ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.165
Committed: Mon Jul 27 22:49:23 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.164: +5 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 root 1.8 use Scalar::Util ();
4     use Carp ();
5 root 1.43 use Errno qw(EAGAIN EINTR);
6 elmex 1.1
7 root 1.153 use AnyEvent (); BEGIN { AnyEvent::common_sense }
8     use AnyEvent::Util qw(WSAEWOULDBLOCK);
9    
10 elmex 1.1 =head1 NAME
11    
12 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 elmex 1.1
14     =cut
15    
16 root 1.162 our $VERSION = 4.87;
17 elmex 1.1
18     =head1 SYNOPSIS
19    
20     use AnyEvent;
21     use AnyEvent::Handle;
22    
23     my $cv = AnyEvent->condvar;
24    
25 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
26     fh => \*STDIN,
27     on_error => sub {
28 root 1.151 my ($hdl, $fatal, $msg) = @_;
29     warn "got error $msg\n";
30     $hdl->destroy;
31 root 1.149 $cv->send;
32 elmex 1.2 );
33    
34 root 1.31 # send some request line
35 root 1.149 $hdl->push_write ("getinfo\015\012");
36 root 1.31
37     # read the response line
38 root 1.149 $hdl->push_read (line => sub {
39     my ($hdl, $line) = @_;
40     warn "got line <$line>\n";
41 root 1.31 $cv->send;
42     });
43    
44     $cv->recv;
45 elmex 1.1
46     =head1 DESCRIPTION
47    
48 root 1.8 This module is a helper module to make it easier to do event-based I/O on
49 root 1.159 filehandles.
50 root 1.8
51 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
52     AnyEvent::Handle examples.
53    
54 root 1.8 In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
59     C<on_error> callback.
60    
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 root 1.158
76 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82    
83     Try to connect to the specified host and service (port), using
84     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85     default C<peername>.
86    
87     You have to specify either this parameter, or C<fh>, above.
88    
89 root 1.160 It is possible to push requests on the read and write queues, and modify
90     properties of the stream, even while AnyEvent::Handle is connecting.
91    
92 root 1.159 When this parameter is specified, then the C<on_prepare>,
93     C<on_connect_error> and C<on_connect> callbacks will be called under the
94     appropriate circumstances:
95    
96     =over 4
97    
98     =item on_prepare => $cb->($handle)
99    
100     This (rarely used) callback is called before a new connection is
101     attempted, but after the file handle has been created. It could be used to
102     prepare the file handle with parameters required for the actual connect
103     (as opposed to settings that can be changed when the connection is already
104     established).
105    
106 root 1.161 The return value of this callback should be the connect timeout value in
107     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108     timeout is to be used).
109    
110 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
111    
112     This callback is called when a connection has been successfully established.
113    
114     The actual numeric host and port (the socket peername) are passed as
115     parameters, together with a retry callback.
116    
117     When, for some reason, the handle is not acceptable, then calling
118     C<$retry> will continue with the next conenction target (in case of
119     multi-homed hosts or SRV records there can be multiple connection
120     endpoints). When it is called then the read and write queues, eof status,
121     tls status and similar properties of the handle are being reset.
122    
123     In most cases, ignoring the C<$retry> parameter is the way to go.
124 root 1.158
125 root 1.159 =item on_connect_error => $cb->($handle, $message)
126 root 1.10
127 root 1.159 This callback is called when the conenction could not be
128     established. C<$!> will contain the relevant error code, and C<$message> a
129     message describing it (usually the same as C<"$!">).
130 root 1.8
131 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
132     fatal error instead.
133 root 1.82
134 root 1.159 =back
135 root 1.80
136 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
137 root 1.10
138 root 1.52 This is the error callback, which is called when, well, some error
139     occured, such as not being able to resolve the hostname, failure to
140     connect or a read error.
141    
142     Some errors are fatal (which is indicated by C<$fatal> being true). On
143 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
144     destroy >>) after invoking the error callback (which means you are free to
145     examine the handle object). Examples of fatal errors are an EOF condition
146 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147     cases where the other side can close the connection at their will it is
148     often easiest to not report C<EPIPE> errors in this callback.
149 root 1.82
150 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
151     against, but in some cases (TLS errors), this does not work well. It is
152     recommended to always output the C<$message> argument in human-readable
153     error messages (it's usually the same as C<"$!">).
154    
155 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
156     to simply ignore this parameter and instead abondon the handle object
157     when this callback is invoked. Examples of non-fatal errors are timeouts
158     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159 root 1.8
160 root 1.10 On callback entrance, the value of C<$!> contains the operating system
161 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162     C<EPROTO>).
163 root 1.8
164 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
165     you will not be notified of errors otherwise. The default simply calls
166 root 1.52 C<croak>.
167 root 1.8
168 root 1.40 =item on_read => $cb->($handle)
169 root 1.8
170     This sets the default read callback, which is called when data arrives
171 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
172     callback will only be called when at least one octet of data is in the
173     read buffer).
174 root 1.8
175     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
177 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
178     the beginning from it.
179 root 1.8
180     When an EOF condition is detected then AnyEvent::Handle will first try to
181     feed all the remaining data to the queued callbacks and C<on_read> before
182     calling the C<on_eof> callback. If no progress can be made, then a fatal
183     error will be raised (with C<$!> set to C<EPIPE>).
184 elmex 1.1
185 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
186     doesn't mean you I<require> some data: if there is an EOF and there
187     are outstanding read requests then an error will be flagged. With an
188     C<on_read> callback, the C<on_eof> callback will be invoked.
189    
190 root 1.159 =item on_eof => $cb->($handle)
191    
192     Set the callback to be called when an end-of-file condition is detected,
193     i.e. in the case of a socket, when the other side has closed the
194     connection cleanly, and there are no outstanding read requests in the
195     queue (if there are read requests, then an EOF counts as an unexpected
196     connection close and will be flagged as an error).
197    
198     For sockets, this just means that the other side has stopped sending data,
199     you can still try to write data, and, in fact, one can return from the EOF
200     callback and continue writing data, as only the read part has been shut
201     down.
202    
203     If an EOF condition has been detected but no C<on_eof> callback has been
204     set, then a fatal error will be raised with C<$!> set to <0>.
205    
206 root 1.40 =item on_drain => $cb->($handle)
207 elmex 1.1
208 root 1.8 This sets the callback that is called when the write buffer becomes empty
209     (or when the callback is set and the buffer is empty already).
210 elmex 1.1
211 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
212 elmex 1.2
213 root 1.69 This callback is useful when you don't want to put all of your write data
214     into the queue at once, for example, when you want to write the contents
215     of some file to the socket you might not want to read the whole file into
216     memory and push it into the queue, but instead only read more data from
217     the file when the write queue becomes empty.
218    
219 root 1.43 =item timeout => $fractional_seconds
220    
221     If non-zero, then this enables an "inactivity" timeout: whenever this many
222     seconds pass without a successful read or write on the underlying file
223     handle, the C<on_timeout> callback will be invoked (and if that one is
224 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
225 root 1.43
226     Note that timeout processing is also active when you currently do not have
227     any outstanding read or write requests: If you plan to keep the connection
228     idle then you should disable the timout temporarily or ignore the timeout
229 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230     restart the timeout.
231 root 1.43
232     Zero (the default) disables this timeout.
233    
234     =item on_timeout => $cb->($handle)
235    
236     Called whenever the inactivity timeout passes. If you return from this
237     callback, then the timeout will be reset as if some activity had happened,
238     so this condition is not fatal in any way.
239    
240 root 1.8 =item rbuf_max => <bytes>
241 elmex 1.2
242 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
243     when the read buffer ever (strictly) exceeds this size. This is useful to
244 root 1.88 avoid some forms of denial-of-service attacks.
