ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.152
Committed: Fri Jul 17 14:57:03 2009 UTC (14 years, 10 months ago) by root
Branch: MAIN
CVS Tags: rel-4_83
Changes since 1.151: +1 -1 lines
Log Message:
4.83

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.152 our $VERSION = 4.83;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
29     fh => \*STDIN,
30     on_error => sub {
31 root 1.151 my ($hdl, $fatal, $msg) = @_;
32     warn "got error $msg\n";
33     $hdl->destroy;
34 root 1.149 $cv->send;
35 elmex 1.2 );
36    
37 root 1.31 # send some request line
38 root 1.149 $hdl->push_write ("getinfo\015\012");
39 root 1.31
40     # read the response line
41 root 1.149 $hdl->push_read (line => sub {
42     my ($hdl, $line) = @_;
43     warn "got line <$line>\n";
44 root 1.31 $cv->send;
45     });
46    
47     $cv->recv;
48 elmex 1.1
49     =head1 DESCRIPTION
50    
51 root 1.8 This module is a helper module to make it easier to do event-based I/O on
52 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
53     on sockets see L<AnyEvent::Util>.
54 root 1.8
55 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
56     AnyEvent::Handle examples.
57    
58 root 1.8 In the following, when the documentation refers to of "bytes" then this
59     means characters. As sysread and syswrite are used for all I/O, their
60     treatment of characters applies to this module as well.
61 elmex 1.1
62 root 1.8 All callbacks will be invoked with the handle object as their first
63     argument.
64 elmex 1.1
65     =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.8 =item fh => $filehandle [MANDATORY]
76 elmex 1.1
77     The filehandle this L<AnyEvent::Handle> object will operate on.
78    
79 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
80     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
81     that mode.
82 root 1.8
83 root 1.40 =item on_eof => $cb->($handle)
84 root 1.10
85 root 1.74 Set the callback to be called when an end-of-file condition is detected,
86 root 1.52 i.e. in the case of a socket, when the other side has closed the
87 root 1.150 connection cleanly, and there are no outstanding read requests in the
88     queue (if there are read requests, then an EOF counts as an unexpected
89     connection close and will be flagged as an error).
90 root 1.8
91 root 1.82 For sockets, this just means that the other side has stopped sending data,
92 root 1.101 you can still try to write data, and, in fact, one can return from the EOF
93 root 1.82 callback and continue writing data, as only the read part has been shut
94     down.
95    
96 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
97     set, then a fatal error will be raised with C<$!> set to <0>.
98    
99 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
100 root 1.10
101 root 1.52 This is the error callback, which is called when, well, some error
102     occured, such as not being able to resolve the hostname, failure to
103     connect or a read error.
104    
105     Some errors are fatal (which is indicated by C<$fatal> being true). On
106 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
107     destroy >>) after invoking the error callback (which means you are free to
108     examine the handle object). Examples of fatal errors are an EOF condition
109     with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors.
110 root 1.82
111 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
112     against, but in some cases (TLS errors), this does not work well. It is
113     recommended to always output the C<$message> argument in human-readable
114     error messages (it's usually the same as C<"$!">).
115    
116 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
117     to simply ignore this parameter and instead abondon the handle object
118     when this callback is invoked. Examples of non-fatal errors are timeouts
119     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
120 root 1.8
121 root 1.10 On callback entrance, the value of C<$!> contains the operating system
122 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
123     C<EPROTO>).
124 root 1.8
125 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
126     you will not be notified of errors otherwise. The default simply calls
127 root 1.52 C<croak>.
128 root 1.8
129 root 1.40 =item on_read => $cb->($handle)
130 root 1.8
131     This sets the default read callback, which is called when data arrives
132 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
133     callback will only be called when at least one octet of data is in the
134     read buffer).
135 root 1.8
136     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
137 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
138 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
139     the beginning from it.
140 root 1.8
141     When an EOF condition is detected then AnyEvent::Handle will first try to
142     feed all the remaining data to the queued callbacks and C<on_read> before
143     calling the C<on_eof> callback. If no progress can be made, then a fatal
144     error will be raised (with C<$!> set to C<EPIPE>).
145 elmex 1.1
146 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
147     doesn't mean you I<require> some data: if there is an EOF and there
148     are outstanding read requests then an error will be flagged. With an
149     C<on_read> callback, the C<on_eof> callback will be invoked.
150    
151 root 1.40 =item on_drain => $cb->($handle)
152 elmex 1.1
153 root 1.8 This sets the callback that is called when the write buffer becomes empty
154     (or when the callback is set and the buffer is empty already).
155 elmex 1.1
156 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
157 elmex 1.2
158 root 1.69 This callback is useful when you don't want to put all of your write data
159     into the queue at once, for example, when you want to write the contents
160     of some file to the socket you might not want to read the whole file into
161     memory and push it into the queue, but instead only read more data from
162     the file when the write queue becomes empty.
163    
164 root 1.43 =item timeout => $fractional_seconds
165    
166     If non-zero, then this enables an "inactivity" timeout: whenever this many
167     seconds pass without a successful read or write on the underlying file
168     handle, the C<on_timeout> callback will be invoked (and if that one is
169 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
170 root 1.43
171     Note that timeout processing is also active when you currently do not have
172     any outstanding read or write requests: If you plan to keep the connection
173     idle then you should disable the timout temporarily or ignore the timeout
174 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
175     restart the timeout.
176 root 1.43
177     Zero (the default) disables this timeout.
178    
179     =item on_timeout => $cb->($handle)
180    
181     Called whenever the inactivity timeout passes. If you return from this
182     callback, then the timeout will be reset as if some activity had happened,
183     so this condition is not fatal in any way.
184    
185 root 1.8 =item rbuf_max => <bytes>
186 elmex 1.2
187 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
188     when the read buffer ever (strictly) exceeds this size. This is useful to
189 root 1.88 avoid some forms of denial-of-service attacks.
190 elmex 1.2
191 root 1.8 For example, a server accepting connections from untrusted sources should
192     be configured to accept only so-and-so much data that it cannot act on
193     (for example, when expecting a line, an attacker could send an unlimited
194     amount of data without a callback ever being called as long as the line
195     isn't finished).
196 elmex 1.2
197 root 1.70 =item autocork => <boolean>
198    
199     When disabled (the default), then C<push_write> will try to immediately
200 root 1.88 write the data to the handle, if possible. This avoids having to register
201     a write watcher and wait for the next event loop iteration, but can
202     be inefficient if you write multiple small chunks (on the wire, this
203     disadvantage is usually avoided by your kernel's nagle algorithm, see
204     C<no_delay>, but this option can save costly syscalls).
205 root 1.70
206     When enabled, then writes will always be queued till the next event loop
207     iteration. This is efficient when you do many small writes per iteration,
208 root 1.88 but less efficient when you do a single write only per iteration (or when
209     the write buffer often is full). It also increases write latency.
210 root 1.70
211     =item no_delay => <boolean>
212    
213     When doing small writes on sockets, your operating system kernel might
214     wait a bit for more data before actually sending it out. This is called
215     the Nagle algorithm, and usually it is beneficial.
216    
217 root 1.88 In some situations you want as low a delay as possible, which can be
218     accomplishd by setting this option to a true value.
219 root 1.70
220 root 1.88 The default is your opertaing system's default behaviour (most likely
221     enabled), this option explicitly enables or disables it, if possible.
