ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.172
Committed: Wed Aug 5 20:50:27 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.171: +3 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 root 1.8 use Scalar::Util ();
4     use Carp ();
5 root 1.43 use Errno qw(EAGAIN EINTR);
6 elmex 1.1
7 root 1.153 use AnyEvent (); BEGIN { AnyEvent::common_sense }
8     use AnyEvent::Util qw(WSAEWOULDBLOCK);
9    
10 elmex 1.1 =head1 NAME
11    
12 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 elmex 1.1
14     =cut
15    
16 root 1.172 our $VERSION = 4.901;
17 elmex 1.1
18     =head1 SYNOPSIS
19    
20     use AnyEvent;
21     use AnyEvent::Handle;
22    
23     my $cv = AnyEvent->condvar;
24    
25 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
26     fh => \*STDIN,
27     on_error => sub {
28 root 1.151 my ($hdl, $fatal, $msg) = @_;
29     warn "got error $msg\n";
30     $hdl->destroy;
31 root 1.149 $cv->send;
32 elmex 1.2 );
33    
34 root 1.31 # send some request line
35 root 1.149 $hdl->push_write ("getinfo\015\012");
36 root 1.31
37     # read the response line
38 root 1.149 $hdl->push_read (line => sub {
39     my ($hdl, $line) = @_;
40     warn "got line <$line>\n";
41 root 1.31 $cv->send;
42     });
43    
44     $cv->recv;
45 elmex 1.1
46     =head1 DESCRIPTION
47    
48 root 1.8 This module is a helper module to make it easier to do event-based I/O on
49 root 1.159 filehandles.
50 root 1.8
51 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
52     AnyEvent::Handle examples.
53    
54 root 1.8 In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
59     C<on_error> callback.
60    
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 root 1.158
76 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82    
83     Try to connect to the specified host and service (port), using
84     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85     default C<peername>.
86    
87     You have to specify either this parameter, or C<fh>, above.
88    
89 root 1.160 It is possible to push requests on the read and write queues, and modify
90     properties of the stream, even while AnyEvent::Handle is connecting.
91    
92 root 1.159 When this parameter is specified, then the C<on_prepare>,
93     C<on_connect_error> and C<on_connect> callbacks will be called under the
94     appropriate circumstances:
95    
96     =over 4
97    
98     =item on_prepare => $cb->($handle)
99    
100     This (rarely used) callback is called before a new connection is
101     attempted, but after the file handle has been created. It could be used to
102     prepare the file handle with parameters required for the actual connect
103     (as opposed to settings that can be changed when the connection is already
104     established).
105    
106 root 1.161 The return value of this callback should be the connect timeout value in
107     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108     timeout is to be used).
109    
110 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
111    
112     This callback is called when a connection has been successfully established.
113    
114     The actual numeric host and port (the socket peername) are passed as
115     parameters, together with a retry callback.
116    
117     When, for some reason, the handle is not acceptable, then calling
118     C<$retry> will continue with the next conenction target (in case of
119     multi-homed hosts or SRV records there can be multiple connection
120     endpoints). When it is called then the read and write queues, eof status,
121     tls status and similar properties of the handle are being reset.
122    
123     In most cases, ignoring the C<$retry> parameter is the way to go.
124 root 1.158
125 root 1.159 =item on_connect_error => $cb->($handle, $message)
126 root 1.10
127 root 1.159 This callback is called when the conenction could not be
128     established. C<$!> will contain the relevant error code, and C<$message> a
129     message describing it (usually the same as C<"$!">).
130 root 1.8
131 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
132     fatal error instead.
133 root 1.82
134 root 1.159 =back
135 root 1.80
136 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
137 root 1.10
138 root 1.52 This is the error callback, which is called when, well, some error
139     occured, such as not being able to resolve the hostname, failure to
140     connect or a read error.
141    
142     Some errors are fatal (which is indicated by C<$fatal> being true). On
143 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
144     destroy >>) after invoking the error callback (which means you are free to
145     examine the handle object). Examples of fatal errors are an EOF condition
146 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147     cases where the other side can close the connection at their will it is
148     often easiest to not report C<EPIPE> errors in this callback.
149 root 1.82
150 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
151     against, but in some cases (TLS errors), this does not work well. It is
152     recommended to always output the C<$message> argument in human-readable
153     error messages (it's usually the same as C<"$!">).
154    
155 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
156     to simply ignore this parameter and instead abondon the handle object
157     when this callback is invoked. Examples of non-fatal errors are timeouts
158     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159 root 1.8
160 root 1.10 On callback entrance, the value of C<$!> contains the operating system
161 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162     C<EPROTO>).
163 root 1.8
164 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
165     you will not be notified of errors otherwise. The default simply calls
166 root 1.52 C<croak>.
167 root 1.8
168 root 1.40 =item on_read => $cb->($handle)
169 root 1.8
170     This sets the default read callback, which is called when data arrives
171 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
172     callback will only be called when at least one octet of data is in the
173     read buffer).
174 root 1.8
175     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
177 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
178     the beginning from it.
179 root 1.8
180     When an EOF condition is detected then AnyEvent::Handle will first try to
181     feed all the remaining data to the queued callbacks and C<on_read> before
182     calling the C<on_eof> callback. If no progress can be made, then a fatal
183     error will be raised (with C<$!> set to C<EPIPE>).
184 elmex 1.1
185 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
186     doesn't mean you I<require> some data: if there is an EOF and there
187     are outstanding read requests then an error will be flagged. With an
188     C<on_read> callback, the C<on_eof> callback will be invoked.
189    
190 root 1.159 =item on_eof => $cb->($handle)
191    
192     Set the callback to be called when an end-of-file condition is detected,
193     i.e. in the case of a socket, when the other side has closed the
194     connection cleanly, and there are no outstanding read requests in the
195     queue (if there are read requests, then an EOF counts as an unexpected
196     connection close and will be flagged as an error).
197    
198     For sockets, this just means that the other side has stopped sending data,
199     you can still try to write data, and, in fact, one can return from the EOF
200     callback and continue writing data, as only the read part has been shut
201     down.
202    
203     If an EOF condition has been detected but no C<on_eof> callback has been
204     set, then a fatal error will be raised with C<$!> set to <0>.
205    
206 root 1.40 =item on_drain => $cb->($handle)
207 elmex 1.1
208 root 1.8 This sets the callback that is called when the write buffer becomes empty
209     (or when the callback is set and the buffer is empty already).
210 elmex 1.1
211 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
212 elmex 1.2
213 root 1.69 This callback is useful when you don't want to put all of your write data
214     into the queue at once, for example, when you want to write the contents
215     of some file to the socket you might not want to read the whole file into
216     memory and push it into the queue, but instead only read more data from
217     the file when the write queue becomes empty.
218    
219 root 1.43 =item timeout => $fractional_seconds
220    
221     If non-zero, then this enables an "inactivity" timeout: whenever this many
222     seconds pass without a successful read or write on the underlying file
223     handle, the C<on_timeout> callback will be invoked (and if that one is
224 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
225 root 1.43
226     Note that timeout processing is also active when you currently do not have
227     any outstanding read or write requests: If you plan to keep the connection
228     idle then you should disable the timout temporarily or ignore the timeout
229 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230     restart the timeout.
231 root 1.43
232     Zero (the default) disables this timeout.
233    
234     =item on_timeout => $cb->($handle)
235    
236     Called whenever the inactivity timeout passes. If you return from this
237     callback, then the timeout will be reset as if some activity had happened,
238     so this condition is not fatal in any way.
239    
240 root 1.8 =item rbuf_max => <bytes>
241 elmex 1.2
242 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
243     when the read buffer ever (strictly) exceeds this size. This is useful to
244 root 1.88 avoid some forms of denial-of-service attacks.
245 elmex 1.2
246 root 1.8 For example, a server accepting connections from untrusted sources should
247     be configured to accept only so-and-so much data that it cannot act on
248     (for example, when expecting a line, an attacker could send an unlimited
249     amount of data without a callback ever being called as long as the line
250     isn't finished).