245 elmex 1.2
246 root 1.8 For example, a server accepting connections from untrusted sources should
247     be configured to accept only so-and-so much data that it cannot act on
248     (for example, when expecting a line, an attacker could send an unlimited
249     amount of data without a callback ever being called as long as the line
250     isn't finished).
251 elmex 1.2
252 root 1.70 =item autocork => <boolean>
253    
254     When disabled (the default), then C<push_write> will try to immediately
255 root 1.88 write the data to the handle, if possible. This avoids having to register
256     a write watcher and wait for the next event loop iteration, but can
257     be inefficient if you write multiple small chunks (on the wire, this
258     disadvantage is usually avoided by your kernel's nagle algorithm, see
259     C<no_delay>, but this option can save costly syscalls).
260 root 1.70
261     When enabled, then writes will always be queued till the next event loop
262     iteration. This is efficient when you do many small writes per iteration,
263 root 1.88 but less efficient when you do a single write only per iteration (or when
264     the write buffer often is full). It also increases write latency.
265 root 1.70
266     =item no_delay => <boolean>
267    
268     When doing small writes on sockets, your operating system kernel might
269     wait a bit for more data before actually sending it out. This is called
270     the Nagle algorithm, and usually it is beneficial.
271    
272 root 1.88 In some situations you want as low a delay as possible, which can be
273     accomplishd by setting this option to a true value.
274 root 1.70
275 root 1.88 The default is your opertaing system's default behaviour (most likely
276     enabled), this option explicitly enables or disables it, if possible.
277 root 1.70
278 root 1.8 =item read_size => <bytes>
279 elmex 1.2
280 root 1.88 The default read block size (the amount of bytes this module will
281     try to read during each loop iteration, which affects memory
282     requirements). Default: C<8192>.
283 root 1.8
284     =item low_water_mark => <bytes>
285    
286     Sets the amount of bytes (default: C<0>) that make up an "empty" write
287     buffer: If the write reaches this size or gets even samller it is
288     considered empty.
289 elmex 1.2
290 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
291     the write buffer before it is fully drained, but this is a rare case, as
292     the operating system kernel usually buffers data as well, so the default
293     is good in almost all cases.
294    
295 root 1.62 =item linger => <seconds>
296    
297     If non-zero (default: C<3600>), then the destructor of the
298 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
299     write data and will install a watcher that will write this data to the
300     socket. No errors will be reported (this mostly matches how the operating
301     system treats outstanding data at socket close time).
302 root 1.62
303 root 1.88 This will not work for partial TLS data that could not be encoded
304 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
305     help.
306 root 1.62
307 root 1.133 =item peername => $string
308    
309 root 1.134 A string used to identify the remote site - usually the DNS hostname
310     (I<not> IDN!) used to create the connection, rarely the IP address.
311 root 1.131
312 root 1.133 Apart from being useful in error messages, this string is also used in TLS
313 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314     verification will be skipped when C<peername> is not specified or
315     C<undef>.
316 root 1.131
317 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
318    
319 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
320 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
321     established and will transparently encrypt/decrypt data afterwards.
322 root 1.19
323 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
324     appropriate error message.
325    
326 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
327 root 1.88 automatically when you try to create a TLS handle): this module doesn't
328     have a dependency on that module, so if your module requires it, you have
329     to add the dependency yourself.
330 root 1.26
331 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
332     C<accept>, and for the TLS client side of a connection, use C<connect>
333     mode.
334 root 1.19
335     You can also provide your own TLS connection object, but you have
336     to make sure that you call either C<Net::SSLeay::set_connect_state>
337     or C<Net::SSLeay::set_accept_state> on it before you pass it to
338 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
339     object.
340    
341     At some future point, AnyEvent::Handle might switch to another TLS
342     implementation, then the option to use your own session object will go
343     away.
344 root 1.19
345 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346     passing in the wrong integer will lead to certain crash. This most often
347     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348     segmentation fault.
349    
350 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
351 root 1.26
352 root 1.131 =item tls_ctx => $anyevent_tls
353 root 1.19
354 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
355 root 1.19 (unless a connection object was specified directly). If this parameter is
356     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357    
358 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
359     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360     new TLS context object.
361    
362 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
363 root 1.142
364     This callback will be invoked when the TLS/SSL handshake has finished. If
365     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366     (C<on_stoptls> will not be called in this case).
367    
368     The session in C<< $handle->{tls} >> can still be examined in this
369     callback, even when the handshake was not successful.
370    
371 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
372     callback is in effect, instead, the error message will be passed to C<on_starttls>.
373    
374     Without this callback, handshake failures lead to C<on_error> being
375     called, as normal.
376    
377     Note that you cannot call C<starttls> right again in this callback. If you
378     need to do that, start an zero-second timer instead whose callback can
379     then call C<< ->starttls >> again.
380    
381 root 1.142 =item on_stoptls => $cb->($handle)
382    
383     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384     set, then it will be invoked after freeing the TLS session. If it is not,
385     then a TLS shutdown condition will be treated like a normal EOF condition
386     on the handle.
387    
388     The session in C<< $handle->{tls} >> can still be examined in this
389     callback.
390    
391     This callback will only be called on TLS shutdowns, not when the
392     underlying handle signals EOF.
393    
394 root 1.40 =item json => JSON or JSON::XS object
395    
396     This is the json coder object used by the C<json> read and write types.
397    
398 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
399 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
400     texts.
401 root 1.40
402     Note that you are responsible to depend on the JSON module if you want to
403     use this functionality, as AnyEvent does not have a dependency itself.
404    
405 elmex 1.1 =back
406    
407     =cut
408    
409     sub new {
410 root 1.8 my $class = shift;
411     my $self = bless { @_ }, $class;
412    
413 root 1.159 if ($self->{fh}) {
414     $self->_start;
415     return unless $self->{fh}; # could be gone by now
416    
417     } elsif ($self->{connect}) {
418     require AnyEvent::Socket;
419    
420     $self->{peername} = $self->{connect}[0]
421     unless exists $self->{peername};
422    
423     $self->{_skip_drain_rbuf} = 1;
424    
425     {
426     Scalar::Util::weaken (my $self = $self);
427    
428     $self->{_connect} =
429     AnyEvent::Socket::tcp_connect (
430     $self->{connect}[0],
431     $self->{connect}[1],
432     sub {
433     my ($fh, $host, $port, $retry) = @_;
434    
435     if ($fh) {
436     $self->{fh} = $fh;
437    
438     delete $self->{_skip_drain_rbuf};
439     $self->_start;
440    
441     $self->{on_connect}
442     and $self->{on_connect}($self, $host, $port, sub {
443     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444     $self->{_skip_drain_rbuf} = 1;
445     &$retry;
446     });
447    
448     } else {
449     if ($self->{on_connect_error}) {
450     $self->{on_connect_error}($self, "$!");
451     $self->destroy;
452     } else {
453 root 1.161 $self->_error ($!, 1);
454 root 1.159 }
455     }
456     },
457     sub {
458     local $self->{fh} = $_[0];
459    
460 root 1.161 $self->{on_prepare}
461     ? $self->{on_prepare}->($self)
462     : ()
463 root 1.159 }
464     );
465     }
466    
467     } else {
468     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469     }
470    
471     $self
472     }
473    
474     sub _start {
475     my ($self) = @_;
476 root 1.8
477     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478 elmex 1.1
479 root 1.131 $self->{_activity} = AnyEvent->now;
480     $self->_timeout;
481    
482     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483    
484 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485     if $self->{tls};
486 root 1.19
487 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488 root 1.10
489 root 1.66 $self->start_read
490 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
491 root 1.160
492     $self->_drain_wbuf;
493 root 1.8 }
494 elmex 1.2
495 root 1.149 #sub _shutdown {
496     # my ($self) = @_;
497     #
498     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
499     # $self->{_eof} = 1; # tell starttls et. al to stop trying
500     #
501     # &_freetls;
502     #}
503 root 1.8
504 root 1.52 sub _error {
505 root 1.133 my ($self, $errno, $fatal, $message) = @_;
506 root 1.8
507 root 1.52 $! = $errno;
508 root 1.133 $message ||= "$!";
509 root 1.37
510 root 1.52 if ($self->{on_error}) {
511 root 1.133 $self->{on_error}($self, $fatal, $message);
512 root 1.151 $self->destroy if $fatal;
513 root 1.100 } elsif ($self->{fh}) {
514 root 1.149 $self->destroy;
515 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
516 root 1.52 }
517 elmex 1.1 }
518    
519 root 1.8 =item $fh = $handle->fh
520 elmex 1.1
521 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
522 elmex 1.1
523     =cut
524    
525 root 1.38 sub fh { $_[0]{fh} }
526 elmex 1.1
527 root 1.8 =item $handle->on_error ($cb)
528 elmex 1.1
529 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
530 elmex 1.1
531 root 1.8 =cut
532    
533     sub on_error {
534     $_[0]{on_error} = $_[1];
535     }
536    
537     =item $handle->on_eof ($cb)
538    
539     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
540 elmex 1.1
541     =cut
542    
543 root 1.8 sub on_eof {
544     $_[0]{on_eof} = $_[1];
545     }
546    
547 root 1.43 =item $handle->on_timeout ($cb)
548    
549 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
550     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
551     argument and method.