222 root 1.70
223 root 1.8 =item read_size => <bytes>
224 elmex 1.2
225 root 1.88 The default read block size (the amount of bytes this module will
226     try to read during each loop iteration, which affects memory
227     requirements). Default: C<8192>.
228 root 1.8
229     =item low_water_mark => <bytes>
230    
231     Sets the amount of bytes (default: C<0>) that make up an "empty" write
232     buffer: If the write reaches this size or gets even samller it is
233     considered empty.
234 elmex 1.2
235 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
236     the write buffer before it is fully drained, but this is a rare case, as
237     the operating system kernel usually buffers data as well, so the default
238     is good in almost all cases.
239    
240 root 1.62 =item linger => <seconds>
241    
242     If non-zero (default: C<3600>), then the destructor of the
243 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
244     write data and will install a watcher that will write this data to the
245     socket. No errors will be reported (this mostly matches how the operating
246     system treats outstanding data at socket close time).
247 root 1.62
248 root 1.88 This will not work for partial TLS data that could not be encoded
249 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
250     help.
251 root 1.62
252 root 1.133 =item peername => $string
253    
254 root 1.134 A string used to identify the remote site - usually the DNS hostname
255     (I<not> IDN!) used to create the connection, rarely the IP address.
256 root 1.131
257 root 1.133 Apart from being useful in error messages, this string is also used in TLS
258 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
259     verification will be skipped when C<peername> is not specified or
260     C<undef>.
261 root 1.131
262 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
263    
264 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
265 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
266     established and will transparently encrypt/decrypt data afterwards.
267 root 1.19
268 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
269     appropriate error message.
270    
271 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
272 root 1.88 automatically when you try to create a TLS handle): this module doesn't
273     have a dependency on that module, so if your module requires it, you have
274     to add the dependency yourself.
275 root 1.26
276 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
277     C<accept>, and for the TLS client side of a connection, use C<connect>
278     mode.
279 root 1.19
280     You can also provide your own TLS connection object, but you have
281     to make sure that you call either C<Net::SSLeay::set_connect_state>
282     or C<Net::SSLeay::set_accept_state> on it before you pass it to
283 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
284     object.
285    
286     At some future point, AnyEvent::Handle might switch to another TLS
287     implementation, then the option to use your own session object will go
288     away.
289 root 1.19
290 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
291     passing in the wrong integer will lead to certain crash. This most often
292     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
293     segmentation fault.
294    
295 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
296 root 1.26
297 root 1.131 =item tls_ctx => $anyevent_tls
298 root 1.19
299 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
300 root 1.19 (unless a connection object was specified directly). If this parameter is
301     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
302    
303 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
304     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
305     new TLS context object.
306    
307 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
308 root 1.142
309     This callback will be invoked when the TLS/SSL handshake has finished. If
310     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
311     (C<on_stoptls> will not be called in this case).
312    
313     The session in C<< $handle->{tls} >> can still be examined in this
314     callback, even when the handshake was not successful.
315    
316 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
317     callback is in effect, instead, the error message will be passed to C<on_starttls>.
318    
319     Without this callback, handshake failures lead to C<on_error> being
320     called, as normal.
321    
322     Note that you cannot call C<starttls> right again in this callback. If you
323     need to do that, start an zero-second timer instead whose callback can
324     then call C<< ->starttls >> again.
325    
326 root 1.142 =item on_stoptls => $cb->($handle)
327    
328     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
329     set, then it will be invoked after freeing the TLS session. If it is not,
330     then a TLS shutdown condition will be treated like a normal EOF condition
331     on the handle.
332    
333     The session in C<< $handle->{tls} >> can still be examined in this
334     callback.
335    
336     This callback will only be called on TLS shutdowns, not when the
337     underlying handle signals EOF.
338    
339 root 1.40 =item json => JSON or JSON::XS object
340    
341     This is the json coder object used by the C<json> read and write types.
342    
343 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
344 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
345     texts.
346 root 1.40
347     Note that you are responsible to depend on the JSON module if you want to
348     use this functionality, as AnyEvent does not have a dependency itself.
349    
350 elmex 1.1 =back
351    
352     =cut
353    
354     sub new {
355 root 1.8 my $class = shift;
356     my $self = bless { @_ }, $class;
357    
358     $self->{fh} or Carp::croak "mandatory argument fh is missing";
359    
360     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
361 elmex 1.1
362 root 1.131 $self->{_activity} = AnyEvent->now;
363     $self->_timeout;
364    
365     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
366    
367 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
368     if $self->{tls};
369 root 1.19
370 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
371 root 1.10
372 root 1.66 $self->start_read
373 root 1.67 if $self->{on_read};
374 root 1.66
375 root 1.131 $self->{fh} && $self
376 root 1.8 }
377 elmex 1.2
378 root 1.149 #sub _shutdown {
379     # my ($self) = @_;
380     #
381     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
382     # $self->{_eof} = 1; # tell starttls et. al to stop trying
383     #
384     # &_freetls;
385     #}
386 root 1.8
387 root 1.52 sub _error {
388 root 1.133 my ($self, $errno, $fatal, $message) = @_;
389 root 1.8
390 root 1.52 $! = $errno;
391 root 1.133 $message ||= "$!";
392 root 1.37
393 root 1.52 if ($self->{on_error}) {
394 root 1.133 $self->{on_error}($self, $fatal, $message);
395 root 1.151 $self->destroy if $fatal;
396 root 1.100 } elsif ($self->{fh}) {
397 root 1.149 $self->destroy;
398 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
399 root 1.52 }
400 elmex 1.1 }
401    
402 root 1.8 =item $fh = $handle->fh
403 elmex 1.1
404 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
405 elmex 1.1
406     =cut
407    
408 root 1.38 sub fh { $_[0]{fh} }
409 elmex 1.1
410 root 1.8 =item $handle->on_error ($cb)
411 elmex 1.1
412 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
413 elmex 1.1
414 root 1.8 =cut
415    
416     sub on_error {
417     $_[0]{on_error} = $_[1];
418     }
419    
420     =item $handle->on_eof ($cb)
421    
422     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
423 elmex 1.1
424     =cut
425    
426 root 1.8 sub on_eof {
427     $_[0]{on_eof} = $_[1];
428     }
429    
430 root 1.43 =item $handle->on_timeout ($cb)
431    
432 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
433     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
434     argument and method.
435 root 1.43
436     =cut
437    
438     sub on_timeout {
439     $_[0]{on_timeout} = $_[1];
440     }
441    
442 root 1.70 =item $handle->autocork ($boolean)
443    
444     Enables or disables the current autocork behaviour (see C<autocork>
445 root 1.105 constructor argument). Changes will only take effect on the next write.
446 root 1.70
447     =cut
448    
449 root 1.105 sub autocork {
450     $_[0]{autocork} = $_[1];
451     }
452    
453 root 1.70 =item $handle->no_delay ($boolean)
454    
455     Enables or disables the C<no_delay> setting (see constructor argument of
456     the same name for details).