251 elmex 1.2
252 root 1.70 =item autocork => <boolean>
253    
254     When disabled (the default), then C<push_write> will try to immediately
255 root 1.88 write the data to the handle, if possible. This avoids having to register
256     a write watcher and wait for the next event loop iteration, but can
257     be inefficient if you write multiple small chunks (on the wire, this
258     disadvantage is usually avoided by your kernel's nagle algorithm, see
259     C<no_delay>, but this option can save costly syscalls).
260 root 1.70
261     When enabled, then writes will always be queued till the next event loop
262     iteration. This is efficient when you do many small writes per iteration,
263 root 1.88 but less efficient when you do a single write only per iteration (or when
264     the write buffer often is full). It also increases write latency.
265 root 1.70
266     =item no_delay => <boolean>
267    
268     When doing small writes on sockets, your operating system kernel might
269     wait a bit for more data before actually sending it out. This is called
270     the Nagle algorithm, and usually it is beneficial.
271    
272 root 1.88 In some situations you want as low a delay as possible, which can be
273     accomplishd by setting this option to a true value.
274 root 1.70
275 root 1.88 The default is your opertaing system's default behaviour (most likely
276     enabled), this option explicitly enables or disables it, if possible.
277 root 1.70
278 root 1.8 =item read_size => <bytes>
279 elmex 1.2
280 root 1.88 The default read block size (the amount of bytes this module will
281     try to read during each loop iteration, which affects memory
282     requirements). Default: C<8192>.
283 root 1.8
284     =item low_water_mark => <bytes>
285    
286     Sets the amount of bytes (default: C<0>) that make up an "empty" write
287     buffer: If the write reaches this size or gets even samller it is
288     considered empty.
289 elmex 1.2
290 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
291     the write buffer before it is fully drained, but this is a rare case, as
292     the operating system kernel usually buffers data as well, so the default
293     is good in almost all cases.
294    
295 root 1.62 =item linger => <seconds>
296    
297     If non-zero (default: C<3600>), then the destructor of the
298 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
299     write data and will install a watcher that will write this data to the
300     socket. No errors will be reported (this mostly matches how the operating
301     system treats outstanding data at socket close time).
302 root 1.62
303 root 1.88 This will not work for partial TLS data that could not be encoded
304 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
305     help.
306 root 1.62
307 root 1.133 =item peername => $string
308    
309 root 1.134 A string used to identify the remote site - usually the DNS hostname
310     (I<not> IDN!) used to create the connection, rarely the IP address.
311 root 1.131
312 root 1.133 Apart from being useful in error messages, this string is also used in TLS
313 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314     verification will be skipped when C<peername> is not specified or
315     C<undef>.
316 root 1.131
317 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
318    
319 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
320 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
321     established and will transparently encrypt/decrypt data afterwards.
322 root 1.19
323 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
324     appropriate error message.
325    
326 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
327 root 1.88 automatically when you try to create a TLS handle): this module doesn't
328     have a dependency on that module, so if your module requires it, you have
329     to add the dependency yourself.
330 root 1.26
331 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
332     C<accept>, and for the TLS client side of a connection, use C<connect>
333     mode.
334 root 1.19
335     You can also provide your own TLS connection object, but you have
336     to make sure that you call either C<Net::SSLeay::set_connect_state>
337     or C<Net::SSLeay::set_accept_state> on it before you pass it to
338 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
339     object.
340    
341     At some future point, AnyEvent::Handle might switch to another TLS
342     implementation, then the option to use your own session object will go
343     away.
344 root 1.19
345 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346     passing in the wrong integer will lead to certain crash. This most often
347     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348     segmentation fault.
349    
350 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
351 root 1.26
352 root 1.131 =item tls_ctx => $anyevent_tls
353 root 1.19
354 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
355 root 1.19 (unless a connection object was specified directly). If this parameter is
356     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357    
358 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
359     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360     new TLS context object.
361    
362 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
363 root 1.142
364     This callback will be invoked when the TLS/SSL handshake has finished. If
365     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366     (C<on_stoptls> will not be called in this case).
367    
368     The session in C<< $handle->{tls} >> can still be examined in this
369     callback, even when the handshake was not successful.
370    
371 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
372     callback is in effect, instead, the error message will be passed to C<on_starttls>.
373    
374     Without this callback, handshake failures lead to C<on_error> being
375     called, as normal.
376    
377     Note that you cannot call C<starttls> right again in this callback. If you
378     need to do that, start an zero-second timer instead whose callback can
379     then call C<< ->starttls >> again.
380    
381 root 1.142 =item on_stoptls => $cb->($handle)
382    
383     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384     set, then it will be invoked after freeing the TLS session. If it is not,
385     then a TLS shutdown condition will be treated like a normal EOF condition
386     on the handle.
387    
388     The session in C<< $handle->{tls} >> can still be examined in this
389     callback.
390    
391     This callback will only be called on TLS shutdowns, not when the
392     underlying handle signals EOF.
393    
394 root 1.40 =item json => JSON or JSON::XS object
395    
396     This is the json coder object used by the C<json> read and write types.
397    
398 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
399 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
400     texts.
401 root 1.40
402     Note that you are responsible to depend on the JSON module if you want to
403     use this functionality, as AnyEvent does not have a dependency itself.
404    
405 elmex 1.1 =back
406    
407     =cut
408    
409     sub new {
410 root 1.8 my $class = shift;
411     my $self = bless { @_ }, $class;
412    
413 root 1.159 if ($self->{fh}) {
414     $self->_start;
415     return unless $self->{fh}; # could be gone by now
416    
417     } elsif ($self->{connect}) {
418     require AnyEvent::Socket;
419    
420     $self->{peername} = $self->{connect}[0]
421     unless exists $self->{peername};
422    
423     $self->{_skip_drain_rbuf} = 1;
424    
425     {
426     Scalar::Util::weaken (my $self = $self);
427    
428     $self->{_connect} =
429     AnyEvent::Socket::tcp_connect (
430     $self->{connect}[0],
431     $self->{connect}[1],
432     sub {
433     my ($fh, $host, $port, $retry) = @_;
434    
435     if ($fh) {
436     $self->{fh} = $fh;
437    
438     delete $self->{_skip_drain_rbuf};
439     $self->_start;
440    
441     $self->{on_connect}
442     and $self->{on_connect}($self, $host, $port, sub {
443     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444     $self->{_skip_drain_rbuf} = 1;
445     &$retry;
446     });
447    
448     } else {
449     if ($self->{on_connect_error}) {
450     $self->{on_connect_error}($self, "$!");
451     $self->destroy;
452     } else {
453 root 1.161 $self->_error ($!, 1);
454 root 1.159 }
455     }
456     },
457     sub {
458     local $self->{fh} = $_[0];
459    
460 root 1.161 $self->{on_prepare}
461     ? $self->{on_prepare}->($self)
462     : ()
463 root 1.159 }
464     );
465     }
466    
467     } else {
468     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469     }
470    
471     $self
472     }
473    
474     sub _start {
475     my ($self) = @_;
476 root 1.8
477     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478 elmex 1.1
479 root 1.131 $self->{_activity} = AnyEvent->now;
480     $self->_timeout;
481    
482     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483    
484 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485     if $self->{tls};
486 root 1.19
487 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488 root 1.10
489 root 1.66 $self->start_read
490 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
491 root 1.160
492     $self->_drain_wbuf;
493 root 1.8 }
494 elmex 1.2
495 root 1.149 #sub _shutdown {
496     # my ($self) = @_;
497     #
498     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
499     # $self->{_eof} = 1; # tell starttls et. al to stop trying
500     #
501     # &_freetls;
502     #}
503 root 1.8
504 root 1.52 sub _error {
505 root 1.133 my ($self, $errno, $fatal, $message) = @_;
506 root 1.8
507 root 1.52 $! = $errno;
508 root 1.133 $message ||= "$!";
509 root 1.37
510 root 1.52 if ($self->{on_error}) {
511 root 1.133 $self->{on_error}($self, $fatal, $message);
512 root 1.151 $self->destroy if $fatal;
513 root 1.100 } elsif ($self->{fh}) {
514 root 1.149 $self->destroy;
515 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
516 root 1.52 }
517 elmex 1.1 }
518    
519 root 1.8 =item $fh = $handle->fh
520 elmex 1.1
521 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
522 elmex 1.1
523     =cut
524    
525 root 1.38 sub fh { $_[0]{fh} }
526 elmex 1.1
527 root 1.8 =item $handle->on_error ($cb)
528 elmex 1.1
529 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
530 elmex 1.1
531 root 1.8 =cut
532    
533     sub on_error {
534     $_[0]{on_error} = $_[1];
535     }
536    
537     =item $handle->on_eof ($cb)
538    
539     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
540 elmex 1.1
541     =cut
542    
543 root 1.8 sub on_eof {
544     $_[0]{on_eof} = $_[1];
545     }
546    
547 root 1.43 =item $handle->on_timeout ($cb)
548    
549 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
550     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
551     argument and method.