552 root 1.43
553     =cut
554    
555     sub on_timeout {
556     $_[0]{on_timeout} = $_[1];
557     }
558    
559 root 1.70 =item $handle->autocork ($boolean)
560    
561     Enables or disables the current autocork behaviour (see C<autocork>
562 root 1.105 constructor argument). Changes will only take effect on the next write.
563 root 1.70
564     =cut
565    
566 root 1.105 sub autocork {
567     $_[0]{autocork} = $_[1];
568     }
569    
570 root 1.70 =item $handle->no_delay ($boolean)
571    
572     Enables or disables the C<no_delay> setting (see constructor argument of
573     the same name for details).
574    
575     =cut
576    
577     sub no_delay {
578     $_[0]{no_delay} = $_[1];
579    
580     eval {
581     local $SIG{__DIE__};
582 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583     if $_[0]{fh};
584 root 1.70 };
585     }
586    
587 root 1.142 =item $handle->on_starttls ($cb)
588    
589     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590    
591     =cut
592    
593     sub on_starttls {
594     $_[0]{on_starttls} = $_[1];
595     }
596    
597     =item $handle->on_stoptls ($cb)
598    
599     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600    
601     =cut
602    
603     sub on_starttls {
604     $_[0]{on_stoptls} = $_[1];
605     }
606    
607 root 1.43 #############################################################################
608    
609     =item $handle->timeout ($seconds)
610    
611     Configures (or disables) the inactivity timeout.
612    
613     =cut
614    
615     sub timeout {
616     my ($self, $timeout) = @_;
617    
618     $self->{timeout} = $timeout;
619     $self->_timeout;
620     }
621    
622     # reset the timeout watcher, as neccessary
623     # also check for time-outs
624     sub _timeout {
625     my ($self) = @_;
626    
627 root 1.159 if ($self->{timeout} && $self->{fh}) {
628 root 1.44 my $NOW = AnyEvent->now;
629 root 1.43
630     # when would the timeout trigger?
631     my $after = $self->{_activity} + $self->{timeout} - $NOW;
632    
633     # now or in the past already?
634     if ($after <= 0) {
635     $self->{_activity} = $NOW;
636    
637     if ($self->{on_timeout}) {
638 root 1.48 $self->{on_timeout}($self);
639 root 1.43 } else {
640 root 1.150 $self->_error (Errno::ETIMEDOUT);
641 root 1.43 }
642    
643 root 1.56 # callback could have changed timeout value, optimise
644 root 1.43 return unless $self->{timeout};
645    
646     # calculate new after
647     $after = $self->{timeout};
648     }
649    
650     Scalar::Util::weaken $self;
651 root 1.56 return unless $self; # ->error could have destroyed $self
652 root 1.43
653     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
654     delete $self->{_tw};
655     $self->_timeout;
656     });
657     } else {
658     delete $self->{_tw};
659     }
660     }
661    
662 root 1.9 #############################################################################
663    
664     =back
665    
666     =head2 WRITE QUEUE
667    
668     AnyEvent::Handle manages two queues per handle, one for writing and one
669     for reading.
670    
671     The write queue is very simple: you can add data to its end, and
672     AnyEvent::Handle will automatically try to get rid of it for you.
673    
674 elmex 1.20 When data could be written and the write buffer is shorter then the low
675 root 1.9 water mark, the C<on_drain> callback will be invoked.
676    
677     =over 4
678    
679 root 1.8 =item $handle->on_drain ($cb)
680    
681     Sets the C<on_drain> callback or clears it (see the description of
682     C<on_drain> in the constructor).
683    
684     =cut
685    
686     sub on_drain {
687 elmex 1.1 my ($self, $cb) = @_;
688    
689 root 1.8 $self->{on_drain} = $cb;
690    
691     $cb->($self)
692 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
693 root 1.8 }
694    
695     =item $handle->push_write ($data)
696    
697     Queues the given scalar to be written. You can push as much data as you
698     want (only limited by the available memory), as C<AnyEvent::Handle>
699     buffers it independently of the kernel.
700    
701     =cut
702    
703 root 1.17 sub _drain_wbuf {
704     my ($self) = @_;
705 root 1.8
706 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
707 root 1.35
708 root 1.8 Scalar::Util::weaken $self;
709 root 1.35
710 root 1.8 my $cb = sub {
711     my $len = syswrite $self->{fh}, $self->{wbuf};
712    
713 root 1.146 if (defined $len) {
714 root 1.8 substr $self->{wbuf}, 0, $len, "";
715    
716 root 1.44 $self->{_activity} = AnyEvent->now;
717 root 1.43
718 root 1.8 $self->{on_drain}($self)
719 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
720 root 1.8 && $self->{on_drain};
721    
722 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
723 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
724 root 1.52 $self->_error ($!, 1);
725 elmex 1.1 }
726 root 1.8 };
727    
728 root 1.35 # try to write data immediately
729 root 1.70 $cb->() unless $self->{autocork};
730 root 1.8
731 root 1.35 # if still data left in wbuf, we need to poll
732 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
733 root 1.35 if length $self->{wbuf};
734 root 1.8 };
735     }
736    
737 root 1.30 our %WH;
738    
739     sub register_write_type($$) {
740     $WH{$_[0]} = $_[1];
741     }
742    
743 root 1.17 sub push_write {
744     my $self = shift;
745    
746 root 1.29 if (@_ > 1) {
747     my $type = shift;
748    
749     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
750     ->($self, @_);
751     }
752    
753 root 1.93 if ($self->{tls}) {
754     $self->{_tls_wbuf} .= $_[0];
755 root 1.160 &_dotls ($self) if $self->{fh};
756 root 1.17 } else {
757 root 1.160 $self->{wbuf} .= $_[0];
758 root 1.159 $self->_drain_wbuf if $self->{fh};
759 root 1.17 }
760     }
761    
762 root 1.29 =item $handle->push_write (type => @args)
763    
764     Instead of formatting your data yourself, you can also let this module do
765     the job by specifying a type and type-specific arguments.
766    
767 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
768     drop by and tell us):
769 root 1.29
770     =over 4
771    
772     =item netstring => $string
773    
774     Formats the given value as netstring
775     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
776    
777     =cut
778    
779     register_write_type netstring => sub {
780     my ($self, $string) = @_;
781    
782 root 1.96 (length $string) . ":$string,"
783 root 1.29 };
784    
785 root 1.61 =item packstring => $format, $data
786    
787     An octet string prefixed with an encoded length. The encoding C<$format>
788     uses the same format as a Perl C<pack> format, but must specify a single
789     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
790     optional C<!>, C<< < >> or C<< > >> modifier).