457    
458     =cut
459    
460     sub no_delay {
461     $_[0]{no_delay} = $_[1];
462    
463     eval {
464     local $SIG{__DIE__};
465     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
466     };
467     }
468    
469 root 1.142 =item $handle->on_starttls ($cb)
470    
471     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
472    
473     =cut
474    
475     sub on_starttls {
476     $_[0]{on_starttls} = $_[1];
477     }
478    
479     =item $handle->on_stoptls ($cb)
480    
481     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
482    
483     =cut
484    
485     sub on_starttls {
486     $_[0]{on_stoptls} = $_[1];
487     }
488    
489 root 1.43 #############################################################################
490    
491     =item $handle->timeout ($seconds)
492    
493     Configures (or disables) the inactivity timeout.
494    
495     =cut
496    
497     sub timeout {
498     my ($self, $timeout) = @_;
499    
500     $self->{timeout} = $timeout;
501     $self->_timeout;
502     }
503    
504     # reset the timeout watcher, as neccessary
505     # also check for time-outs
506     sub _timeout {
507     my ($self) = @_;
508    
509     if ($self->{timeout}) {
510 root 1.44 my $NOW = AnyEvent->now;
511 root 1.43
512     # when would the timeout trigger?
513     my $after = $self->{_activity} + $self->{timeout} - $NOW;
514    
515     # now or in the past already?
516     if ($after <= 0) {
517     $self->{_activity} = $NOW;
518    
519     if ($self->{on_timeout}) {
520 root 1.48 $self->{on_timeout}($self);
521 root 1.43 } else {
522 root 1.150 $self->_error (Errno::ETIMEDOUT);
523 root 1.43 }
524    
525 root 1.56 # callback could have changed timeout value, optimise
526 root 1.43 return unless $self->{timeout};
527    
528     # calculate new after
529     $after = $self->{timeout};
530     }
531    
532     Scalar::Util::weaken $self;
533 root 1.56 return unless $self; # ->error could have destroyed $self
534 root 1.43
535     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
536     delete $self->{_tw};
537     $self->_timeout;
538     });
539     } else {
540     delete $self->{_tw};
541     }
542     }
543    
544 root 1.9 #############################################################################
545    
546     =back
547    
548     =head2 WRITE QUEUE
549    
550     AnyEvent::Handle manages two queues per handle, one for writing and one
551     for reading.
552    
553     The write queue is very simple: you can add data to its end, and
554     AnyEvent::Handle will automatically try to get rid of it for you.
555    
556 elmex 1.20 When data could be written and the write buffer is shorter then the low
557 root 1.9 water mark, the C<on_drain> callback will be invoked.
558    
559     =over 4
560    
561 root 1.8 =item $handle->on_drain ($cb)
562    
563     Sets the C<on_drain> callback or clears it (see the description of
564     C<on_drain> in the constructor).
565    
566     =cut
567    
568     sub on_drain {
569 elmex 1.1 my ($self, $cb) = @_;
570    
571 root 1.8 $self->{on_drain} = $cb;
572    
573     $cb->($self)
574 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
575 root 1.8 }
576    
577     =item $handle->push_write ($data)
578    
579     Queues the given scalar to be written. You can push as much data as you
580     want (only limited by the available memory), as C<AnyEvent::Handle>
581     buffers it independently of the kernel.
582    
583     =cut
584    
585 root 1.17 sub _drain_wbuf {
586     my ($self) = @_;
587 root 1.8
588 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
589 root 1.35
590 root 1.8 Scalar::Util::weaken $self;
591 root 1.35
592 root 1.8 my $cb = sub {
593     my $len = syswrite $self->{fh}, $self->{wbuf};
594    
595 root 1.146 if (defined $len) {
596 root 1.8 substr $self->{wbuf}, 0, $len, "";
597    
598 root 1.44 $self->{_activity} = AnyEvent->now;
599 root 1.43
600 root 1.8 $self->{on_drain}($self)
601 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
602 root 1.8 && $self->{on_drain};
603    
604 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
605 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
606 root 1.52 $self->_error ($!, 1);
607 elmex 1.1 }
608 root 1.8 };
609    
610 root 1.35 # try to write data immediately
611 root 1.70 $cb->() unless $self->{autocork};
612 root 1.8
613 root 1.35 # if still data left in wbuf, we need to poll
614 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
615 root 1.35 if length $self->{wbuf};
616 root 1.8 };
617     }
618    
619 root 1.30 our %WH;
620    
621     sub register_write_type($$) {
622     $WH{$_[0]} = $_[1];
623     }
624    
625 root 1.17 sub push_write {
626     my $self = shift;
627    
628 root 1.29 if (@_ > 1) {
629     my $type = shift;
630    
631     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
632     ->($self, @_);
633     }
634    
635 root 1.93 if ($self->{tls}) {
636     $self->{_tls_wbuf} .= $_[0];
637 root 1.97
638 root 1.93 &_dotls ($self);
639 root 1.17 } else {
640     $self->{wbuf} .= $_[0];
641     $self->_drain_wbuf;
642     }
643     }
644    
645 root 1.29 =item $handle->push_write (type => @args)
646    
647     Instead of formatting your data yourself, you can also let this module do
648     the job by specifying a type and type-specific arguments.
649    
650 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
651     drop by and tell us):
652 root 1.29
653     =over 4
654    
655     =item netstring => $string
656    
657     Formats the given value as netstring
658     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
659    
660     =cut
661    
662     register_write_type netstring => sub {
663     my ($self, $string) = @_;
664    
665 root 1.96 (length $string) . ":$string,"
666 root 1.29 };
667    
668 root 1.61 =item packstring => $format, $data
669    
670     An octet string prefixed with an encoded length. The encoding C<$format>
671     uses the same format as a Perl C<pack> format, but must specify a single
672     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
673     optional C<!>, C<< < >> or C<< > >> modifier).
674    
675     =cut
676    
677     register_write_type packstring => sub {
678     my ($self, $format, $string) = @_;
679    
680 root 1.65 pack "$format/a*", $string
681 root 1.61 };
682    
683 root 1.39 =item json => $array_or_hashref
684    
685 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
686     provide your own JSON object, this means it will be encoded to JSON text
687     in UTF-8.
688    
689     JSON objects (and arrays) are self-delimiting, so you can write JSON at
690     one end of a handle and read them at the other end without using any
691     additional framing.
692    
693 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
694     this module doesn't need delimiters after or between JSON texts to be
695     able to read them, many other languages depend on that.
696    
697     A simple RPC protocol that interoperates easily with others is to send
698     JSON arrays (or objects, although arrays are usually the better choice as
699     they mimic how function argument passing works) and a newline after each
700     JSON text:
701    
702     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
703     $handle->push_write ("\012");
704    
705     An AnyEvent::Handle receiver would simply use the C<json> read type and
706     rely on the fact that the newline will be skipped as leading whitespace:
707    
708     $handle->push_read (json => sub { my $array = $_[1]; ... });
709    
710     Other languages could read single lines terminated by a newline and pass
711     this line into their JSON decoder of choice.
712    
713 root 1.40 =cut
714    
715     register_write_type json => sub {
716     my ($self, $ref) = @_;
717    
718     require JSON;
719    
720     $self->{json} ? $self->{json}->encode ($ref)
721     : JSON::encode_json ($ref)
722     };
723    
724 root 1.63 =item storable => $reference
725    
726     Freezes the given reference using L<Storable> and writes it to the
727     handle. Uses the C<nfreeze> format.
