ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.174
Committed: Sat Aug 8 20:52:06 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.173: +1 -0 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 root 1.8 use Scalar::Util ();
4     use Carp ();
5 root 1.43 use Errno qw(EAGAIN EINTR);
6 elmex 1.1
7 root 1.153 use AnyEvent (); BEGIN { AnyEvent::common_sense }
8     use AnyEvent::Util qw(WSAEWOULDBLOCK);
9    
10 elmex 1.1 =head1 NAME
11    
12 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
13 elmex 1.1
14     =cut
15    
16 root 1.173 our $VERSION = 4.91;
17 elmex 1.1
18     =head1 SYNOPSIS
19    
20     use AnyEvent;
21     use AnyEvent::Handle;
22    
23     my $cv = AnyEvent->condvar;
24    
25 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
26     fh => \*STDIN,
27     on_error => sub {
28 root 1.151 my ($hdl, $fatal, $msg) = @_;
29     warn "got error $msg\n";
30     $hdl->destroy;
31 root 1.149 $cv->send;
32 elmex 1.2 );
33    
34 root 1.31 # send some request line
35 root 1.149 $hdl->push_write ("getinfo\015\012");
36 root 1.31
37     # read the response line
38 root 1.149 $hdl->push_read (line => sub {
39     my ($hdl, $line) = @_;
40     warn "got line <$line>\n";
41 root 1.31 $cv->send;
42     });
43    
44     $cv->recv;
45 elmex 1.1
46     =head1 DESCRIPTION
47    
48 root 1.8 This module is a helper module to make it easier to do event-based I/O on
49 root 1.159 filehandles.
50 root 1.8
51 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
52     AnyEvent::Handle examples.
53    
54 root 1.8 In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
59     C<on_error> callback.
60    
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64     =head1 METHODS
65    
66     =over 4
67    
68 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 elmex 1.1
70 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
71 elmex 1.1
72     =over 4
73    
74 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 root 1.158
76 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
77 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
78     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79     that mode.
80 root 1.8
81 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82    
83     Try to connect to the specified host and service (port), using
84     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85     default C<peername>.
86    
87     You have to specify either this parameter, or C<fh>, above.
88    
89 root 1.160 It is possible to push requests on the read and write queues, and modify
90     properties of the stream, even while AnyEvent::Handle is connecting.
91    
92 root 1.159 When this parameter is specified, then the C<on_prepare>,
93     C<on_connect_error> and C<on_connect> callbacks will be called under the
94     appropriate circumstances:
95    
96     =over 4
97    
98     =item on_prepare => $cb->($handle)
99    
100     This (rarely used) callback is called before a new connection is
101     attempted, but after the file handle has been created. It could be used to
102     prepare the file handle with parameters required for the actual connect
103     (as opposed to settings that can be changed when the connection is already
104     established).
105    
106 root 1.161 The return value of this callback should be the connect timeout value in
107     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108     timeout is to be used).
109    
110 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
111    
112     This callback is called when a connection has been successfully established.
113    
114     The actual numeric host and port (the socket peername) are passed as
115     parameters, together with a retry callback.
116    
117     When, for some reason, the handle is not acceptable, then calling
118     C<$retry> will continue with the next conenction target (in case of
119     multi-homed hosts or SRV records there can be multiple connection
120     endpoints). When it is called then the read and write queues, eof status,
121     tls status and similar properties of the handle are being reset.
122    
123     In most cases, ignoring the C<$retry> parameter is the way to go.
124 root 1.158
125 root 1.159 =item on_connect_error => $cb->($handle, $message)
126 root 1.10
127 root 1.159 This callback is called when the conenction could not be
128     established. C<$!> will contain the relevant error code, and C<$message> a
129     message describing it (usually the same as C<"$!">).
130 root 1.8
131 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
132     fatal error instead.
133 root 1.82
134 root 1.159 =back
135 root 1.80
136 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
137 root 1.10
138 root 1.52 This is the error callback, which is called when, well, some error
139     occured, such as not being able to resolve the hostname, failure to
140     connect or a read error.