552 root 1.43
553     =cut
554    
555     sub on_timeout {
556     $_[0]{on_timeout} = $_[1];
557     }
558    
559 root 1.70 =item $handle->autocork ($boolean)
560    
561     Enables or disables the current autocork behaviour (see C<autocork>
562 root 1.105 constructor argument). Changes will only take effect on the next write.
563 root 1.70
564     =cut
565    
566 root 1.105 sub autocork {
567     $_[0]{autocork} = $_[1];
568     }
569    
570 root 1.70 =item $handle->no_delay ($boolean)
571    
572     Enables or disables the C<no_delay> setting (see constructor argument of
573     the same name for details).
574    
575     =cut
576    
577     sub no_delay {
578     $_[0]{no_delay} = $_[1];
579    
580     eval {
581     local $SIG{__DIE__};
582 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583     if $_[0]{fh};
584 root 1.70 };
585     }
586    
587 root 1.142 =item $handle->on_starttls ($cb)
588    
589     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590    
591     =cut
592    
593     sub on_starttls {
594     $_[0]{on_starttls} = $_[1];
595     }
596    
597     =item $handle->on_stoptls ($cb)
598    
599     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600    
601     =cut
602    
603     sub on_starttls {
604     $_[0]{on_stoptls} = $_[1];
605     }
606    
607 root 1.168 =item $handle->rbuf_max ($max_octets)
608    
609     Configures the C<rbuf_max> setting (C<undef> disables it).
610    
611     =cut
612    
613     sub rbuf_max {
614     $_[0]{rbuf_max} = $_[1];
615     }
616    
617 root 1.43 #############################################################################
618    
619     =item $handle->timeout ($seconds)
620    
621     Configures (or disables) the inactivity timeout.
622    
623     =cut
624    
625     sub timeout {
626     my ($self, $timeout) = @_;
627    
628     $self->{timeout} = $timeout;
629     $self->_timeout;
630     }
631    
632     # reset the timeout watcher, as neccessary
633     # also check for time-outs
634     sub _timeout {
635     my ($self) = @_;
636    
637 root 1.159 if ($self->{timeout} && $self->{fh}) {
638 root 1.44 my $NOW = AnyEvent->now;
639 root 1.43
640     # when would the timeout trigger?
641     my $after = $self->{_activity} + $self->{timeout} - $NOW;
642    
643     # now or in the past already?
644     if ($after <= 0) {
645     $self->{_activity} = $NOW;
646    
647     if ($self->{on_timeout}) {
648 root 1.48 $self->{on_timeout}($self);
649 root 1.43 } else {
650 root 1.150 $self->_error (Errno::ETIMEDOUT);
651 root 1.43 }
652    
653 root 1.56 # callback could have changed timeout value, optimise
654 root 1.43 return unless $self->{timeout};
655    
656     # calculate new after
657     $after = $self->{timeout};
658     }
659    
660     Scalar::Util::weaken $self;
661 root 1.56 return unless $self; # ->error could have destroyed $self
662 root 1.43
663     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
664     delete $self->{_tw};
665     $self->_timeout;
666     });
667     } else {
668     delete $self->{_tw};
669     }
670     }
671    
672 root 1.9 #############################################################################
673    
674     =back
675    
676     =head2 WRITE QUEUE
677    
678     AnyEvent::Handle manages two queues per handle, one for writing and one
679     for reading.
680    
681     The write queue is very simple: you can add data to its end, and
682     AnyEvent::Handle will automatically try to get rid of it for you.
683    
684 elmex 1.20 When data could be written and the write buffer is shorter then the low
685 root 1.9 water mark, the C<on_drain> callback will be invoked.
686    
687     =over 4
688    
689 root 1.8 =item $handle->on_drain ($cb)
690    
691     Sets the C<on_drain> callback or clears it (see the description of
692     C<on_drain> in the constructor).
693    
694     =cut
695    
696     sub on_drain {
697 elmex 1.1 my ($self, $cb) = @_;
698    
699 root 1.8 $self->{on_drain} = $cb;
700    
701     $cb->($self)
702 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
703 root 1.8 }
704    
705     =item $handle->push_write ($data)
706    
707     Queues the given scalar to be written. You can push as much data as you
708     want (only limited by the available memory), as C<AnyEvent::Handle>
709     buffers it independently of the kernel.
710    
711     =cut
712    
713 root 1.17 sub _drain_wbuf {
714     my ($self) = @_;
715 root 1.8
716 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
717 root 1.35
718 root 1.8 Scalar::Util::weaken $self;
719 root 1.35
720 root 1.8 my $cb = sub {
721     my $len = syswrite $self->{fh}, $self->{wbuf};
722    
723 root 1.146 if (defined $len) {
724 root 1.8 substr $self->{wbuf}, 0, $len, "";
725    
726 root 1.44 $self->{_activity} = AnyEvent->now;
727 root 1.43
728 root 1.8 $self->{on_drain}($self)
729 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
730 root 1.8 && $self->{on_drain};
731    
732 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
733 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
734 root 1.52 $self->_error ($!, 1);
735 elmex 1.1 }
736 root 1.8 };
737    
738 root 1.35 # try to write data immediately
739 root 1.70 $cb->() unless $self->{autocork};
740 root 1.8
741 root 1.35 # if still data left in wbuf, we need to poll
742 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
743 root 1.35 if length $self->{wbuf};
744 root 1.8 };
745     }
746    
747 root 1.30 our %WH;
748    
749     sub register_write_type($$) {
750     $WH{$_[0]} = $_[1];
751     }
752    
753 root 1.17 sub push_write {
754     my $self = shift;
755    
756 root 1.29 if (@_ > 1) {
757     my $type = shift;
758    
759     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
760     ->($self, @_);
761     }
762    
763 root 1.93 if ($self->{tls}) {
764     $self->{_tls_wbuf} .= $_[0];
765 root 1.160 &_dotls ($self) if $self->{fh};
766 root 1.17 } else {
767 root 1.160 $self->{wbuf} .= $_[0];
768 root 1.159 $self->_drain_wbuf if $self->{fh};
769 root 1.17 }
770     }
771    
772 root 1.29 =item $handle->push_write (type => @args)
773    
774     Instead of formatting your data yourself, you can also let this module do
775     the job by specifying a type and type-specific arguments.
776    
777 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
778     drop by and tell us):
779 root 1.29
780     =over 4
781    
782     =item netstring => $string
783    
784     Formats the given value as netstring
785     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
786    
787     =cut
788    
789     register_write_type netstring => sub {
790     my ($self, $string) = @_;
791    
792 root 1.96 (length $string) . ":$string,"
793 root 1.29 };
794    
795 root 1.61 =item packstring => $format, $data
796    
797     An octet string prefixed with an encoded length. The encoding C<$format>
798     uses the same format as a Perl C<pack> format, but must specify a single
799     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
800     optional C<!>, C<< < >> or C<< > >> modifier).