728    
729     =cut
730    
731     register_write_type storable => sub {
732     my ($self, $ref) = @_;
733    
734     require Storable;
735    
736 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
737 root 1.63 };
738    
739 root 1.53 =back
740    
741 root 1.133 =item $handle->push_shutdown
742    
743     Sometimes you know you want to close the socket after writing your data
744     before it was actually written. One way to do that is to replace your
745 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
746     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
747     replaces the C<on_drain> callback with:
748 root 1.133
749     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
750    
751     This simply shuts down the write side and signals an EOF condition to the
752     the peer.
753    
754     You can rely on the normal read queue and C<on_eof> handling
755     afterwards. This is the cleanest way to close a connection.
756    
757     =cut
758    
759     sub push_shutdown {
760 root 1.142 my ($self) = @_;
761    
762     delete $self->{low_water_mark};
763     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
764 root 1.133 }
765    
766 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
767 root 1.30
768     This function (not method) lets you add your own types to C<push_write>.
769     Whenever the given C<type> is used, C<push_write> will invoke the code
770     reference with the handle object and the remaining arguments.
771 root 1.29
772 root 1.30 The code reference is supposed to return a single octet string that will
773     be appended to the write buffer.
774 root 1.29
775 root 1.30 Note that this is a function, and all types registered this way will be
776     global, so try to use unique names.
777 root 1.29
778 root 1.30 =cut
779 root 1.29
780 root 1.8 #############################################################################
781    
782 root 1.9 =back
783    
784     =head2 READ QUEUE
785    
786     AnyEvent::Handle manages two queues per handle, one for writing and one
787     for reading.
788    
789     The read queue is more complex than the write queue. It can be used in two
790     ways, the "simple" way, using only C<on_read> and the "complex" way, using
791     a queue.
792    
793     In the simple case, you just install an C<on_read> callback and whenever
794     new data arrives, it will be called. You can then remove some data (if
795 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
796     leave the data there if you want to accumulate more (e.g. when only a
797     partial message has been received so far).
798 root 1.9
799     In the more complex case, you want to queue multiple callbacks. In this
800     case, AnyEvent::Handle will call the first queued callback each time new
801 root 1.61 data arrives (also the first time it is queued) and removes it when it has
802     done its job (see C<push_read>, below).
803 root 1.9
804     This way you can, for example, push three line-reads, followed by reading
805     a chunk of data, and AnyEvent::Handle will execute them in order.
806    
807     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
808     the specified number of bytes which give an XML datagram.
809    
810     # in the default state, expect some header bytes
811     $handle->on_read (sub {
812     # some data is here, now queue the length-header-read (4 octets)
813 root 1.52 shift->unshift_read (chunk => 4, sub {
814 root 1.9 # header arrived, decode
815     my $len = unpack "N", $_[1];
816    
817     # now read the payload
818 root 1.52 shift->unshift_read (chunk => $len, sub {
819 root 1.9 my $xml = $_[1];
820     # handle xml
821     });
822     });
823     });
824    
825 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
826     and another line or "ERROR" for the first request that is sent, and 64
827     bytes for the second request. Due to the availability of a queue, we can
828     just pipeline sending both requests and manipulate the queue as necessary
829     in the callbacks.
830    
831     When the first callback is called and sees an "OK" response, it will
832     C<unshift> another line-read. This line-read will be queued I<before> the
833     64-byte chunk callback.
834 root 1.9
835 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
836 root 1.9 $handle->push_write ("request 1\015\012");
837    
838     # we expect "ERROR" or "OK" as response, so push a line read
839 root 1.52 $handle->push_read (line => sub {
840 root 1.9 # if we got an "OK", we have to _prepend_ another line,
841     # so it will be read before the second request reads its 64 bytes
842     # which are already in the queue when this callback is called
843     # we don't do this in case we got an error
844     if ($_[1] eq "OK") {
845 root 1.52 $_[0]->unshift_read (line => sub {
846 root 1.9 my $response = $_[1];
847     ...
848     });
849     }
850     });
851    
852 root 1.69 # request two, simply returns 64 octets
853 root 1.9 $handle->push_write ("request 2\015\012");
854    
855     # simply read 64 bytes, always
856 root 1.52 $handle->push_read (chunk => 64, sub {
857 root 1.9 my $response = $_[1];
858     ...
859     });
860    
861     =over 4
862    
863 root 1.10 =cut
864    
865 root 1.8 sub _drain_rbuf {
866     my ($self) = @_;
867 elmex 1.1
868 root 1.59 local $self->{_in_drain} = 1;
869    
870 root 1.17 if (
871     defined $self->{rbuf_max}
872     && $self->{rbuf_max} < length $self->{rbuf}
873     ) {
874 root 1.150 $self->_error (Errno::ENOSPC, 1), return;
875 root 1.17 }
876    
877 root 1.59 while () {
878 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
879     # we are draining the buffer, and this can only happen with TLS.
880 root 1.116 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
881 root 1.115
882 root 1.59 my $len = length $self->{rbuf};
883 elmex 1.1
884 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
885 root 1.29 unless ($cb->($self)) {
886 root 1.38 if ($self->{_eof}) {
887 root 1.10 # no progress can be made (not enough data and no data forthcoming)
888 root 1.150 $self->_error (Errno::EPIPE, 1), return;
889 root 1.10 }
890    
891 root 1.38 unshift @{ $self->{_queue} }, $cb;
892 root 1.55 last;
893 root 1.8 }
894     } elsif ($self->{on_read}) {
895 root 1.61 last unless $len;
896    
897 root 1.8 $self->{on_read}($self);
898    
899     if (
900 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
901     && !@{ $self->{_queue} } # and the queue is still empty
902     && $self->{on_read} # but we still have on_read
903 root 1.8 ) {
904 root 1.55 # no further data will arrive
905     # so no progress can be made
906 root 1.150 $self->_error (Errno::EPIPE, 1), return
907 root 1.55 if $self->{_eof};
908    
909     last; # more data might arrive
910 elmex 1.1 }
911 root 1.8 } else {
912     # read side becomes idle
913 root 1.93 delete $self->{_rw} unless $self->{tls};
914 root 1.55 last;
915 root 1.8 }
916     }
917    
918 root 1.80 if ($self->{_eof}) {
919     if ($self->{on_eof}) {
920     $self->{on_eof}($self)
921     } else {
922 root 1.140 $self->_error (0, 1, "Unexpected end-of-file");
923 root 1.80 }
924     }
925 root 1.55
926     # may need to restart read watcher
927     unless ($self->{_rw}) {
928     $self->start_read
929     if $self->{on_read} || @{ $self->{_queue} };
930     }
931 elmex 1.1 }
932    
933 root 1.8 =item $handle->on_read ($cb)
934 elmex 1.1
935 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
936     the new callback is C<undef>). See the description of C<on_read> in the
937     constructor.
938 elmex 1.1
939 root 1.8 =cut
940    
941     sub on_read {
942     my ($self, $cb) = @_;
943 elmex 1.1
944 root 1.8 $self->{on_read} = $cb;
945 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
946 elmex 1.1 }
947    
948 root 1.8 =item $handle->rbuf
949    
950     Returns the read buffer (as a modifiable lvalue).
951 elmex 1.1
952 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
953     member, if you want. However, the only operation allowed on the
954     read buffer (apart from looking at it) is removing data from its
955     beginning. Otherwise modifying or appending to it is not allowed and will
956     lead to hard-to-track-down bugs.