141    
142     Some errors are fatal (which is indicated by C<$fatal> being true). On
143 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
144     destroy >>) after invoking the error callback (which means you are free to
145     examine the handle object). Examples of fatal errors are an EOF condition
146 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147     cases where the other side can close the connection at their will it is
148     often easiest to not report C<EPIPE> errors in this callback.
149 root 1.82
150 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
151     against, but in some cases (TLS errors), this does not work well. It is
152     recommended to always output the C<$message> argument in human-readable
153     error messages (it's usually the same as C<"$!">).
154    
155 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
156     to simply ignore this parameter and instead abondon the handle object
157     when this callback is invoked. Examples of non-fatal errors are timeouts
158     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159 root 1.8
160 root 1.10 On callback entrance, the value of C<$!> contains the operating system
161 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162     C<EPROTO>).
163 root 1.8
164 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
165     you will not be notified of errors otherwise. The default simply calls
166 root 1.52 C<croak>.
167 root 1.8
168 root 1.40 =item on_read => $cb->($handle)
169 root 1.8
170     This sets the default read callback, which is called when data arrives
171 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
172     callback will only be called when at least one octet of data is in the
173     read buffer).
174 root 1.8
175     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
177 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
178     the beginning from it.
179 root 1.8
180     When an EOF condition is detected then AnyEvent::Handle will first try to
181     feed all the remaining data to the queued callbacks and C<on_read> before
182     calling the C<on_eof> callback. If no progress can be made, then a fatal
183     error will be raised (with C<$!> set to C<EPIPE>).
184 elmex 1.1
185 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
186     doesn't mean you I<require> some data: if there is an EOF and there
187     are outstanding read requests then an error will be flagged. With an
188     C<on_read> callback, the C<on_eof> callback will be invoked.
189    
190 root 1.159 =item on_eof => $cb->($handle)
191    
192     Set the callback to be called when an end-of-file condition is detected,
193     i.e. in the case of a socket, when the other side has closed the
194     connection cleanly, and there are no outstanding read requests in the
195     queue (if there are read requests, then an EOF counts as an unexpected
196     connection close and will be flagged as an error).
197    
198     For sockets, this just means that the other side has stopped sending data,
199     you can still try to write data, and, in fact, one can return from the EOF
200     callback and continue writing data, as only the read part has been shut
201     down.
202    
203     If an EOF condition has been detected but no C<on_eof> callback has been
204     set, then a fatal error will be raised with C<$!> set to <0>.
205    
206 root 1.40 =item on_drain => $cb->($handle)
207 elmex 1.1
208 root 1.8 This sets the callback that is called when the write buffer becomes empty
209     (or when the callback is set and the buffer is empty already).
210 elmex 1.1
211 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
212 elmex 1.2
213 root 1.69 This callback is useful when you don't want to put all of your write data
214     into the queue at once, for example, when you want to write the contents
215     of some file to the socket you might not want to read the whole file into
216     memory and push it into the queue, but instead only read more data from
217     the file when the write queue becomes empty.
218    
219 root 1.43 =item timeout => $fractional_seconds
220    
221     If non-zero, then this enables an "inactivity" timeout: whenever this many
222     seconds pass without a successful read or write on the underlying file
223     handle, the C<on_timeout> callback will be invoked (and if that one is
224 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
225 root 1.43
226     Note that timeout processing is also active when you currently do not have
227     any outstanding read or write requests: If you plan to keep the connection
228     idle then you should disable the timout temporarily or ignore the timeout
229 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230     restart the timeout.
231 root 1.43
232     Zero (the default) disables this timeout.
233    
234     =item on_timeout => $cb->($handle)
235    
236     Called whenever the inactivity timeout passes. If you return from this
237     callback, then the timeout will be reset as if some activity had happened,
238     so this condition is not fatal in any way.