791    
792     =cut
793    
794     register_write_type packstring => sub {
795     my ($self, $format, $string) = @_;
796    
797 root 1.65 pack "$format/a*", $string
798 root 1.61 };
799    
800 root 1.39 =item json => $array_or_hashref
801    
802 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
803     provide your own JSON object, this means it will be encoded to JSON text
804     in UTF-8.
805    
806     JSON objects (and arrays) are self-delimiting, so you can write JSON at
807     one end of a handle and read them at the other end without using any
808     additional framing.
809    
810 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
811     this module doesn't need delimiters after or between JSON texts to be
812     able to read them, many other languages depend on that.
813    
814     A simple RPC protocol that interoperates easily with others is to send
815     JSON arrays (or objects, although arrays are usually the better choice as
816     they mimic how function argument passing works) and a newline after each
817     JSON text:
818    
819     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
820     $handle->push_write ("\012");
821    
822     An AnyEvent::Handle receiver would simply use the C<json> read type and
823     rely on the fact that the newline will be skipped as leading whitespace:
824    
825     $handle->push_read (json => sub { my $array = $_[1]; ... });
826    
827     Other languages could read single lines terminated by a newline and pass
828     this line into their JSON decoder of choice.
829    
830 root 1.40 =cut
831    
832     register_write_type json => sub {
833     my ($self, $ref) = @_;
834    
835     require JSON;
836    
837     $self->{json} ? $self->{json}->encode ($ref)
838     : JSON::encode_json ($ref)
839     };
840    
841 root 1.63 =item storable => $reference
842    
843     Freezes the given reference using L<Storable> and writes it to the
844     handle. Uses the C<nfreeze> format.
845    
846     =cut
847    
848     register_write_type storable => sub {
849     my ($self, $ref) = @_;
850    
851     require Storable;
852    
853 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
854 root 1.63 };
855    
856 root 1.53 =back
857    
858 root 1.133 =item $handle->push_shutdown
859    
860     Sometimes you know you want to close the socket after writing your data
861     before it was actually written. One way to do that is to replace your
862 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
863     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864     replaces the C<on_drain> callback with:
865 root 1.133
866     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867    
868     This simply shuts down the write side and signals an EOF condition to the
869     the peer.
870    
871     You can rely on the normal read queue and C<on_eof> handling
872     afterwards. This is the cleanest way to close a connection.
873    
874     =cut
875    
876     sub push_shutdown {
877 root 1.142 my ($self) = @_;
878    
879     delete $self->{low_water_mark};
880     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881 root 1.133 }
882    
883 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
884 root 1.30
885     This function (not method) lets you add your own types to C<push_write>.
886     Whenever the given C<type> is used, C<push_write> will invoke the code
887     reference with the handle object and the remaining arguments.
888 root 1.29
889 root 1.30 The code reference is supposed to return a single octet string that will
890     be appended to the write buffer.
891 root 1.29
892 root 1.30 Note that this is a function, and all types registered this way will be
893     global, so try to use unique names.
894 root 1.29
895 root 1.30 =cut
896 root 1.29
897 root 1.8 #############################################################################
898    
899 root 1.9 =back
900    
901     =head2 READ QUEUE
902    
903     AnyEvent::Handle manages two queues per handle, one for writing and one
904     for reading.
905    
906     The read queue is more complex than the write queue. It can be used in two
907     ways, the "simple" way, using only C<on_read> and the "complex" way, using
908     a queue.
909    
910     In the simple case, you just install an C<on_read> callback and whenever
911     new data arrives, it will be called. You can then remove some data (if
912 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
913     leave the data there if you want to accumulate more (e.g. when only a
914     partial message has been received so far).
915 root 1.9
916     In the more complex case, you want to queue multiple callbacks. In this
917     case, AnyEvent::Handle will call the first queued callback each time new
918 root 1.61 data arrives (also the first time it is queued) and removes it when it has
919     done its job (see C<push_read>, below).
920 root 1.9
921     This way you can, for example, push three line-reads, followed by reading
922     a chunk of data, and AnyEvent::Handle will execute them in order.
923    
924     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
925     the specified number of bytes which give an XML datagram.
926    
927     # in the default state, expect some header bytes
928     $handle->on_read (sub {
929     # some data is here, now queue the length-header-read (4 octets)
930 root 1.52 shift->unshift_read (chunk => 4, sub {
931 root 1.9 # header arrived, decode
932     my $len = unpack "N", $_[1];
933    
934     # now read the payload
935 root 1.52 shift->unshift_read (chunk => $len, sub {
936 root 1.9 my $xml = $_[1];
937     # handle xml
938     });
939     });
940     });
941    
942 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
943     and another line or "ERROR" for the first request that is sent, and 64
944     bytes for the second request. Due to the availability of a queue, we can
945     just pipeline sending both requests and manipulate the queue as necessary
946     in the callbacks.
947    
948     When the first callback is called and sees an "OK" response, it will
949     C<unshift> another line-read. This line-read will be queued I<before> the
950     64-byte chunk callback.
951 root 1.9
952 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
953 root 1.9 $handle->push_write ("request 1\015\012");
954    
955     # we expect "ERROR" or "OK" as response, so push a line read
956 root 1.52 $handle->push_read (line => sub {
957 root 1.9 # if we got an "OK", we have to _prepend_ another line,
958     # so it will be read before the second request reads its 64 bytes
959     # which are already in the queue when this callback is called
960     # we don't do this in case we got an error
961     if ($_[1] eq "OK") {
962 root 1.52 $_[0]->unshift_read (line => sub {
963 root 1.9 my $response = $_[1];
964     ...
965     });
966     }
967     });
968    
969 root 1.69 # request two, simply returns 64 octets
970 root 1.9 $handle->push_write ("request 2\015\012");
971    
972     # simply read 64 bytes, always
973 root 1.52 $handle->push_read (chunk => 64, sub {
974 root 1.9 my $response = $_[1];
975     ...
976     });
977    
978     =over 4
979    
980 root 1.10 =cut
981    
982 root 1.8 sub _drain_rbuf {
983     my ($self) = @_;
984 elmex 1.1
985 root 1.159 # avoid recursion
986     return if exists $self->{_skip_drain_rbuf};
987     local $self->{_skip_drain_rbuf} = 1;
988 root 1.59
989 root 1.17 if (
990     defined $self->{rbuf_max}
991     && $self->{rbuf_max} < length $self->{rbuf}
992     ) {
993 root 1.150 $self->_error (Errno::ENOSPC, 1), return;
994 root 1.17 }
995    
996 root 1.59 while () {
997 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
998     # we are draining the buffer, and this can only happen with TLS.
999 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000     if exists $self->{_tls_rbuf};
1001 root 1.115
1002 root 1.59 my $len = length $self->{rbuf};
1003 elmex 1.1
1004 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1005 root 1.29 unless ($cb->($self)) {
1006 root 1.163 # no progress can be made
1007     # (not enough data and no data forthcoming)
1008     $self->_error (Errno::EPIPE, 1), return
1009     if $self->{_eof};
1010 root 1.10
1011 root 1.38 unshift @{ $self->{_queue} }, $cb;
1012 root 1.55 last;
1013 root 1.8 }
1014     } elsif ($self->{on_read}) {
1015 root 1.61 last unless $len;
1016    
1017 root 1.8 $self->{on_read}($self);
1018    
1019     if (
1020 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1021     && !@{ $self->{_queue} } # and the queue is still empty
1022     && $self->{on_read} # but we still have on_read
1023 root 1.8 ) {
1024 root 1.55 # no further data will arrive
1025     # so no progress can be made
1026 root 1.150 $self->_error (Errno::EPIPE, 1), return
1027 root 1.55 if $self->{_eof};
1028    
1029     last; # more data might arrive
1030 elmex 1.1 }
1031 root 1.8 } else {
1032     # read side becomes idle
1033 root 1.93 delete $self->{_rw} unless $self->{tls};
1034 root 1.55 last;
1035 root 1.8 }
1036     }
1037    
1038 root 1.80 if ($self->{_eof}) {
1039 root 1.163 $self->{on_eof}
1040     ? $self->{on_eof}($self)
1041     : $self->_error (0, 1, "Unexpected end-of-file");
1042    
1043     return;
1044 root 1.80 }
1045 root 1.55
1046     # may need to restart read watcher
1047     unless ($self->{_rw}) {
1048     $self->start_read
1049     if $self->{on_read} || @{ $self->{_queue} };
1050     }
1051 elmex 1.1 }
1052    
1053 root 1.8 =item $handle->on_read ($cb)
1054 elmex 1.1
1055 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1056     the new callback is C<undef>). See the description of C<on_read> in the
1057     constructor.