957 elmex 1.1
958 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
959     C<push_read> or C<unshift_read> methods are used. The other read methods
960     automatically manage the read buffer.
961 elmex 1.1
962     =cut
963    
964 elmex 1.2 sub rbuf : lvalue {
965 root 1.8 $_[0]{rbuf}
966 elmex 1.2 }
967 elmex 1.1
968 root 1.8 =item $handle->push_read ($cb)
969    
970     =item $handle->unshift_read ($cb)
971    
972     Append the given callback to the end of the queue (C<push_read>) or
973     prepend it (C<unshift_read>).
974    
975     The callback is called each time some additional read data arrives.
976 elmex 1.1
977 elmex 1.20 It must check whether enough data is in the read buffer already.
978 elmex 1.1
979 root 1.8 If not enough data is available, it must return the empty list or a false
980     value, in which case it will be called repeatedly until enough data is
981     available (or an error condition is detected).
982    
983     If enough data was available, then the callback must remove all data it is
984     interested in (which can be none at all) and return a true value. After returning
985     true, it will be removed from the queue.
986 elmex 1.1
987     =cut
988    
989 root 1.30 our %RH;
990    
991     sub register_read_type($$) {
992     $RH{$_[0]} = $_[1];
993     }
994    
995 root 1.8 sub push_read {
996 root 1.28 my $self = shift;
997     my $cb = pop;
998    
999     if (@_) {
1000     my $type = shift;
1001    
1002     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1003     ->($self, $cb, @_);
1004     }
1005 elmex 1.1
1006 root 1.38 push @{ $self->{_queue} }, $cb;
1007 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1008 elmex 1.1 }
1009    
1010 root 1.8 sub unshift_read {
1011 root 1.28 my $self = shift;
1012     my $cb = pop;
1013    
1014     if (@_) {
1015     my $type = shift;
1016    
1017     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1018     ->($self, $cb, @_);
1019     }
1020    
1021 root 1.8
1022 root 1.38 unshift @{ $self->{_queue} }, $cb;
1023 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1024 root 1.8 }
1025 elmex 1.1
1026 root 1.28 =item $handle->push_read (type => @args, $cb)
1027 elmex 1.1
1028 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1029 elmex 1.1
1030 root 1.28 Instead of providing a callback that parses the data itself you can chose
1031     between a number of predefined parsing formats, for chunks of data, lines
1032     etc.
1033 elmex 1.1
1034 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1035     drop by and tell us):
1036 root 1.28
1037     =over 4
1038    
1039 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1040 root 1.28
1041     Invoke the callback only once C<$octets> bytes have been read. Pass the
1042     data read to the callback. The callback will never be called with less
1043     data.
1044    
1045     Example: read 2 bytes.
1046    
1047     $handle->push_read (chunk => 2, sub {
1048     warn "yay ", unpack "H*", $_[1];
1049     });
1050 elmex 1.1
1051     =cut
1052    
1053 root 1.28 register_read_type chunk => sub {
1054     my ($self, $cb, $len) = @_;
1055 elmex 1.1
1056 root 1.8 sub {
1057     $len <= length $_[0]{rbuf} or return;
1058 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1059 root 1.8 1
1060     }
1061 root 1.28 };
1062 root 1.8
1063 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1064 elmex 1.1
1065 root 1.8 The callback will be called only once a full line (including the end of
1066     line marker, C<$eol>) has been read. This line (excluding the end of line
1067     marker) will be passed to the callback as second argument (C<$line>), and
1068     the end of line marker as the third argument (C<$eol>).
1069 elmex 1.1
1070 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1071     will be interpreted as a fixed record end marker, or it can be a regex
1072     object (e.g. created by C<qr>), in which case it is interpreted as a
1073     regular expression.
1074 elmex 1.1
1075 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1076     undef), then C<qr|\015?\012|> is used (which is good for most internet
1077     protocols).
1078 elmex 1.1
1079 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1080     not marked by the end of line marker.
1081 elmex 1.1
1082 root 1.8 =cut
1083 elmex 1.1
1084 root 1.28 register_read_type line => sub {
1085     my ($self, $cb, $eol) = @_;
1086 elmex 1.1
1087 root 1.76 if (@_ < 3) {
1088     # this is more than twice as fast as the generic code below
1089     sub {
1090     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1091 elmex 1.1
1092 root 1.76 $cb->($_[0], $1, $2);
1093     1
1094     }
1095     } else {
1096     $eol = quotemeta $eol unless ref $eol;
1097     $eol = qr|^(.*?)($eol)|s;
1098    
1099     sub {
1100     $_[0]{rbuf} =~ s/$eol// or return;
1101 elmex 1.1
1102 root 1.76 $cb->($_[0], $1, $2);
1103     1
1104     }
1105 root 1.8 }
1106 root 1.28 };
1107 elmex 1.1
1108 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1109 root 1.36
1110     Makes a regex match against the regex object C<$accept> and returns
1111     everything up to and including the match.
1112    
1113     Example: read a single line terminated by '\n'.
1114    
1115     $handle->push_read (regex => qr<\n>, sub { ... });
1116    
1117     If C<$reject> is given and not undef, then it determines when the data is
1118     to be rejected: it is matched against the data when the C<$accept> regex
1119     does not match and generates an C<EBADMSG> error when it matches. This is
1120     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1121     receive buffer overflow).
1122    
1123     Example: expect a single decimal number followed by whitespace, reject
1124     anything else (not the use of an anchor).
1125    
1126     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1127    
1128     If C<$skip> is given and not C<undef>, then it will be matched against
1129     the receive buffer when neither C<$accept> nor C<$reject> match,
1130     and everything preceding and including the match will be accepted
1131     unconditionally. This is useful to skip large amounts of data that you
1132     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1133     have to start matching from the beginning. This is purely an optimisation
1134     and is usually worth only when you expect more than a few kilobytes.
1135    
1136     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1137     expect the header to be very large (it isn't in practise, but...), we use
1138     a skip regex to skip initial portions. The skip regex is tricky in that
1139     it only accepts something not ending in either \015 or \012, as these are
1140     required for the accept regex.
1141    
1142     $handle->push_read (regex =>
1143     qr<\015\012\015\012>,
1144     undef, # no reject
1145     qr<^.*[^\015\012]>,
1146     sub { ... });
1147    
1148     =cut
1149    
1150     register_read_type regex => sub {
1151     my ($self, $cb, $accept, $reject, $skip) = @_;
1152    
1153     my $data;
1154     my $rbuf = \$self->{rbuf};
1155    
1156     sub {
1157     # accept
1158     if ($$rbuf =~ $accept) {
1159     $data .= substr $$rbuf, 0, $+[0], "";
1160     $cb->($self, $data);
1161     return 1;
1162     }
1163    
1164     # reject
1165     if ($reject && $$rbuf =~ $reject) {
1166 root 1.150 $self->_error (Errno::EBADMSG);
1167 root 1.36 }
1168    
1169     # skip
1170     if ($skip && $$rbuf =~ $skip) {
1171     $data .= substr $$rbuf, 0, $+[0], "";
1172     }
1173    
1174     ()
1175     }
1176     };
1177    
1178 root 1.61 =item netstring => $cb->($handle, $string)