239    
240 root 1.8 =item rbuf_max => <bytes>
241 elmex 1.2
242 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
243     when the read buffer ever (strictly) exceeds this size. This is useful to
244 root 1.88 avoid some forms of denial-of-service attacks.
245 elmex 1.2
246 root 1.8 For example, a server accepting connections from untrusted sources should
247     be configured to accept only so-and-so much data that it cannot act on
248     (for example, when expecting a line, an attacker could send an unlimited
249     amount of data without a callback ever being called as long as the line
250     isn't finished).
251 elmex 1.2
252 root 1.70 =item autocork => <boolean>
253    
254     When disabled (the default), then C<push_write> will try to immediately
255 root 1.88 write the data to the handle, if possible. This avoids having to register
256     a write watcher and wait for the next event loop iteration, but can
257     be inefficient if you write multiple small chunks (on the wire, this
258     disadvantage is usually avoided by your kernel's nagle algorithm, see
259     C<no_delay>, but this option can save costly syscalls).
260 root 1.70
261     When enabled, then writes will always be queued till the next event loop
262     iteration. This is efficient when you do many small writes per iteration,
263 root 1.88 but less efficient when you do a single write only per iteration (or when
264     the write buffer often is full). It also increases write latency.
265 root 1.70
266     =item no_delay => <boolean>
267    
268     When doing small writes on sockets, your operating system kernel might
269     wait a bit for more data before actually sending it out. This is called
270     the Nagle algorithm, and usually it is beneficial.
271    
272 root 1.88 In some situations you want as low a delay as possible, which can be
273     accomplishd by setting this option to a true value.
274 root 1.70
275 root 1.88 The default is your opertaing system's default behaviour (most likely
276     enabled), this option explicitly enables or disables it, if possible.
277 root 1.70
278 root 1.8 =item read_size => <bytes>
279 elmex 1.2
280 root 1.88 The default read block size (the amount of bytes this module will
281     try to read during each loop iteration, which affects memory
282     requirements). Default: C<8192>.
283 root 1.8
284     =item low_water_mark => <bytes>
285    
286     Sets the amount of bytes (default: C<0>) that make up an "empty" write
287     buffer: If the write reaches this size or gets even samller it is
288     considered empty.
289 elmex 1.2
290 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
291     the write buffer before it is fully drained, but this is a rare case, as
292     the operating system kernel usually buffers data as well, so the default
293     is good in almost all cases.
294    
295 root 1.62 =item linger => <seconds>
296    
297     If non-zero (default: C<3600>), then the destructor of the
298 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
299     write data and will install a watcher that will write this data to the
300     socket. No errors will be reported (this mostly matches how the operating
301     system treats outstanding data at socket close time).
302 root 1.62
303 root 1.88 This will not work for partial TLS data that could not be encoded
304 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
305     help.
306 root 1.62
307 root 1.133 =item peername => $string
308    
309 root 1.134 A string used to identify the remote site - usually the DNS hostname
310     (I<not> IDN!) used to create the connection, rarely the IP address.
311 root 1.131
312 root 1.133 Apart from being useful in error messages, this string is also used in TLS
313 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314     verification will be skipped when C<peername> is not specified or
315     C<undef>.
316 root 1.131
317 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
318    
319 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
320 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
321     established and will transparently encrypt/decrypt data afterwards.
322 root 1.19
323 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
324     appropriate error message.
325    
326 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
327 root 1.88 automatically when you try to create a TLS handle): this module doesn't
328     have a dependency on that module, so if your module requires it, you have
329     to add the dependency yourself.
330 root 1.26
331 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
332     C<accept>, and for the TLS client side of a connection, use C<connect>
333     mode.
334 root 1.19
335     You can also provide your own TLS connection object, but you have
336     to make sure that you call either C<Net::SSLeay::set_connect_state>
337     or C<Net::SSLeay::set_accept_state> on it before you pass it to
338 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
339     object.
340    
341     At some future point, AnyEvent::Handle might switch to another TLS
342     implementation, then the option to use your own session object will go
343     away.