1058 elmex 1.1
1059 root 1.8 =cut
1060    
1061     sub on_read {
1062     my ($self, $cb) = @_;
1063 elmex 1.1
1064 root 1.8 $self->{on_read} = $cb;
1065 root 1.159 $self->_drain_rbuf if $cb;
1066 elmex 1.1 }
1067    
1068 root 1.8 =item $handle->rbuf
1069    
1070     Returns the read buffer (as a modifiable lvalue).
1071 elmex 1.1
1072 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1073     member, if you want. However, the only operation allowed on the
1074     read buffer (apart from looking at it) is removing data from its
1075     beginning. Otherwise modifying or appending to it is not allowed and will
1076     lead to hard-to-track-down bugs.
1077 elmex 1.1
1078 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1079     C<push_read> or C<unshift_read> methods are used. The other read methods
1080     automatically manage the read buffer.
1081 elmex 1.1
1082     =cut
1083    
1084 elmex 1.2 sub rbuf : lvalue {
1085 root 1.8 $_[0]{rbuf}
1086 elmex 1.2 }
1087 elmex 1.1
1088 root 1.8 =item $handle->push_read ($cb)
1089    
1090     =item $handle->unshift_read ($cb)
1091    
1092     Append the given callback to the end of the queue (C<push_read>) or
1093     prepend it (C<unshift_read>).
1094    
1095     The callback is called each time some additional read data arrives.
1096 elmex 1.1
1097 elmex 1.20 It must check whether enough data is in the read buffer already.
1098 elmex 1.1
1099 root 1.8 If not enough data is available, it must return the empty list or a false
1100     value, in which case it will be called repeatedly until enough data is
1101     available (or an error condition is detected).
1102    
1103     If enough data was available, then the callback must remove all data it is
1104     interested in (which can be none at all) and return a true value. After returning
1105     true, it will be removed from the queue.
1106 elmex 1.1
1107     =cut
1108    
1109 root 1.30 our %RH;
1110    
1111     sub register_read_type($$) {
1112     $RH{$_[0]} = $_[1];
1113     }
1114    
1115 root 1.8 sub push_read {
1116 root 1.28 my $self = shift;
1117     my $cb = pop;
1118    
1119     if (@_) {
1120     my $type = shift;
1121    
1122     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1123     ->($self, $cb, @_);
1124     }
1125 elmex 1.1
1126 root 1.38 push @{ $self->{_queue} }, $cb;
1127 root 1.159 $self->_drain_rbuf;
1128 elmex 1.1 }
1129    
1130 root 1.8 sub unshift_read {
1131 root 1.28 my $self = shift;
1132     my $cb = pop;
1133    
1134     if (@_) {
1135     my $type = shift;
1136    
1137     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1138     ->($self, $cb, @_);
1139     }
1140    
1141 root 1.8
1142 root 1.38 unshift @{ $self->{_queue} }, $cb;
1143 root 1.159 $self->_drain_rbuf;
1144 root 1.8 }
1145 elmex 1.1
1146 root 1.28 =item $handle->push_read (type => @args, $cb)
1147 elmex 1.1
1148 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1149 elmex 1.1
1150 root 1.28 Instead of providing a callback that parses the data itself you can chose
1151     between a number of predefined parsing formats, for chunks of data, lines
1152     etc.
1153 elmex 1.1
1154 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1155     drop by and tell us):
1156 root 1.28
1157     =over 4
1158    
1159 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1160 root 1.28
1161     Invoke the callback only once C<$octets> bytes have been read. Pass the
1162     data read to the callback. The callback will never be called with less
1163     data.
1164    
1165     Example: read 2 bytes.
1166    
1167     $handle->push_read (chunk => 2, sub {
1168     warn "yay ", unpack "H*", $_[1];
1169     });
1170 elmex 1.1
1171     =cut
1172    
1173 root 1.28 register_read_type chunk => sub {
1174     my ($self, $cb, $len) = @_;
1175 elmex 1.1
1176 root 1.8 sub {
1177     $len <= length $_[0]{rbuf} or return;
1178 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1179 root 1.8 1
1180     }
1181 root 1.28 };
1182 root 1.8
1183 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1184 elmex 1.1
1185 root 1.8 The callback will be called only once a full line (including the end of
1186     line marker, C<$eol>) has been read. This line (excluding the end of line
1187     marker) will be passed to the callback as second argument (C<$line>), and
1188     the end of line marker as the third argument (C<$eol>).
1189 elmex 1.1
1190 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1191     will be interpreted as a fixed record end marker, or it can be a regex
1192     object (e.g. created by C<qr>), in which case it is interpreted as a
1193     regular expression.
1194 elmex 1.1
1195 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1196     undef), then C<qr|\015?\012|> is used (which is good for most internet
1197     protocols).
1198 elmex 1.1
1199 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1200     not marked by the end of line marker.
1201 elmex 1.1
1202 root 1.8 =cut
1203 elmex 1.1
1204 root 1.28 register_read_type line => sub {
1205     my ($self, $cb, $eol) = @_;
1206 elmex 1.1
1207 root 1.76 if (@_ < 3) {
1208     # this is more than twice as fast as the generic code below
1209     sub {
1210     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1211 elmex 1.1
1212 root 1.76 $cb->($_[0], $1, $2);
1213     1
1214     }
1215     } else {
1216     $eol = quotemeta $eol unless ref $eol;
1217     $eol = qr|^(.*?)($eol)|s;
1218    
1219     sub {
1220     $_[0]{rbuf} =~ s/$eol// or return;
1221 elmex 1.1
1222 root 1.76 $cb->($_[0], $1, $2);
1223     1
1224     }
1225 root 1.8 }
1226 root 1.28 };
1227 elmex 1.1
1228 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1229 root 1.36
1230     Makes a regex match against the regex object C<$accept> and returns
1231     everything up to and including the match.
1232    
1233     Example: read a single line terminated by '\n'.
1234    
1235     $handle->push_read (regex => qr<\n>, sub { ... });
1236    
1237     If C<$reject> is given and not undef, then it determines when the data is
1238     to be rejected: it is matched against the data when the C<$accept> regex
1239     does not match and generates an C<EBADMSG> error when it matches. This is
1240     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1241     receive buffer overflow).
1242    
1243     Example: expect a single decimal number followed by whitespace, reject
1244     anything else (not the use of an anchor).
1245    
1246     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1247    
1248     If C<$skip> is given and not C<undef>, then it will be matched against
1249     the receive buffer when neither C<$accept> nor C<$reject> match,
1250     and everything preceding and including the match will be accepted
1251     unconditionally. This is useful to skip large amounts of data that you
1252     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1253     have to start matching from the beginning. This is purely an optimisation
1254     and is usually worth only when you expect more than a few kilobytes.
1255    
1256     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1257     expect the header to be very large (it isn't in practise, but...), we use
1258     a skip regex to skip initial portions. The skip regex is tricky in that
1259     it only accepts something not ending in either \015 or \012, as these are
1260     required for the accept regex.