801    
802     =cut
803    
804     register_write_type packstring => sub {
805     my ($self, $format, $string) = @_;
806    
807 root 1.65 pack "$format/a*", $string
808 root 1.61 };
809    
810 root 1.39 =item json => $array_or_hashref
811    
812 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
813     provide your own JSON object, this means it will be encoded to JSON text
814     in UTF-8.
815    
816     JSON objects (and arrays) are self-delimiting, so you can write JSON at
817     one end of a handle and read them at the other end without using any
818     additional framing.
819    
820 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
821     this module doesn't need delimiters after or between JSON texts to be
822     able to read them, many other languages depend on that.
823    
824     A simple RPC protocol that interoperates easily with others is to send
825     JSON arrays (or objects, although arrays are usually the better choice as
826     they mimic how function argument passing works) and a newline after each
827     JSON text:
828    
829     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
830     $handle->push_write ("\012");
831    
832     An AnyEvent::Handle receiver would simply use the C<json> read type and
833     rely on the fact that the newline will be skipped as leading whitespace:
834    
835     $handle->push_read (json => sub { my $array = $_[1]; ... });
836    
837     Other languages could read single lines terminated by a newline and pass
838     this line into their JSON decoder of choice.
839    
840 root 1.40 =cut
841    
842     register_write_type json => sub {
843     my ($self, $ref) = @_;
844    
845     require JSON;
846    
847     $self->{json} ? $self->{json}->encode ($ref)
848     : JSON::encode_json ($ref)
849     };
850    
851 root 1.63 =item storable => $reference
852    
853     Freezes the given reference using L<Storable> and writes it to the
854     handle. Uses the C<nfreeze> format.
855    
856     =cut
857    
858     register_write_type storable => sub {
859     my ($self, $ref) = @_;
860    
861     require Storable;
862    
863 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
864 root 1.63 };
865    
866 root 1.53 =back
867    
868 root 1.133 =item $handle->push_shutdown
869    
870     Sometimes you know you want to close the socket after writing your data
871     before it was actually written. One way to do that is to replace your
872 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
873     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874     replaces the C<on_drain> callback with:
875 root 1.133
876     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877    
878     This simply shuts down the write side and signals an EOF condition to the
879     the peer.
880    
881     You can rely on the normal read queue and C<on_eof> handling
882     afterwards. This is the cleanest way to close a connection.
883    
884     =cut
885    
886     sub push_shutdown {
887 root 1.142 my ($self) = @_;
888    
889     delete $self->{low_water_mark};
890     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891 root 1.133 }
892    
893 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
894 root 1.30
895     This function (not method) lets you add your own types to C<push_write>.
896     Whenever the given C<type> is used, C<push_write> will invoke the code
897     reference with the handle object and the remaining arguments.
898 root 1.29
899 root 1.30 The code reference is supposed to return a single octet string that will
900     be appended to the write buffer.
901 root 1.29
902 root 1.30 Note that this is a function, and all types registered this way will be
903     global, so try to use unique names.
904 root 1.29
905 root 1.30 =cut
906 root 1.29
907 root 1.8 #############################################################################
908    
909 root 1.9 =back
910    
911     =head2 READ QUEUE
912    
913     AnyEvent::Handle manages two queues per handle, one for writing and one
914     for reading.
915    
916     The read queue is more complex than the write queue. It can be used in two
917     ways, the "simple" way, using only C<on_read> and the "complex" way, using
918     a queue.
919    
920     In the simple case, you just install an C<on_read> callback and whenever
921     new data arrives, it will be called. You can then remove some data (if
922 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
923     leave the data there if you want to accumulate more (e.g. when only a
924     partial message has been received so far).
925 root 1.9
926     In the more complex case, you want to queue multiple callbacks. In this
927     case, AnyEvent::Handle will call the first queued callback each time new
928 root 1.61 data arrives (also the first time it is queued) and removes it when it has
929     done its job (see C<push_read>, below).
930 root 1.9
931     This way you can, for example, push three line-reads, followed by reading
932     a chunk of data, and AnyEvent::Handle will execute them in order.
933    
934     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
935     the specified number of bytes which give an XML datagram.
936    
937     # in the default state, expect some header bytes
938     $handle->on_read (sub {
939     # some data is here, now queue the length-header-read (4 octets)
940 root 1.52 shift->unshift_read (chunk => 4, sub {
941 root 1.9 # header arrived, decode
942     my $len = unpack "N", $_[1];
943    
944     # now read the payload
945 root 1.52 shift->unshift_read (chunk => $len, sub {
946 root 1.9 my $xml = $_[1];
947     # handle xml
948     });
949     });
950     });
951    
952 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
953     and another line or "ERROR" for the first request that is sent, and 64
954     bytes for the second request. Due to the availability of a queue, we can
955     just pipeline sending both requests and manipulate the queue as necessary
956     in the callbacks.
957    
958     When the first callback is called and sees an "OK" response, it will
959     C<unshift> another line-read. This line-read will be queued I<before> the
960     64-byte chunk callback.
961 root 1.9
962 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
963 root 1.9 $handle->push_write ("request 1\015\012");
964    
965     # we expect "ERROR" or "OK" as response, so push a line read
966 root 1.52 $handle->push_read (line => sub {
967 root 1.9 # if we got an "OK", we have to _prepend_ another line,
968     # so it will be read before the second request reads its 64 bytes
969     # which are already in the queue when this callback is called
970     # we don't do this in case we got an error
971     if ($_[1] eq "OK") {
972 root 1.52 $_[0]->unshift_read (line => sub {
973 root 1.9 my $response = $_[1];
974     ...
975     });
976     }
977     });
978    
979 root 1.69 # request two, simply returns 64 octets
980 root 1.9 $handle->push_write ("request 2\015\012");
981    
982     # simply read 64 bytes, always
983 root 1.52 $handle->push_read (chunk => 64, sub {
984 root 1.9 my $response = $_[1];
985     ...
986     });
987    
988     =over 4
989    
990 root 1.10 =cut
991    
992 root 1.8 sub _drain_rbuf {
993     my ($self) = @_;
994 elmex 1.1
995 root 1.159 # avoid recursion
996 root 1.167 return if $self->{_skip_drain_rbuf};
997 root 1.159 local $self->{_skip_drain_rbuf} = 1;
998 root 1.59
999     while () {
1000 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1001     # we are draining the buffer, and this can only happen with TLS.
1002 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003     if exists $self->{_tls_rbuf};
1004 root 1.115
1005 root 1.59 my $len = length $self->{rbuf};
1006 elmex 1.1
1007 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1008 root 1.29 unless ($cb->($self)) {
1009 root 1.163 # no progress can be made
1010     # (not enough data and no data forthcoming)
1011     $self->_error (Errno::EPIPE, 1), return
1012     if $self->{_eof};
1013 root 1.10
1014 root 1.38 unshift @{ $self->{_queue} }, $cb;
1015 root 1.55 last;
1016 root 1.8 }
1017     } elsif ($self->{on_read}) {
1018 root 1.61 last unless $len;
1019    
1020 root 1.8 $self->{on_read}($self);
1021    
1022     if (
1023 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1024     && !@{ $self->{_queue} } # and the queue is still empty
1025     && $self->{on_read} # but we still have on_read
1026 root 1.8 ) {
1027 root 1.55 # no further data will arrive
1028     # so no progress can be made
1029 root 1.150 $self->_error (Errno::EPIPE, 1), return
1030 root 1.55 if $self->{_eof};
1031    
1032     last; # more data might arrive
1033 elmex 1.1 }
1034 root 1.8 } else {
1035     # read side becomes idle
1036 root 1.93 delete $self->{_rw} unless $self->{tls};
1037 root 1.55 last;
1038 root 1.8 }
1039     }
1040    
1041 root 1.80 if ($self->{_eof}) {
1042 root 1.163 $self->{on_eof}
1043     ? $self->{on_eof}($self)
1044     : $self->_error (0, 1, "Unexpected end-of-file");
1045    
1046     return;
1047 root 1.80 }
1048 root 1.55
1049 root 1.169 if (
1050     defined $self->{rbuf_max}
1051     && $self->{rbuf_max} < length $self->{rbuf}
1052     ) {
1053     $self->_error (Errno::ENOSPC, 1), return;
1054     }
1055    
1056 root 1.55 # may need to restart read watcher
1057     unless ($self->{_rw}) {
1058     $self->start_read
1059     if $self->{on_read} || @{ $self->{_queue} };
1060     }
1061 elmex 1.1 }
1062    
1063 root 1.8 =item $handle->on_read ($cb)
1064 elmex 1.1
1065 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1066     the new callback is C<undef>). See the description of C<on_read> in the
1067     constructor.