1179    
1180     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1181    
1182     Throws an error with C<$!> set to EBADMSG on format violations.
1183    
1184     =cut
1185    
1186     register_read_type netstring => sub {
1187     my ($self, $cb) = @_;
1188    
1189     sub {
1190     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1191     if ($_[0]{rbuf} =~ /[^0-9]/) {
1192 root 1.150 $self->_error (Errno::EBADMSG);
1193 root 1.61 }
1194     return;
1195     }
1196    
1197     my $len = $1;
1198    
1199     $self->unshift_read (chunk => $len, sub {
1200     my $string = $_[1];
1201     $_[0]->unshift_read (chunk => 1, sub {
1202     if ($_[1] eq ",") {
1203     $cb->($_[0], $string);
1204     } else {
1205 root 1.150 $self->_error (Errno::EBADMSG);
1206 root 1.61 }
1207     });
1208     });
1209    
1210     1
1211     }
1212     };
1213    
1214     =item packstring => $format, $cb->($handle, $string)
1215    
1216     An octet string prefixed with an encoded length. The encoding C<$format>
1217     uses the same format as a Perl C<pack> format, but must specify a single
1218     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1219     optional C<!>, C<< < >> or C<< > >> modifier).
1220    
1221 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1222     EPP uses a prefix of C<N> (4 octtes).
1223 root 1.61
1224     Example: read a block of data prefixed by its length in BER-encoded
1225     format (very efficient).
1226    
1227     $handle->push_read (packstring => "w", sub {
1228     my ($handle, $data) = @_;
1229     });
1230    
1231     =cut
1232    
1233     register_read_type packstring => sub {
1234     my ($self, $cb, $format) = @_;
1235    
1236     sub {
1237     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1238 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1239 root 1.61 or return;
1240    
1241 root 1.77 $format = length pack $format, $len;
1242 root 1.61
1243 root 1.77 # bypass unshift if we already have the remaining chunk
1244     if ($format + $len <= length $_[0]{rbuf}) {
1245     my $data = substr $_[0]{rbuf}, $format, $len;
1246     substr $_[0]{rbuf}, 0, $format + $len, "";
1247     $cb->($_[0], $data);
1248     } else {
1249     # remove prefix
1250     substr $_[0]{rbuf}, 0, $format, "";
1251    
1252     # read remaining chunk
1253     $_[0]->unshift_read (chunk => $len, $cb);
1254     }
1255 root 1.61
1256     1
1257     }
1258     };
1259    
1260 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1261    
1262 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1263     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1264 root 1.40
1265     If a C<json> object was passed to the constructor, then that will be used
1266     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1267    
1268     This read type uses the incremental parser available with JSON version
1269     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1270     dependency on your own: this module will load the JSON module, but
1271     AnyEvent does not depend on it itself.
1272    
1273     Since JSON texts are fully self-delimiting, the C<json> read and write
1274 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1275     the C<json> write type description, above, for an actual example.
1276 root 1.40
1277     =cut
1278    
1279     register_read_type json => sub {
1280 root 1.63 my ($self, $cb) = @_;
1281 root 1.40
1282 root 1.135 my $json = $self->{json} ||=
1283     eval { require JSON::XS; JSON::XS->new->utf8 }
1284     || do { require JSON; JSON->new->utf8 };
1285 root 1.40
1286     my $data;
1287     my $rbuf = \$self->{rbuf};
1288    
1289     sub {
1290 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1291 root 1.110
1292 root 1.113 if ($ref) {
1293     $self->{rbuf} = $json->incr_text;
1294     $json->incr_text = "";
1295     $cb->($self, $ref);
1296 root 1.110
1297     1
1298 root 1.113 } elsif ($@) {
1299 root 1.111 # error case
1300 root 1.110 $json->incr_skip;
1301 root 1.40
1302     $self->{rbuf} = $json->incr_text;
1303     $json->incr_text = "";
1304    
1305 root 1.150 $self->_error (Errno::EBADMSG);
1306 root 1.114
1307 root 1.113 ()
1308     } else {
1309     $self->{rbuf} = "";
1310 root 1.114
1311 root 1.113 ()
1312     }
1313 root 1.40 }
1314     };
1315    
1316 root 1.63 =item storable => $cb->($handle, $ref)
1317    
1318     Deserialises a L<Storable> frozen representation as written by the
1319     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1320     data).
1321    
1322     Raises C<EBADMSG> error if the data could not be decoded.
1323    
1324     =cut
1325    
1326     register_read_type storable => sub {
1327     my ($self, $cb) = @_;
1328    
1329     require Storable;
1330    
1331     sub {
1332     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1333 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1334 root 1.63 or return;
1335    
1336 root 1.77 my $format = length pack "w", $len;
1337 root 1.63
1338 root 1.77 # bypass unshift if we already have the remaining chunk
1339     if ($format + $len <= length $_[0]{rbuf}) {
1340     my $data = substr $_[0]{rbuf}, $format, $len;
1341     substr $_[0]{rbuf}, 0, $format + $len, "";
1342     $cb->($_[0], Storable::thaw ($data));
1343     } else {
1344     # remove prefix
1345     substr $_[0]{rbuf}, 0, $format, "";
1346    
1347     # read remaining chunk
1348     $_[0]->unshift_read (chunk => $len, sub {
1349     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1350     $cb->($_[0], $ref);
1351     } else {
1352 root 1.150 $self->_error (Errno::EBADMSG);
1353 root 1.77 }
1354     });
1355     }
1356    
1357     1
1358 root 1.63 }
1359     };
1360    
1361 root 1.28 =back
1362    
1363 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1364 root 1.30
1365     This function (not method) lets you add your own types to C<push_read>.
1366    
1367     Whenever the given C<type> is used, C<push_read> will invoke the code
1368     reference with the handle object, the callback and the remaining
1369     arguments.
1370    
1371     The code reference is supposed to return a callback (usually a closure)
1372     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1373    
1374     It should invoke the passed callback when it is done reading (remember to
1375 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1376 root 1.30
1377     Note that this is a function, and all types registered this way will be
1378     global, so try to use unique names.
1379    
1380     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1381     search for C<register_read_type>)).
1382    
1383 root 1.10 =item $handle->stop_read
1384    
1385     =item $handle->start_read
1386    
1387 root 1.18 In rare cases you actually do not want to read anything from the
1388 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1389 root 1.22 any queued callbacks will be executed then. To start reading again, call
1390 root 1.10 C<start_read>.
1391    
1392 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1393     you change the C<on_read> callback or push/unshift a read callback, and it
1394     will automatically C<stop_read> for you when neither C<on_read> is set nor
1395     there are any read requests in the queue.
1396    
1397 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1398     half-duplex connections).