1261    
1262     $handle->push_read (regex =>
1263     qr<\015\012\015\012>,
1264     undef, # no reject
1265     qr<^.*[^\015\012]>,
1266     sub { ... });
1267    
1268     =cut
1269    
1270     register_read_type regex => sub {
1271     my ($self, $cb, $accept, $reject, $skip) = @_;
1272    
1273     my $data;
1274     my $rbuf = \$self->{rbuf};
1275    
1276     sub {
1277     # accept
1278     if ($$rbuf =~ $accept) {
1279     $data .= substr $$rbuf, 0, $+[0], "";
1280     $cb->($self, $data);
1281     return 1;
1282     }
1283    
1284     # reject
1285     if ($reject && $$rbuf =~ $reject) {
1286 root 1.150 $self->_error (Errno::EBADMSG);
1287 root 1.36 }
1288    
1289     # skip
1290     if ($skip && $$rbuf =~ $skip) {
1291     $data .= substr $$rbuf, 0, $+[0], "";
1292     }
1293    
1294     ()
1295     }
1296     };
1297    
1298 root 1.61 =item netstring => $cb->($handle, $string)
1299    
1300     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1301    
1302     Throws an error with C<$!> set to EBADMSG on format violations.
1303    
1304     =cut
1305    
1306     register_read_type netstring => sub {
1307     my ($self, $cb) = @_;
1308    
1309     sub {
1310     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1311     if ($_[0]{rbuf} =~ /[^0-9]/) {
1312 root 1.150 $self->_error (Errno::EBADMSG);
1313 root 1.61 }
1314     return;
1315     }
1316    
1317     my $len = $1;
1318    
1319     $self->unshift_read (chunk => $len, sub {
1320     my $string = $_[1];
1321     $_[0]->unshift_read (chunk => 1, sub {
1322     if ($_[1] eq ",") {
1323     $cb->($_[0], $string);
1324     } else {
1325 root 1.150 $self->_error (Errno::EBADMSG);
1326 root 1.61 }
1327     });
1328     });
1329    
1330     1
1331     }
1332     };
1333    
1334     =item packstring => $format, $cb->($handle, $string)
1335    
1336     An octet string prefixed with an encoded length. The encoding C<$format>
1337     uses the same format as a Perl C<pack> format, but must specify a single
1338     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1339     optional C<!>, C<< < >> or C<< > >> modifier).
1340    
1341 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1342     EPP uses a prefix of C<N> (4 octtes).
1343 root 1.61
1344     Example: read a block of data prefixed by its length in BER-encoded
1345     format (very efficient).
1346    
1347     $handle->push_read (packstring => "w", sub {
1348     my ($handle, $data) = @_;
1349     });
1350    
1351     =cut
1352    
1353     register_read_type packstring => sub {
1354     my ($self, $cb, $format) = @_;
1355    
1356     sub {
1357     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1358 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1359 root 1.61 or return;
1360    
1361 root 1.77 $format = length pack $format, $len;
1362 root 1.61
1363 root 1.77 # bypass unshift if we already have the remaining chunk
1364     if ($format + $len <= length $_[0]{rbuf}) {
1365     my $data = substr $_[0]{rbuf}, $format, $len;
1366     substr $_[0]{rbuf}, 0, $format + $len, "";
1367     $cb->($_[0], $data);
1368     } else {
1369     # remove prefix
1370     substr $_[0]{rbuf}, 0, $format, "";
1371    
1372     # read remaining chunk
1373     $_[0]->unshift_read (chunk => $len, $cb);
1374     }
1375 root 1.61
1376     1
1377     }
1378     };
1379    
1380 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1381    
1382 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1383     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1384 root 1.40
1385     If a C<json> object was passed to the constructor, then that will be used
1386     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1387    
1388     This read type uses the incremental parser available with JSON version
1389     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1390     dependency on your own: this module will load the JSON module, but
1391     AnyEvent does not depend on it itself.
1392    
1393     Since JSON texts are fully self-delimiting, the C<json> read and write
1394 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1395     the C<json> write type description, above, for an actual example.
1396 root 1.40
1397     =cut
1398    
1399     register_read_type json => sub {
1400 root 1.63 my ($self, $cb) = @_;
1401 root 1.40
1402 root 1.135 my $json = $self->{json} ||=
1403     eval { require JSON::XS; JSON::XS->new->utf8 }
1404     || do { require JSON; JSON->new->utf8 };
1405 root 1.40
1406     my $data;
1407     my $rbuf = \$self->{rbuf};
1408    
1409     sub {
1410 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1411 root 1.110
1412 root 1.113 if ($ref) {
1413     $self->{rbuf} = $json->incr_text;
1414     $json->incr_text = "";
1415     $cb->($self, $ref);
1416 root 1.110
1417     1
1418 root 1.113 } elsif ($@) {
1419 root 1.111 # error case
1420 root 1.110 $json->incr_skip;
1421 root 1.40
1422     $self->{rbuf} = $json->incr_text;
1423     $json->incr_text = "";
1424    
1425 root 1.150 $self->_error (Errno::EBADMSG);
1426 root 1.114
1427 root 1.113 ()
1428     } else {
1429     $self->{rbuf} = "";
1430 root 1.114
1431 root 1.113 ()
1432     }
1433 root 1.40 }
1434     };
1435    
1436 root 1.63 =item storable => $cb->($handle, $ref)
1437    
1438     Deserialises a L<Storable> frozen representation as written by the
1439     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1440     data).
1441    
1442     Raises C<EBADMSG> error if the data could not be decoded.
1443    
1444     =cut
1445    
1446     register_read_type storable => sub {
1447     my ($self, $cb) = @_;
1448    
1449     require Storable;
1450    
1451     sub {
1452     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1453 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1454 root 1.63 or return;
1455    
1456 root 1.77 my $format = length pack "w", $len;
1457 root 1.63
1458 root 1.77 # bypass unshift if we already have the remaining chunk
1459     if ($format + $len <= length $_[0]{rbuf}) {
1460     my $data = substr $_[0]{rbuf}, $format, $len;
1461     substr $_[0]{rbuf}, 0, $format + $len, "";
1462     $cb->($_[0], Storable::thaw ($data));
1463     } else {
1464     # remove prefix
1465     substr $_[0]{rbuf}, 0, $format, "";
1466    
1467     # read remaining chunk
1468     $_[0]->unshift_read (chunk => $len, sub {
1469     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1470     $cb->($_[0], $ref);
1471     } else {
1472 root 1.150 $self->_error (Errno::EBADMSG);
1473 root 1.77 }
1474     });
1475     }
1476    
1477     1
1478 root 1.63 }
1479     };
1480    
1481 root 1.28 =back
1482    
1483 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1484 root 1.30
1485     This function (not method) lets you add your own types to C<push_read>.
1486    
1487     Whenever the given C<type> is used, C<push_read> will invoke the code
1488     reference with the handle object, the callback and the remaining
1489     arguments.
1490    
1491     The code reference is supposed to return a callback (usually a closure)
1492     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1493    
1494     It should invoke the passed callback when it is done reading (remember to
1495 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1496 root 1.30
1497     Note that this is a function, and all types registered this way will be
1498     global, so try to use unique names.
1499    
1500     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1501     search for C<register_read_type>)).
1502    
1503 root 1.10 =item $handle->stop_read
1504    
1505     =item $handle->start_read
1506    
1507 root 1.18 In rare cases you actually do not want to read anything from the
1508 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1509 root 1.22 any queued callbacks will be executed then. To start reading again, call
1510 root 1.10 C<start_read>.
1511    
1512 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1513     you change the C<on_read> callback or push/unshift a read callback, and it
1514     will automatically C<stop_read> for you when neither C<on_read> is set nor
1515     there are any read requests in the queue.
1516    
1517 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1518     half-duplex connections).