1068 elmex 1.1
1069 root 1.8 =cut
1070    
1071     sub on_read {
1072     my ($self, $cb) = @_;
1073 elmex 1.1
1074 root 1.8 $self->{on_read} = $cb;
1075 root 1.159 $self->_drain_rbuf if $cb;
1076 elmex 1.1 }
1077    
1078 root 1.8 =item $handle->rbuf
1079    
1080     Returns the read buffer (as a modifiable lvalue).
1081 elmex 1.1
1082 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1083     member, if you want. However, the only operation allowed on the
1084     read buffer (apart from looking at it) is removing data from its
1085     beginning. Otherwise modifying or appending to it is not allowed and will
1086     lead to hard-to-track-down bugs.
1087 elmex 1.1
1088 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1089     C<push_read> or C<unshift_read> methods are used. The other read methods
1090     automatically manage the read buffer.
1091 elmex 1.1
1092     =cut
1093    
1094 elmex 1.2 sub rbuf : lvalue {
1095 root 1.8 $_[0]{rbuf}
1096 elmex 1.2 }
1097 elmex 1.1
1098 root 1.8 =item $handle->push_read ($cb)
1099    
1100     =item $handle->unshift_read ($cb)
1101    
1102     Append the given callback to the end of the queue (C<push_read>) or
1103     prepend it (C<unshift_read>).
1104    
1105     The callback is called each time some additional read data arrives.
1106 elmex 1.1
1107 elmex 1.20 It must check whether enough data is in the read buffer already.
1108 elmex 1.1
1109 root 1.8 If not enough data is available, it must return the empty list or a false
1110     value, in which case it will be called repeatedly until enough data is
1111     available (or an error condition is detected).
1112    
1113     If enough data was available, then the callback must remove all data it is
1114     interested in (which can be none at all) and return a true value. After returning
1115     true, it will be removed from the queue.
1116 elmex 1.1
1117     =cut
1118    
1119 root 1.30 our %RH;
1120    
1121     sub register_read_type($$) {
1122     $RH{$_[0]} = $_[1];
1123     }
1124    
1125 root 1.8 sub push_read {
1126 root 1.28 my $self = shift;
1127     my $cb = pop;
1128    
1129     if (@_) {
1130     my $type = shift;
1131    
1132     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1133     ->($self, $cb, @_);
1134     }
1135 elmex 1.1
1136 root 1.38 push @{ $self->{_queue} }, $cb;
1137 root 1.159 $self->_drain_rbuf;
1138 elmex 1.1 }
1139    
1140 root 1.8 sub unshift_read {
1141 root 1.28 my $self = shift;
1142     my $cb = pop;
1143    
1144     if (@_) {
1145     my $type = shift;
1146    
1147     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1148     ->($self, $cb, @_);
1149     }
1150    
1151 root 1.8
1152 root 1.38 unshift @{ $self->{_queue} }, $cb;
1153 root 1.159 $self->_drain_rbuf;
1154 root 1.8 }
1155 elmex 1.1
1156 root 1.28 =item $handle->push_read (type => @args, $cb)
1157 elmex 1.1
1158 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1159 elmex 1.1
1160 root 1.28 Instead of providing a callback that parses the data itself you can chose
1161     between a number of predefined parsing formats, for chunks of data, lines
1162     etc.
1163 elmex 1.1
1164 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1165     drop by and tell us):
1166 root 1.28
1167     =over 4
1168    
1169 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1170 root 1.28
1171     Invoke the callback only once C<$octets> bytes have been read. Pass the
1172     data read to the callback. The callback will never be called with less
1173     data.
1174    
1175     Example: read 2 bytes.
1176    
1177     $handle->push_read (chunk => 2, sub {
1178     warn "yay ", unpack "H*", $_[1];
1179     });
1180 elmex 1.1
1181     =cut
1182    
1183 root 1.28 register_read_type chunk => sub {
1184     my ($self, $cb, $len) = @_;
1185 elmex 1.1
1186 root 1.8 sub {
1187     $len <= length $_[0]{rbuf} or return;
1188 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1189 root 1.8 1
1190     }
1191 root 1.28 };
1192 root 1.8
1193 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1194 elmex 1.1
1195 root 1.8 The callback will be called only once a full line (including the end of
1196     line marker, C<$eol>) has been read. This line (excluding the end of line
1197     marker) will be passed to the callback as second argument (C<$line>), and
1198     the end of line marker as the third argument (C<$eol>).
1199 elmex 1.1
1200 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1201     will be interpreted as a fixed record end marker, or it can be a regex
1202     object (e.g. created by C<qr>), in which case it is interpreted as a
1203     regular expression.
1204 elmex 1.1
1205 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1206     undef), then C<qr|\015?\012|> is used (which is good for most internet
1207     protocols).
1208 elmex 1.1
1209 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1210     not marked by the end of line marker.
1211 elmex 1.1
1212 root 1.8 =cut
1213 elmex 1.1
1214 root 1.28 register_read_type line => sub {
1215     my ($self, $cb, $eol) = @_;
1216 elmex 1.1
1217 root 1.76 if (@_ < 3) {
1218     # this is more than twice as fast as the generic code below
1219     sub {
1220     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1221 elmex 1.1
1222 root 1.76 $cb->($_[0], $1, $2);
1223     1
1224     }
1225     } else {
1226     $eol = quotemeta $eol unless ref $eol;
1227     $eol = qr|^(.*?)($eol)|s;
1228    
1229     sub {
1230     $_[0]{rbuf} =~ s/$eol// or return;
1231 elmex 1.1
1232 root 1.76 $cb->($_[0], $1, $2);
1233     1
1234     }
1235 root 1.8 }
1236 root 1.28 };
1237 elmex 1.1
1238 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1239 root 1.36
1240     Makes a regex match against the regex object C<$accept> and returns
1241     everything up to and including the match.
1242    
1243     Example: read a single line terminated by '\n'.
1244    
1245     $handle->push_read (regex => qr<\n>, sub { ... });
1246    
1247     If C<$reject> is given and not undef, then it determines when the data is
1248     to be rejected: it is matched against the data when the C<$accept> regex
1249     does not match and generates an C<EBADMSG> error when it matches. This is
1250     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1251     receive buffer overflow).
1252    
1253     Example: expect a single decimal number followed by whitespace, reject
1254     anything else (not the use of an anchor).
1255    
1256     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1257    
1258     If C<$skip> is given and not C<undef>, then it will be matched against
1259     the receive buffer when neither C<$accept> nor C<$reject> match,
1260     and everything preceding and including the match will be accepted
1261     unconditionally. This is useful to skip large amounts of data that you
1262     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1263     have to start matching from the beginning. This is purely an optimisation
1264     and is usually worth only when you expect more than a few kilobytes.
1265    
1266     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1267     expect the header to be very large (it isn't in practise, but...), we use
1268     a skip regex to skip initial portions. The skip regex is tricky in that
1269     it only accepts something not ending in either \015 or \012, as these are
1270     required for the accept regex.
