672     =cut
1673    
1674     1; # End of AnyEvent::Handle