1519    
1520 root 1.10 =cut
1521    
1522     sub stop_read {
1523     my ($self) = @_;
1524 elmex 1.1
1525 root 1.93 delete $self->{_rw} unless $self->{tls};
1526 root 1.8 }
1527 elmex 1.1
1528 root 1.10 sub start_read {
1529     my ($self) = @_;
1530    
1531 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1532 root 1.10 Scalar::Util::weaken $self;
1533    
1534 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1535 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1536 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1537 root 1.10
1538     if ($len > 0) {
1539 root 1.44 $self->{_activity} = AnyEvent->now;
1540 root 1.43
1541 root 1.93 if ($self->{tls}) {
1542     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1543 root 1.97
1544 root 1.93 &_dotls ($self);
1545     } else {
1546 root 1.159 $self->_drain_rbuf;
1547 root 1.93 }
1548 root 1.10
1549     } elsif (defined $len) {
1550 root 1.38 delete $self->{_rw};
1551     $self->{_eof} = 1;
1552 root 1.159 $self->_drain_rbuf;
1553 root 1.10
1554 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1555 root 1.52 return $self->_error ($!, 1);
1556 root 1.10 }
1557     });
1558     }
1559 elmex 1.1 }
1560    
1561 root 1.133 our $ERROR_SYSCALL;
1562     our $ERROR_WANT_READ;
1563    
1564     sub _tls_error {
1565     my ($self, $err) = @_;
1566    
1567     return $self->_error ($!, 1)
1568     if $err == Net::SSLeay::ERROR_SYSCALL ();
1569    
1570 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571    
1572     # reduce error string to look less scary
1573     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574    
1575 root 1.143 if ($self->{_on_starttls}) {
1576     (delete $self->{_on_starttls})->($self, undef, $err);
1577     &_freetls;
1578     } else {
1579     &_freetls;
1580 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1581 root 1.143 }
1582 root 1.133 }
1583    
1584 root 1.97 # poll the write BIO and send the data if applicable
1585 root 1.133 # also decode read data if possible
1586     # this is basiclaly our TLS state machine
1587     # more efficient implementations are possible with openssl,
1588     # but not with the buggy and incomplete Net::SSLeay.
1589 root 1.19 sub _dotls {
1590     my ($self) = @_;
1591    
1592 root 1.97 my $tmp;
1593 root 1.56
1594 root 1.38 if (length $self->{_tls_wbuf}) {
1595 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1596     substr $self->{_tls_wbuf}, 0, $tmp, "";
1597 root 1.22 }
1598 root 1.133
1599     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600     return $self->_tls_error ($tmp)
1601     if $tmp != $ERROR_WANT_READ
1602 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1603 root 1.19 }
1604    
1605 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1606     unless (length $tmp) {
1607 root 1.143 $self->{_on_starttls}
1608     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1609 root 1.92 &_freetls;
1610 root 1.143
1611 root 1.142 if ($self->{on_stoptls}) {
1612     $self->{on_stoptls}($self);
1613     return;
1614     } else {
1615     # let's treat SSL-eof as we treat normal EOF
1616     delete $self->{_rw};
1617     $self->{_eof} = 1;
1618     }
1619 root 1.56 }
1620 root 1.91
1621 root 1.116 $self->{_tls_rbuf} .= $tmp;
1622 root 1.159 $self->_drain_rbuf;
1623 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1624 root 1.23 }
1625    
1626 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1627 root 1.133 return $self->_tls_error ($tmp)
1628     if $tmp != $ERROR_WANT_READ
1629 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1630 root 1.91
1631 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1632     $self->{wbuf} .= $tmp;
1633 root 1.91 $self->_drain_wbuf;
1634     }
1635 root 1.142
1636     $self->{_on_starttls}
1637     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1638 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1639 root 1.19 }
1640    
1641 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1642    
1643     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1644     object is created, you can also do that at a later time by calling
1645     C<starttls>.
1646    
1647 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1648     write data and then call C<< ->starttls >> then TLS negotiation will start
1649     immediately, after which the queued write data is then sent.
1650    
1651 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1652     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1653    
1654 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1655     when AnyEvent::Handle has to create its own TLS connection object, or
1656     a hash reference with C<< key => value >> pairs that will be used to
1657     construct a new context.
1658    
1659     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1660     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1661     changed to your liking. Note that the handshake might have already started
1662     when this function returns.
1663 root 1.38
1664 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1665     handshakes on the same stream. Best do not attempt to use the stream after
1666     stopping TLS.
1667 root 1.92
1668 root 1.25 =cut
1669    
1670 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1671    
1672 root 1.19 sub starttls {
1673 root 1.160 my ($self, $tls, $ctx) = @_;
1674    
1675     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676     if $self->{tls};
1677    
1678     $self->{tls} = $tls;
1679     $self->{tls_ctx} = $ctx if @_ > 2;
1680    
1681     return unless $self->{fh};
1682 root 1.19
1683 root 1.94 require Net::SSLeay;
1684    
1685 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687 root 1.133
1688 root 1.160 $tls = $self->{tls};
1689     $ctx = $self->{tls_ctx};
1690 root 1.131
1691 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692    
1693 root 1.131 if ("HASH" eq ref $ctx) {
1694     require AnyEvent::TLS;
1695    
1696 root 1.137 if ($ctx->{cache}) {
1697     my $key = $ctx+0;
1698     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699     } else {
1700     $ctx = new AnyEvent::TLS %$ctx;
1701     }
1702 root 1.131 }
1703 root 1.92
1704 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1705 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1706 root 1.19
1707 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1708     # but the openssl maintainers basically said: "trust us, it just works".
1709     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1710     # and mismaintained ssleay-module doesn't even offer them).
1711 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1712 root 1.87 #
1713     # in short: this is a mess.
1714     #
1715 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1716 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1717 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1718     # have identity issues in that area.
1719 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1720     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1721     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1723 root 1.21
1724 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1725     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1726 root 1.19
1727 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1728 root 1.19
1729 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1730 root 1.143 if $self->{on_starttls};
1731 root 1.142
1732 root 1.93 &_dotls; # need to trigger the initial handshake
1733     $self->start_read; # make sure we actually do read
1734 root 1.19 }
1735    
1736 root 1.25 =item $handle->stoptls
1737    
1738 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1739     sending a close notify to the other side, but since OpenSSL doesn't
1740 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1741     the stream afterwards.
1742 root 1.25
1743     =cut
1744    
1745     sub stoptls {
1746     my ($self) = @_;
1747    
1748 root 1.92 if ($self->{tls}) {
1749 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1750 root 1.92
1751     &_dotls;
1752    
1753 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1754     # # we, we... have to use openssl :/#d#
1755     # &_freetls;#d#
1756 root 1.92 }
1757     }
1758    
1759     sub _freetls {
1760     my ($self) = @_;
1761    
1762     return unless $self->{tls};
1763 root 1.38
1764 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765     if ref $self->{tls};
1766 root 1.92
1767 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1768 root 1.25 }
1769    
1770 root 1.19 sub DESTROY {
1771 root 1.120 my ($self) = @_;
1772 root 1.19
1773 root 1.92 &_freetls;
1774 root 1.62
1775     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1776    
1777 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1778 root 1.62 my $fh = delete $self->{fh};
1779     my $wbuf = delete $self->{wbuf};
1780    
1781     my @linger;
1782    
1783     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1784     my $len = syswrite $fh, $wbuf, length $wbuf;
1785    
1786     if ($len > 0) {
1787     substr $wbuf, 0, $len, "";
1788     } else {
1789     @linger = (); # end
1790     }
1791     });
1792     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1793     @linger = ();
1794     });
1795     }
1796 root 1.19 }
1797    
1798 root 1.99 =item $handle->destroy
1799    
1800 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1801 root 1.141 no further callbacks will be invoked and as many resources as possible
1802 root 1.165 will be freed. Any method you will call on the handle object after
1803     destroying it in this way will be silently ignored (and it will return the
1804     empty list).