1271    
1272     $handle->push_read (regex =>
1273     qr<\015\012\015\012>,
1274     undef, # no reject
1275     qr<^.*[^\015\012]>,
1276     sub { ... });
1277    
1278     =cut
1279    
1280     register_read_type regex => sub {
1281     my ($self, $cb, $accept, $reject, $skip) = @_;
1282    
1283     my $data;
1284     my $rbuf = \$self->{rbuf};
1285    
1286     sub {
1287     # accept
1288     if ($$rbuf =~ $accept) {
1289     $data .= substr $$rbuf, 0, $+[0], "";
1290     $cb->($self, $data);
1291     return 1;
1292     }
1293    
1294     # reject
1295     if ($reject && $$rbuf =~ $reject) {
1296 root 1.150 $self->_error (Errno::EBADMSG);
1297 root 1.36 }
1298    
1299     # skip
1300     if ($skip && $$rbuf =~ $skip) {
1301     $data .= substr $$rbuf, 0, $+[0], "";
1302     }
1303    
1304     ()
1305     }
1306     };
1307    
1308 root 1.61 =item netstring => $cb->($handle, $string)
1309    
1310     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1311    
1312     Throws an error with C<$!> set to EBADMSG on format violations.
1313    
1314     =cut
1315    
1316     register_read_type netstring => sub {
1317     my ($self, $cb) = @_;
1318    
1319     sub {
1320     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1321     if ($_[0]{rbuf} =~ /[^0-9]/) {
1322 root 1.150 $self->_error (Errno::EBADMSG);
1323 root 1.61 }
1324     return;
1325     }
1326    
1327     my $len = $1;
1328    
1329     $self->unshift_read (chunk => $len, sub {
1330     my $string = $_[1];
1331     $_[0]->unshift_read (chunk => 1, sub {
1332     if ($_[1] eq ",") {
1333     $cb->($_[0], $string);
1334     } else {
1335 root 1.150 $self->_error (Errno::EBADMSG);
1336 root 1.61 }
1337     });
1338     });
1339    
1340     1
1341     }
1342     };
1343    
1344     =item packstring => $format, $cb->($handle, $string)
1345    
1346     An octet string prefixed with an encoded length. The encoding C<$format>
1347     uses the same format as a Perl C<pack> format, but must specify a single
1348     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1349     optional C<!>, C<< < >> or C<< > >> modifier).
1350    
1351 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1352     EPP uses a prefix of C<N> (4 octtes).
1353 root 1.61
1354     Example: read a block of data prefixed by its length in BER-encoded
1355     format (very efficient).
1356    
1357     $handle->push_read (packstring => "w", sub {
1358     my ($handle, $data) = @_;
1359     });
1360    
1361     =cut
1362    
1363     register_read_type packstring => sub {
1364     my ($self, $cb, $format) = @_;
1365    
1366     sub {
1367     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1368 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1369 root 1.61 or return;
1370    
1371 root 1.77 $format = length pack $format, $len;
1372 root 1.61
1373 root 1.77 # bypass unshift if we already have the remaining chunk
1374     if ($format + $len <= length $_[0]{rbuf}) {
1375     my $data = substr $_[0]{rbuf}, $format, $len;
1376     substr $_[0]{rbuf}, 0, $format + $len, "";
1377     $cb->($_[0], $data);
1378     } else {
1379     # remove prefix
1380     substr $_[0]{rbuf}, 0, $format, "";
1381    
1382     # read remaining chunk
1383     $_[0]->unshift_read (chunk => $len, $cb);
1384     }
1385 root 1.61
1386     1
1387     }
1388     };
1389    
1390 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1391    
1392 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1393     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1394 root 1.40
1395     If a C<json> object was passed to the constructor, then that will be used
1396     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1397    
1398     This read type uses the incremental parser available with JSON version
1399     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1400     dependency on your own: this module will load the JSON module, but
1401     AnyEvent does not depend on it itself.
1402    
1403     Since JSON texts are fully self-delimiting, the C<json> read and write
1404 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1405     the C<json> write type description, above, for an actual example.
1406 root 1.40
1407     =cut
1408    
1409     register_read_type json => sub {
1410 root 1.63 my ($self, $cb) = @_;
1411 root 1.40
1412 root 1.135 my $json = $self->{json} ||=
1413     eval { require JSON::XS; JSON::XS->new->utf8 }
1414     || do { require JSON; JSON->new->utf8 };
1415 root 1.40
1416     my $data;
1417     my $rbuf = \$self->{rbuf};
1418    
1419     sub {
1420 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1421 root 1.110
1422 root 1.113 if ($ref) {
1423     $self->{rbuf} = $json->incr_text;
1424     $json->incr_text = "";
1425     $cb->($self, $ref);
1426 root 1.110
1427     1
1428 root 1.113 } elsif ($@) {
1429 root 1.111 # error case
1430 root 1.110 $json->incr_skip;
1431 root 1.40
1432     $self->{rbuf} = $json->incr_text;
1433     $json->incr_text = "";
1434    
1435 root 1.150 $self->_error (Errno::EBADMSG);
1436 root 1.114
1437 root 1.113 ()
1438     } else {
1439     $self->{rbuf} = "";
1440 root 1.114
1441 root 1.113 ()
1442     }
1443 root 1.40 }
1444     };
1445    
1446 root 1.63 =item storable => $cb->($handle, $ref)
1447    
1448     Deserialises a L<Storable> frozen representation as written by the
1449     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1450     data).
1451    
1452     Raises C<EBADMSG> error if the data could not be decoded.
1453    
1454     =cut
1455    
1456     register_read_type storable => sub {
1457     my ($self, $cb) = @_;
1458    
1459     require Storable;
1460    
1461     sub {
1462     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1463 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1464 root 1.63 or return;
1465    
1466 root 1.77 my $format = length pack "w", $len;
1467 root 1.63
1468 root 1.77 # bypass unshift if we already have the remaining chunk
1469     if ($format + $len <= length $_[0]{rbuf}) {
1470     my $data = substr $_[0]{rbuf}, $format, $len;
1471     substr $_[0]{rbuf}, 0, $format + $len, "";
1472     $cb->($_[0], Storable::thaw ($data));
1473     } else {
1474     # remove prefix
1475     substr $_[0]{rbuf}, 0, $format, "";
1476    
1477     # read remaining chunk
1478     $_[0]->unshift_read (chunk => $len, sub {
1479     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1480     $cb->($_[0], $ref);
1481     } else {
1482 root 1.150 $self->_error (Errno::EBADMSG);
1483 root 1.77 }
1484     });
1485     }
1486    
1487     1
1488 root 1.63 }
1489     };
1490    
1491 root 1.28 =back
1492    
1493 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1494 root 1.30
1495     This function (not method) lets you add your own types to C<push_read>.
1496    
1497     Whenever the given C<type> is used, C<push_read> will invoke the code
1498     reference with the handle object, the callback and the remaining
1499     arguments.
1500    
1501     The code reference is supposed to return a callback (usually a closure)
1502     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1503    
1504     It should invoke the passed callback when it is done reading (remember to
1505 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1506 root 1.30
1507     Note that this is a function, and all types registered this way will be
1508     global, so try to use unique names.
1509    
1510     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1511     search for C<register_read_type>)).
1512    
1513 root 1.10 =item $handle->stop_read
1514    
1515     =item $handle->start_read
1516    
1517 root 1.18 In rare cases you actually do not want to read anything from the
1518 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1519 root 1.22 any queued callbacks will be executed then. To start reading again, call
1520 root 1.10 C<start_read>.
1521    
1522 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1523     you change the C<on_read> callback or push/unshift a read callback, and it
1524     will automatically C<stop_read> for you when neither C<on_read> is set nor
1525     there are any read requests in the queue.
1526    
1527 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1528     half-duplex connections).