1399    
1400 root 1.10 =cut
1401    
1402     sub stop_read {
1403     my ($self) = @_;
1404 elmex 1.1
1405 root 1.93 delete $self->{_rw} unless $self->{tls};
1406 root 1.8 }
1407 elmex 1.1
1408 root 1.10 sub start_read {
1409     my ($self) = @_;
1410    
1411 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1412 root 1.10 Scalar::Util::weaken $self;
1413    
1414 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1415 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1416 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1417 root 1.10
1418     if ($len > 0) {
1419 root 1.44 $self->{_activity} = AnyEvent->now;
1420 root 1.43
1421 root 1.93 if ($self->{tls}) {
1422     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1423 root 1.97
1424 root 1.93 &_dotls ($self);
1425     } else {
1426     $self->_drain_rbuf unless $self->{_in_drain};
1427     }
1428 root 1.10
1429     } elsif (defined $len) {
1430 root 1.38 delete $self->{_rw};
1431     $self->{_eof} = 1;
1432 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1433 root 1.10
1434 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1435 root 1.52 return $self->_error ($!, 1);
1436 root 1.10 }
1437     });
1438     }
1439 elmex 1.1 }
1440    
1441 root 1.133 our $ERROR_SYSCALL;
1442     our $ERROR_WANT_READ;
1443    
1444     sub _tls_error {
1445     my ($self, $err) = @_;
1446    
1447     return $self->_error ($!, 1)
1448     if $err == Net::SSLeay::ERROR_SYSCALL ();
1449    
1450 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1451    
1452     # reduce error string to look less scary
1453     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1454    
1455 root 1.143 if ($self->{_on_starttls}) {
1456     (delete $self->{_on_starttls})->($self, undef, $err);
1457     &_freetls;
1458     } else {
1459     &_freetls;
1460 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1461 root 1.143 }
1462 root 1.133 }
1463    
1464 root 1.97 # poll the write BIO and send the data if applicable
1465 root 1.133 # also decode read data if possible
1466     # this is basiclaly our TLS state machine
1467     # more efficient implementations are possible with openssl,
1468     # but not with the buggy and incomplete Net::SSLeay.
1469 root 1.19 sub _dotls {
1470     my ($self) = @_;
1471    
1472 root 1.97 my $tmp;
1473 root 1.56
1474 root 1.38 if (length $self->{_tls_wbuf}) {
1475 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1476     substr $self->{_tls_wbuf}, 0, $tmp, "";
1477 root 1.22 }
1478 root 1.133
1479     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1480     return $self->_tls_error ($tmp)
1481     if $tmp != $ERROR_WANT_READ
1482 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1483 root 1.19 }
1484    
1485 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1486     unless (length $tmp) {
1487 root 1.143 $self->{_on_starttls}
1488     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1489 root 1.92 &_freetls;
1490 root 1.143
1491 root 1.142 if ($self->{on_stoptls}) {
1492     $self->{on_stoptls}($self);
1493     return;
1494     } else {
1495     # let's treat SSL-eof as we treat normal EOF
1496     delete $self->{_rw};
1497     $self->{_eof} = 1;
1498     }
1499 root 1.56 }
1500 root 1.91
1501 root 1.116 $self->{_tls_rbuf} .= $tmp;
1502 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1503 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1504 root 1.23 }
1505    
1506 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1507 root 1.133 return $self->_tls_error ($tmp)
1508     if $tmp != $ERROR_WANT_READ
1509 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1510 root 1.91
1511 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1512     $self->{wbuf} .= $tmp;
1513 root 1.91 $self->_drain_wbuf;
1514     }
1515 root 1.142
1516     $self->{_on_starttls}
1517     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1518 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1519 root 1.19 }
1520    
1521 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1522    
1523     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1524     object is created, you can also do that at a later time by calling
1525     C<starttls>.
1526    
1527     The first argument is the same as the C<tls> constructor argument (either
1528     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1529    
1530 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1531     when AnyEvent::Handle has to create its own TLS connection object, or
1532     a hash reference with C<< key => value >> pairs that will be used to
1533     construct a new context.
1534    
1535     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1536     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1537     changed to your liking. Note that the handshake might have already started
1538     when this function returns.
1539 root 1.38
1540 root 1.92 If it an error to start a TLS handshake more than once per
1541     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1542    
1543 root 1.25 =cut
1544    
1545 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1546    
1547 root 1.19 sub starttls {
1548     my ($self, $ssl, $ctx) = @_;
1549    
1550 root 1.94 require Net::SSLeay;
1551    
1552 root 1.102 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1553 root 1.92 if $self->{tls};
1554 root 1.131
1555 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1556     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1557 root 1.133
1558 root 1.131 $ctx ||= $self->{tls_ctx};
1559    
1560     if ("HASH" eq ref $ctx) {
1561     require AnyEvent::TLS;
1562    
1563     local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1564 root 1.137
1565     if ($ctx->{cache}) {
1566     my $key = $ctx+0;
1567     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1568     } else {
1569     $ctx = new AnyEvent::TLS %$ctx;
1570     }
1571 root 1.131 }
1572 root 1.92
1573 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1574 root 1.133 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1575 root 1.19
1576 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1577     # but the openssl maintainers basically said: "trust us, it just works".
1578     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1579     # and mismaintained ssleay-module doesn't even offer them).
1580 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1581 root 1.87 #
1582     # in short: this is a mess.
1583     #
1584 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1585 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1586 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1587     # have identity issues in that area.
1588 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1589     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1590     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1591     Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1592 root 1.21
1593 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1594     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1595 root 1.19
1596 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1597 root 1.19
1598 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1599 root 1.143 if $self->{on_starttls};
1600 root 1.142
1601 root 1.93 &_dotls; # need to trigger the initial handshake
1602     $self->start_read; # make sure we actually do read
1603 root 1.19 }
1604    
1605 root 1.25 =item $handle->stoptls
1606    
1607 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1608     sending a close notify to the other side, but since OpenSSL doesn't
1609     support non-blocking shut downs, it is not possible to re-use the stream
1610     afterwards.
1611 root 1.25
1612     =cut
1613    
1614     sub stoptls {
1615     my ($self) = @_;
1616    
1617 root 1.92 if ($self->{tls}) {
1618 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1619 root 1.92
1620     &_dotls;
1621    
1622 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1623     # # we, we... have to use openssl :/#d#
1624     # &_freetls;#d#
1625 root 1.92 }
1626     }
1627    
1628     sub _freetls {
1629     my ($self) = @_;
1630    
1631     return unless $self->{tls};
1632 root 1.38
1633 root 1.131 $self->{tls_ctx}->_put_session (delete $self->{tls});
1634 root 1.92
1635 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1636 root 1.25 }
1637    
1638 root 1.19 sub DESTROY {
1639 root 1.120 my ($self) = @_;
1640 root 1.19
1641 root 1.92 &_freetls;
1642 root 1.62
1643     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1644    
1645     if ($linger && length $self->{wbuf}) {
1646     my $fh = delete $self->{fh};
1647     my $wbuf = delete $self->{wbuf};
1648    
1649     my @linger;
1650    
1651     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1652     my $len = syswrite $fh, $wbuf, length $wbuf;
1653    
1654     if ($len > 0) {
1655     substr $wbuf, 0, $len, "";
1656     } else {
1657     @linger = (); # end
1658     }
1659     });
1660     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1661     @linger = ();
1662     });
1663     }
1664 root 1.19 }
1665    
1666 root 1.99 =item $handle->destroy
1667    
1668 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1669 root 1.141 no further callbacks will be invoked and as many resources as possible
1670     will be freed. You must not call any methods on the object afterwards.
1671 root 1.99
1672 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1673     object and it will simply shut down. This works in fatal error and EOF
1674     callbacks, as well as code outside. It does I<NOT> work in a read or write
1675     callback, so when you want to destroy the AnyEvent::Handle object from
1676     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1677     that case.
1678    
1679 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1680     will be removed as well, so if those are the only reference holders (as
1681     is common), then one doesn't need to do anything special to break any
1682     reference cycles.