1805 root 1.99
1806 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1807     object and it will simply shut down. This works in fatal error and EOF
1808     callbacks, as well as code outside. It does I<NOT> work in a read or write
1809     callback, so when you want to destroy the AnyEvent::Handle object from
1810     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1811     that case.
1812    
1813 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1814     will be removed as well, so if those are the only reference holders (as
1815     is common), then one doesn't need to do anything special to break any
1816     reference cycles.
1817    
1818 root 1.99 The handle might still linger in the background and write out remaining
1819     data, as specified by the C<linger> option, however.
1820    
1821     =cut
1822    
1823     sub destroy {
1824     my ($self) = @_;
1825    
1826     $self->DESTROY;
1827     %$self = ();
1828 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1829     }
1830    
1831 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1832     #nop
1833 root 1.99 }
1834    
1835 root 1.19 =item AnyEvent::Handle::TLS_CTX
1836    
1837 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1838     for TLS mode.
1839 root 1.19
1840 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1841 root 1.19
1842     =cut
1843    
1844     our $TLS_CTX;
1845    
1846     sub TLS_CTX() {
1847 root 1.131 $TLS_CTX ||= do {
1848     require AnyEvent::TLS;
1849 root 1.19
1850 root 1.131 new AnyEvent::TLS
1851 root 1.19 }
1852     }
1853    
1854 elmex 1.1 =back
1855    
1856 root 1.95
1857     =head1 NONFREQUENTLY ASKED QUESTIONS
1858    
1859     =over 4
1860    
1861 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1862     still get further invocations!
1863    
1864     That's because AnyEvent::Handle keeps a reference to itself when handling
1865     read or write callbacks.
1866    
1867     It is only safe to "forget" the reference inside EOF or error callbacks,
1868     from within all other callbacks, you need to explicitly call the C<<
1869     ->destroy >> method.
1870    
1871     =item I get different callback invocations in TLS mode/Why can't I pause
1872     reading?
1873    
1874     Unlike, say, TCP, TLS connections do not consist of two independent
1875     communication channels, one for each direction. Or put differently. The
1876     read and write directions are not independent of each other: you cannot
1877     write data unless you are also prepared to read, and vice versa.
1878    
1879     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1880     callback invocations when you are not expecting any read data - the reason
1881     is that AnyEvent::Handle always reads in TLS mode.
1882    
1883     During the connection, you have to make sure that you always have a
1884     non-empty read-queue, or an C<on_read> watcher. At the end of the
1885     connection (or when you no longer want to use it) you can call the
1886     C<destroy> method.
1887    
1888 root 1.95 =item How do I read data until the other side closes the connection?
1889    
1890 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1891     to achieve this is by setting an C<on_read> callback that does nothing,
1892     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1893     will be in C<$_[0]{rbuf}>:
1894 root 1.95
1895     $handle->on_read (sub { });
1896     $handle->on_eof (undef);
1897     $handle->on_error (sub {
1898     my $data = delete $_[0]{rbuf};
1899     });
1900    
1901     The reason to use C<on_error> is that TCP connections, due to latencies
1902     and packets loss, might get closed quite violently with an error, when in
1903     fact, all data has been received.
1904    
1905 root 1.101 It is usually better to use acknowledgements when transferring data,
1906 root 1.95 to make sure the other side hasn't just died and you got the data
1907     intact. This is also one reason why so many internet protocols have an
1908     explicit QUIT command.
1909    
1910 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1911     all data has been written?
1912 root 1.95
1913     After writing your last bits of data, set the C<on_drain> callback
1914     and destroy the handle in there - with the default setting of
1915     C<low_water_mark> this will be called precisely when all data has been
1916     written to the socket:
1917    
1918     $handle->push_write (...);
1919     $handle->on_drain (sub {
1920     warn "all data submitted to the kernel\n";
1921     undef $handle;
1922     });
1923    
1924 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1925     consider using C<< ->push_shutdown >> instead.
1926    
1927     =item I want to contact a TLS/SSL server, I don't care about security.
1928    
1929     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1930     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1931     parameter:
1932    
1933 root 1.144 tcp_connect $host, $port, sub {
1934     my ($fh) = @_;
1935 root 1.143
1936 root 1.144 my $handle = new AnyEvent::Handle
1937     fh => $fh,
1938     tls => "connect",
1939     on_error => sub { ... };
1940    
1941     $handle->push_write (...);
1942     };
1943 root 1.143
1944     =item I want to contact a TLS/SSL server, I do care about security.
1945    
1946 root 1.144 Then you should additionally enable certificate verification, including
1947     peername verification, if the protocol you use supports it (see
1948     L<AnyEvent::TLS>, C<verify_peername>).
1949    
1950     E.g. for HTTPS:
1951    
1952     tcp_connect $host, $port, sub {
1953     my ($fh) = @_;
1954    
1955     my $handle = new AnyEvent::Handle
1956     fh => $fh,
1957     peername => $host,
1958     tls => "connect",
1959     tls_ctx => { verify => 1, verify_peername => "https" },
1960     ...
1961    
1962     Note that you must specify the hostname you connected to (or whatever
1963     "peername" the protocol needs) as the C<peername> argument, otherwise no
1964     peername verification will be done.
1965    
1966     The above will use the system-dependent default set of trusted CA
1967     certificates. If you want to check against a specific CA, add the
1968     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1969    
1970     tls_ctx => {
1971     verify => 1,
1972     verify_peername => "https",
1973     ca_file => "my-ca-cert.pem",
1974     },
1975    
1976     =item I want to create a TLS/SSL server, how do I do that?
1977    
1978     Well, you first need to get a server certificate and key. You have
1979     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1980     self-signed certificate (cheap. check the search engine of your choice,
1981     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1982     nice program for that purpose).
1983    
1984     Then create a file with your private key (in PEM format, see
1985     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1986     file should then look like this:
1987    
1988     -----BEGIN RSA PRIVATE KEY-----
1989     ...header data
1990     ... lots of base64'y-stuff
1991     -----END RSA PRIVATE KEY-----
1992    
1993     -----BEGIN CERTIFICATE-----
1994     ... lots of base64'y-stuff
1995     -----END CERTIFICATE-----
1996    
1997     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1998     specify this file as C<cert_file>:
1999    
2000     tcp_server undef, $port, sub {
2001     my ($fh) = @_;
2002    
2003     my $handle = new AnyEvent::Handle
2004     fh => $fh,
2005     tls => "accept",
2006     tls_ctx => { cert_file => "my-server-keycert.pem" },
2007     ...
2008 root 1.143
2009 root 1.144 When you have intermediate CA certificates that your clients might not
2010     know about, just append them to the C<cert_file>.
2011 root 1.143
2012 root 1.95 =back
2013    
2014    
2015 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2016    
2017     In many cases, you might want to subclass AnyEvent::Handle.
2018    
2019     To make this easier, a given version of AnyEvent::Handle uses these
2020     conventions:
2021    
2022     =over 4
2023    
2024     =item * all constructor arguments become object members.
2025    
2026     At least initially, when you pass a C<tls>-argument to the constructor it
2027 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2028 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2029    
2030     =item * other object member names are prefixed with an C<_>.
2031    
2032     All object members not explicitly documented (internal use) are prefixed
2033     with an underscore character, so the remaining non-C<_>-namespace is free
2034     for use for subclasses.
2035    
2036     =item * all members not documented here and not prefixed with an underscore
2037     are free to use in subclasses.
2038    
2039     Of course, new versions of AnyEvent::Handle may introduce more "public"
2040     member variables, but thats just life, at least it is documented.
2041    
2042     =back
2043    
2044 elmex 1.1 =head1 AUTHOR
2045    
2046 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2047 elmex 1.1
2048     =cut
2049    
2050     1; # End of AnyEvent::Handle