1529    
1530 root 1.10 =cut
1531    
1532     sub stop_read {
1533     my ($self) = @_;
1534 elmex 1.1
1535 root 1.93 delete $self->{_rw} unless $self->{tls};
1536 root 1.8 }
1537 elmex 1.1
1538 root 1.10 sub start_read {
1539     my ($self) = @_;
1540    
1541 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1542 root 1.10 Scalar::Util::weaken $self;
1543    
1544 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1545 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1546 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1547 root 1.10
1548     if ($len > 0) {
1549 root 1.44 $self->{_activity} = AnyEvent->now;
1550 root 1.43
1551 root 1.93 if ($self->{tls}) {
1552     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1553 root 1.97
1554 root 1.93 &_dotls ($self);
1555     } else {
1556 root 1.159 $self->_drain_rbuf;
1557 root 1.93 }
1558 root 1.10
1559     } elsif (defined $len) {
1560 root 1.38 delete $self->{_rw};
1561     $self->{_eof} = 1;
1562 root 1.159 $self->_drain_rbuf;
1563 root 1.10
1564 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1565 root 1.52 return $self->_error ($!, 1);
1566 root 1.10 }
1567     });
1568     }
1569 elmex 1.1 }
1570    
1571 root 1.133 our $ERROR_SYSCALL;
1572     our $ERROR_WANT_READ;
1573    
1574     sub _tls_error {
1575     my ($self, $err) = @_;
1576    
1577     return $self->_error ($!, 1)
1578     if $err == Net::SSLeay::ERROR_SYSCALL ();
1579    
1580 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581    
1582     # reduce error string to look less scary
1583     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584    
1585 root 1.143 if ($self->{_on_starttls}) {
1586     (delete $self->{_on_starttls})->($self, undef, $err);
1587     &_freetls;
1588     } else {
1589     &_freetls;
1590 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1591 root 1.143 }
1592 root 1.133 }
1593    
1594 root 1.97 # poll the write BIO and send the data if applicable
1595 root 1.133 # also decode read data if possible
1596     # this is basiclaly our TLS state machine
1597     # more efficient implementations are possible with openssl,
1598     # but not with the buggy and incomplete Net::SSLeay.
1599 root 1.19 sub _dotls {
1600     my ($self) = @_;
1601    
1602 root 1.97 my $tmp;
1603 root 1.56
1604 root 1.38 if (length $self->{_tls_wbuf}) {
1605 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1606     substr $self->{_tls_wbuf}, 0, $tmp, "";
1607 root 1.22 }
1608 root 1.133
1609     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610     return $self->_tls_error ($tmp)
1611     if $tmp != $ERROR_WANT_READ
1612 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1613 root 1.19 }
1614    
1615 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1616     unless (length $tmp) {
1617 root 1.143 $self->{_on_starttls}
1618     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1619 root 1.92 &_freetls;
1620 root 1.143
1621 root 1.142 if ($self->{on_stoptls}) {
1622     $self->{on_stoptls}($self);
1623     return;
1624     } else {
1625     # let's treat SSL-eof as we treat normal EOF
1626     delete $self->{_rw};
1627     $self->{_eof} = 1;
1628     }
1629 root 1.56 }
1630 root 1.91
1631 root 1.116 $self->{_tls_rbuf} .= $tmp;
1632 root 1.159 $self->_drain_rbuf;
1633 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1634 root 1.23 }
1635    
1636 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1637 root 1.133 return $self->_tls_error ($tmp)
1638     if $tmp != $ERROR_WANT_READ
1639 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1640 root 1.91
1641 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1642     $self->{wbuf} .= $tmp;
1643 root 1.91 $self->_drain_wbuf;
1644     }
1645 root 1.142
1646     $self->{_on_starttls}
1647     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1648 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1649 root 1.19 }
1650    
1651 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1652    
1653     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1654     object is created, you can also do that at a later time by calling
1655     C<starttls>.
1656    
1657 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1658     write data and then call C<< ->starttls >> then TLS negotiation will start
1659     immediately, after which the queued write data is then sent.
1660    
1661 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1662     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1663    
1664 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1665     when AnyEvent::Handle has to create its own TLS connection object, or
1666     a hash reference with C<< key => value >> pairs that will be used to
1667     construct a new context.
1668    
1669     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1670     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1671     changed to your liking. Note that the handshake might have already started
1672     when this function returns.
1673 root 1.38
1674 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1675     handshakes on the same stream. Best do not attempt to use the stream after
1676     stopping TLS.
1677 root 1.92
1678 root 1.25 =cut
1679    
1680 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1681    
1682 root 1.19 sub starttls {
1683 root 1.160 my ($self, $tls, $ctx) = @_;
1684    
1685     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686     if $self->{tls};
1687    
1688     $self->{tls} = $tls;
1689     $self->{tls_ctx} = $ctx if @_ > 2;
1690    
1691     return unless $self->{fh};
1692 root 1.19
1693 root 1.94 require Net::SSLeay;
1694    
1695 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697 root 1.133
1698 root 1.160 $tls = $self->{tls};
1699     $ctx = $self->{tls_ctx};
1700 root 1.131
1701 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702    
1703 root 1.131 if ("HASH" eq ref $ctx) {
1704     require AnyEvent::TLS;
1705    
1706 root 1.137 if ($ctx->{cache}) {
1707     my $key = $ctx+0;
1708     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709     } else {
1710     $ctx = new AnyEvent::TLS %$ctx;
1711     }
1712 root 1.131 }
1713 root 1.92
1714 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1715 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1716 root 1.19
1717 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1718     # but the openssl maintainers basically said: "trust us, it just works".
1719     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1720     # and mismaintained ssleay-module doesn't even offer them).
1721 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1722 root 1.87 #
1723     # in short: this is a mess.
1724     #
1725 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1726 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1727 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1728     # have identity issues in that area.
1729 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1730     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1731     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1733 root 1.21
1734 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1735     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1736 root 1.19
1737 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1738    
1739 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1740 root 1.19
1741 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1742 root 1.143 if $self->{on_starttls};
1743 root 1.142
1744 root 1.93 &_dotls; # need to trigger the initial handshake
1745     $self->start_read; # make sure we actually do read
1746 root 1.19 }
1747    
1748 root 1.25 =item $handle->stoptls
1749    
1750 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1751     sending a close notify to the other side, but since OpenSSL doesn't
1752 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1753     the stream afterwards.
1754 root 1.25
1755     =cut
1756    
1757     sub stoptls {
1758     my ($self) = @_;
1759    
1760 root 1.92 if ($self->{tls}) {
1761 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1762 root 1.92
1763     &_dotls;
1764    
1765 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1766     # # we, we... have to use openssl :/#d#
1767     # &_freetls;#d#
1768 root 1.92 }
1769     }
1770    
1771     sub _freetls {
1772     my ($self) = @_;
1773    
1774     return unless $self->{tls};
1775 root 1.38
1776 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1777 root 1.171 if $self->{tls} > 0;
1778 root 1.92
1779 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1780 root 1.25 }
1781    
1782 root 1.19 sub DESTROY {
1783 root 1.120 my ($self) = @_;
1784 root 1.19
1785 root 1.92 &_freetls;
1786 root 1.62
1787     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1788    
1789 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1790 root 1.62 my $fh = delete $self->{fh};
1791     my $wbuf = delete $self->{wbuf};
1792    
1793     my @linger;
1794    
1795     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1796     my $len = syswrite $fh, $wbuf, length $wbuf;
1797    
1798     if ($len > 0) {
1799     substr $wbuf, 0, $len, "";
1800     } else {
1801     @linger = (); # end
1802     }
1803     });
1804     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1805     @linger = ();
1806     });
1807     }
1808 root 1.19 }
1809    
1810 root 1.99 =item $handle->destroy
1811    
1812 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1813 root 1.141 no further callbacks will be invoked and as many resources as possible
1814 root 1.165 will be freed. Any method you will call on the handle object after
1815     destroying it in this way will be silently ignored (and it will return the
1816     empty list).