1683    
1684 root 1.99 The handle might still linger in the background and write out remaining
1685     data, as specified by the C<linger> option, however.
1686    
1687     =cut
1688    
1689     sub destroy {
1690     my ($self) = @_;
1691    
1692     $self->DESTROY;
1693     %$self = ();
1694     }
1695    
1696 root 1.19 =item AnyEvent::Handle::TLS_CTX
1697    
1698 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1699     for TLS mode.
1700 root 1.19
1701 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1702 root 1.19
1703     =cut
1704    
1705     our $TLS_CTX;
1706    
1707     sub TLS_CTX() {
1708 root 1.131 $TLS_CTX ||= do {
1709     require AnyEvent::TLS;
1710 root 1.19
1711 root 1.131 new AnyEvent::TLS
1712 root 1.19 }
1713     }
1714    
1715 elmex 1.1 =back
1716    
1717 root 1.95
1718     =head1 NONFREQUENTLY ASKED QUESTIONS
1719    
1720     =over 4
1721    
1722 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1723     still get further invocations!
1724    
1725     That's because AnyEvent::Handle keeps a reference to itself when handling
1726     read or write callbacks.
1727    
1728     It is only safe to "forget" the reference inside EOF or error callbacks,
1729     from within all other callbacks, you need to explicitly call the C<<
1730     ->destroy >> method.
1731    
1732     =item I get different callback invocations in TLS mode/Why can't I pause
1733     reading?
1734    
1735     Unlike, say, TCP, TLS connections do not consist of two independent
1736     communication channels, one for each direction. Or put differently. The
1737     read and write directions are not independent of each other: you cannot
1738     write data unless you are also prepared to read, and vice versa.
1739    
1740     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1741     callback invocations when you are not expecting any read data - the reason
1742     is that AnyEvent::Handle always reads in TLS mode.
1743    
1744     During the connection, you have to make sure that you always have a
1745     non-empty read-queue, or an C<on_read> watcher. At the end of the
1746     connection (or when you no longer want to use it) you can call the
1747     C<destroy> method.
1748    
1749 root 1.95 =item How do I read data until the other side closes the connection?
1750    
1751 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1752     to achieve this is by setting an C<on_read> callback that does nothing,
1753     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1754     will be in C<$_[0]{rbuf}>:
1755 root 1.95
1756     $handle->on_read (sub { });
1757     $handle->on_eof (undef);
1758     $handle->on_error (sub {
1759     my $data = delete $_[0]{rbuf};
1760     });
1761    
1762     The reason to use C<on_error> is that TCP connections, due to latencies
1763     and packets loss, might get closed quite violently with an error, when in
1764     fact, all data has been received.
1765    
1766 root 1.101 It is usually better to use acknowledgements when transferring data,
1767 root 1.95 to make sure the other side hasn't just died and you got the data
1768     intact. This is also one reason why so many internet protocols have an
1769     explicit QUIT command.
1770    
1771 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1772     all data has been written?
1773 root 1.95
1774     After writing your last bits of data, set the C<on_drain> callback
1775     and destroy the handle in there - with the default setting of
1776     C<low_water_mark> this will be called precisely when all data has been
1777     written to the socket:
1778    
1779     $handle->push_write (...);
1780     $handle->on_drain (sub {
1781     warn "all data submitted to the kernel\n";
1782     undef $handle;
1783     });
1784    
1785 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1786     consider using C<< ->push_shutdown >> instead.
1787    
1788     =item I want to contact a TLS/SSL server, I don't care about security.
1789    
1790     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1791     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1792     parameter:
1793    
1794 root 1.144 tcp_connect $host, $port, sub {
1795     my ($fh) = @_;
1796 root 1.143
1797 root 1.144 my $handle = new AnyEvent::Handle
1798     fh => $fh,
1799     tls => "connect",
1800     on_error => sub { ... };
1801    
1802     $handle->push_write (...);
1803     };
1804 root 1.143
1805     =item I want to contact a TLS/SSL server, I do care about security.
1806    
1807 root 1.144 Then you should additionally enable certificate verification, including
1808     peername verification, if the protocol you use supports it (see
1809     L<AnyEvent::TLS>, C<verify_peername>).
1810    
1811     E.g. for HTTPS:
1812    
1813     tcp_connect $host, $port, sub {
1814     my ($fh) = @_;
1815    
1816     my $handle = new AnyEvent::Handle
1817     fh => $fh,
1818     peername => $host,
1819     tls => "connect",
1820     tls_ctx => { verify => 1, verify_peername => "https" },
1821     ...
1822    
1823     Note that you must specify the hostname you connected to (or whatever
1824     "peername" the protocol needs) as the C<peername> argument, otherwise no
1825     peername verification will be done.
1826    
1827     The above will use the system-dependent default set of trusted CA
1828     certificates. If you want to check against a specific CA, add the
1829     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1830    
1831     tls_ctx => {
1832     verify => 1,
1833     verify_peername => "https",
1834     ca_file => "my-ca-cert.pem",
1835     },
1836    
1837     =item I want to create a TLS/SSL server, how do I do that?
1838    
1839     Well, you first need to get a server certificate and key. You have
1840     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1841     self-signed certificate (cheap. check the search engine of your choice,
1842     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1843     nice program for that purpose).
1844    
1845     Then create a file with your private key (in PEM format, see
1846     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1847     file should then look like this:
1848    
1849     -----BEGIN RSA PRIVATE KEY-----
1850     ...header data
1851     ... lots of base64'y-stuff
1852     -----END RSA PRIVATE KEY-----
1853    
1854     -----BEGIN CERTIFICATE-----
1855     ... lots of base64'y-stuff
1856     -----END CERTIFICATE-----
1857    
1858     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1859     specify this file as C<cert_file>:
1860    
1861     tcp_server undef, $port, sub {
1862     my ($fh) = @_;
1863    
1864     my $handle = new AnyEvent::Handle
1865     fh => $fh,
1866     tls => "accept",
1867     tls_ctx => { cert_file => "my-server-keycert.pem" },
1868     ...
1869 root 1.143
1870 root 1.144 When you have intermediate CA certificates that your clients might not
1871     know about, just append them to the C<cert_file>.
1872 root 1.143
1873 root 1.95 =back
1874    
1875    
1876 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1877    
1878     In many cases, you might want to subclass AnyEvent::Handle.
1879    
1880     To make this easier, a given version of AnyEvent::Handle uses these
1881     conventions:
1882    
1883     =over 4
1884    
1885     =item * all constructor arguments become object members.
1886    
1887     At least initially, when you pass a C<tls>-argument to the constructor it
1888 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1889 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1890    
1891     =item * other object member names are prefixed with an C<_>.
1892    
1893     All object members not explicitly documented (internal use) are prefixed
1894     with an underscore character, so the remaining non-C<_>-namespace is free
1895     for use for subclasses.
1896    
1897     =item * all members not documented here and not prefixed with an underscore
1898     are free to use in subclasses.
1899    
1900     Of course, new versions of AnyEvent::Handle may introduce more "public"
1901     member variables, but thats just life, at least it is documented.
1902    
1903     =back
1904    
1905 elmex 1.1 =head1 AUTHOR
1906    
1907 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1908 elmex 1.1
1909     =cut
1910    
1911     1; # End of AnyEvent::Handle