1817 root 1.99
1818 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1819     object and it will simply shut down. This works in fatal error and EOF
1820     callbacks, as well as code outside. It does I<NOT> work in a read or write
1821     callback, so when you want to destroy the AnyEvent::Handle object from
1822     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1823     that case.
1824    
1825 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1826     will be removed as well, so if those are the only reference holders (as
1827     is common), then one doesn't need to do anything special to break any
1828     reference cycles.
1829    
1830 root 1.99 The handle might still linger in the background and write out remaining
1831     data, as specified by the C<linger> option, however.
1832    
1833     =cut
1834    
1835     sub destroy {
1836     my ($self) = @_;
1837    
1838     $self->DESTROY;
1839     %$self = ();
1840 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1841     }
1842    
1843 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1844     #nop
1845 root 1.99 }
1846    
1847 root 1.19 =item AnyEvent::Handle::TLS_CTX
1848    
1849 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1850     for TLS mode.
1851 root 1.19
1852 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1853 root 1.19
1854     =cut
1855    
1856     our $TLS_CTX;
1857    
1858     sub TLS_CTX() {
1859 root 1.131 $TLS_CTX ||= do {
1860     require AnyEvent::TLS;
1861 root 1.19
1862 root 1.131 new AnyEvent::TLS
1863 root 1.19 }
1864     }
1865    
1866 elmex 1.1 =back
1867    
1868 root 1.95
1869     =head1 NONFREQUENTLY ASKED QUESTIONS
1870    
1871     =over 4
1872    
1873 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1874     still get further invocations!
1875    
1876     That's because AnyEvent::Handle keeps a reference to itself when handling
1877     read or write callbacks.
1878    
1879     It is only safe to "forget" the reference inside EOF or error callbacks,
1880     from within all other callbacks, you need to explicitly call the C<<
1881     ->destroy >> method.
1882    
1883     =item I get different callback invocations in TLS mode/Why can't I pause
1884     reading?
1885    
1886     Unlike, say, TCP, TLS connections do not consist of two independent
1887     communication channels, one for each direction. Or put differently. The
1888     read and write directions are not independent of each other: you cannot
1889     write data unless you are also prepared to read, and vice versa.
1890    
1891     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1892     callback invocations when you are not expecting any read data - the reason
1893     is that AnyEvent::Handle always reads in TLS mode.
1894    
1895     During the connection, you have to make sure that you always have a
1896     non-empty read-queue, or an C<on_read> watcher. At the end of the
1897     connection (or when you no longer want to use it) you can call the
1898     C<destroy> method.
1899    
1900 root 1.95 =item How do I read data until the other side closes the connection?
1901    
1902 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1903     to achieve this is by setting an C<on_read> callback that does nothing,
1904     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1905     will be in C<$_[0]{rbuf}>:
1906 root 1.95
1907     $handle->on_read (sub { });
1908     $handle->on_eof (undef);
1909     $handle->on_error (sub {
1910     my $data = delete $_[0]{rbuf};
1911     });
1912    
1913     The reason to use C<on_error> is that TCP connections, due to latencies
1914     and packets loss, might get closed quite violently with an error, when in
1915     fact, all data has been received.
1916    
1917 root 1.101 It is usually better to use acknowledgements when transferring data,
1918 root 1.95 to make sure the other side hasn't just died and you got the data
1919     intact. This is also one reason why so many internet protocols have an
1920     explicit QUIT command.
1921    
1922 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1923     all data has been written?
1924 root 1.95
1925     After writing your last bits of data, set the C<on_drain> callback
1926     and destroy the handle in there - with the default setting of
1927     C<low_water_mark> this will be called precisely when all data has been
1928     written to the socket:
1929    
1930     $handle->push_write (...);
1931     $handle->on_drain (sub {
1932     warn "all data submitted to the kernel\n";
1933     undef $handle;
1934     });
1935    
1936 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1937     consider using C<< ->push_shutdown >> instead.
1938    
1939     =item I want to contact a TLS/SSL server, I don't care about security.
1940    
1941     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1942     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1943     parameter:
1944    
1945 root 1.144 tcp_connect $host, $port, sub {
1946     my ($fh) = @_;
1947 root 1.143
1948 root 1.144 my $handle = new AnyEvent::Handle
1949     fh => $fh,
1950     tls => "connect",
1951     on_error => sub { ... };
1952    
1953     $handle->push_write (...);
1954     };
1955 root 1.143
1956     =item I want to contact a TLS/SSL server, I do care about security.
1957    
1958 root 1.144 Then you should additionally enable certificate verification, including
1959     peername verification, if the protocol you use supports it (see
1960     L<AnyEvent::TLS>, C<verify_peername>).
1961    
1962     E.g. for HTTPS:
1963    
1964     tcp_connect $host, $port, sub {
1965     my ($fh) = @_;
1966    
1967     my $handle = new AnyEvent::Handle
1968     fh => $fh,
1969     peername => $host,
1970     tls => "connect",
1971     tls_ctx => { verify => 1, verify_peername => "https" },
1972     ...
1973    
1974     Note that you must specify the hostname you connected to (or whatever
1975     "peername" the protocol needs) as the C<peername> argument, otherwise no
1976     peername verification will be done.
1977    
1978     The above will use the system-dependent default set of trusted CA
1979     certificates. If you want to check against a specific CA, add the
1980     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1981    
1982     tls_ctx => {
1983     verify => 1,
1984     verify_peername => "https",
1985     ca_file => "my-ca-cert.pem",
1986     },
1987    
1988     =item I want to create a TLS/SSL server, how do I do that?
1989    
1990     Well, you first need to get a server certificate and key. You have
1991     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1992     self-signed certificate (cheap. check the search engine of your choice,
1993     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1994     nice program for that purpose).
1995    
1996     Then create a file with your private key (in PEM format, see
1997     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1998     file should then look like this:
1999    
2000     -----BEGIN RSA PRIVATE KEY-----
2001     ...header data
2002     ... lots of base64'y-stuff
2003     -----END RSA PRIVATE KEY-----
2004    
2005     -----BEGIN CERTIFICATE-----
2006     ... lots of base64'y-stuff
2007     -----END CERTIFICATE-----
2008    
2009     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2010     specify this file as C<cert_file>:
2011    
2012     tcp_server undef, $port, sub {
2013     my ($fh) = @_;
2014    
2015     my $handle = new AnyEvent::Handle
2016     fh => $fh,
2017     tls => "accept",
2018     tls_ctx => { cert_file => "my-server-keycert.pem" },
2019     ...
2020 root 1.143
2021 root 1.144 When you have intermediate CA certificates that your clients might not
2022     know about, just append them to the C<cert_file>.
2023 root 1.143
2024 root 1.95 =back
2025    
2026    
2027 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2028    
2029     In many cases, you might want to subclass AnyEvent::Handle.
2030    
2031     To make this easier, a given version of AnyEvent::Handle uses these
2032     conventions:
2033    
2034     =over 4
2035    
2036     =item * all constructor arguments become object members.
2037    
2038     At least initially, when you pass a C<tls>-argument to the constructor it
2039 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2040 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2041    
2042     =item * other object member names are prefixed with an C<_>.
2043    
2044     All object members not explicitly documented (internal use) are prefixed
2045     with an underscore character, so the remaining non-C<_>-namespace is free
2046     for use for subclasses.
2047    
2048     =item * all members not documented here and not prefixed with an underscore
2049     are free to use in subclasses.
2050    
2051     Of course, new versions of AnyEvent::Handle may introduce more "public"
2052     member variables, but thats just life, at least it is documented.
2053    
2054     =back
2055    
2056 elmex 1.1 =head1 AUTHOR
2057    
2058 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2059 elmex 1.1
2060     =cut
2061    
2062     1; # End of AnyEvent::Handle