344 root 1.19
345 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346     passing in the wrong integer will lead to certain crash. This most often
347     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348     segmentation fault.
349    
350 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
351 root 1.26
352 root 1.131 =item tls_ctx => $anyevent_tls
353 root 1.19
354 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
355 root 1.19 (unless a connection object was specified directly). If this parameter is
356     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357    
358 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
359     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360     new TLS context object.
361    
362 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
363 root 1.142
364     This callback will be invoked when the TLS/SSL handshake has finished. If
365     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366     (C<on_stoptls> will not be called in this case).
367    
368     The session in C<< $handle->{tls} >> can still be examined in this
369     callback, even when the handshake was not successful.
370    
371 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
372     callback is in effect, instead, the error message will be passed to C<on_starttls>.
373    
374     Without this callback, handshake failures lead to C<on_error> being
375     called, as normal.
376    
377     Note that you cannot call C<starttls> right again in this callback. If you
378     need to do that, start an zero-second timer instead whose callback can
379     then call C<< ->starttls >> again.
380    
381 root 1.142 =item on_stoptls => $cb->($handle)
382    
383     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384     set, then it will be invoked after freeing the TLS session. If it is not,
385     then a TLS shutdown condition will be treated like a normal EOF condition
386     on the handle.
387    
388     The session in C<< $handle->{tls} >> can still be examined in this
389     callback.
390    
391     This callback will only be called on TLS shutdowns, not when the
392     underlying handle signals EOF.
393    
394 root 1.40 =item json => JSON or JSON::XS object
395    
396     This is the json coder object used by the C<json> read and write types.
397    
398 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
399 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
400     texts.
401 root 1.40
402     Note that you are responsible to depend on the JSON module if you want to
403     use this functionality, as AnyEvent does not have a dependency itself.
404    
405 elmex 1.1 =back
406    
407     =cut
408    
409     sub new {
410 root 1.8 my $class = shift;
411     my $self = bless { @_ }, $class;
412    
413 root 1.159 if ($self->{fh}) {
414     $self->_start;
415     return unless $self->{fh}; # could be gone by now
416    
417     } elsif ($self->{connect}) {
418     require AnyEvent::Socket;
419    
420     $self->{peername} = $self->{connect}[0]
421     unless exists $self->{peername};
422    
423     $self->{_skip_drain_rbuf} = 1;
424    
425     {
426     Scalar::Util::weaken (my $self = $self);
427    
428     $self->{_connect} =
429     AnyEvent::Socket::tcp_connect (
430     $self->{connect}[0],
431     $self->{connect}[1],
432     sub {
433     my ($fh, $host, $port, $retry) = @_;
434    
435     if ($fh) {
436     $self->{fh} = $fh;
437    
438     delete $self->{_skip_drain_rbuf};
439     $self->_start;
440    
441     $self->{on_connect}
442     and $self->{on_connect}($self, $host, $port, sub {
443     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444     $self->{_skip_drain_rbuf} = 1;
445     &$retry;
446     });
447    
448     } else {
449     if ($self->{on_connect_error}) {
450     $self->{on_connect_error}($self, "$!");
451     $self->destroy;
452     } else {
453 root 1.161 $self->_error ($!, 1);
454 root 1.159 }
455     }
456     },
457     sub {
458     local $self->{fh} = $_[0];
459    
460 root 1.161 $self->{on_prepare}
461     ? $self->{on_prepare}->($self)
462     : ()
463 root 1.159 }
464     );
465     }
466    
467     } else {
468     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469     }
470    
471     $self
472     }
473    
474     sub _start {
475     my ($self) = @_;
476 root 1.8
477     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478 elmex 1.1
479 root 1.131 $self->{_activity} = AnyEvent->now;
480     $self->_timeout;
481    
482     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
483    
484 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485     if $self->{tls};
486 root 1.19
487 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488 root 1.10
489 root 1.66 $self->start_read
490 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
491 root 1.160
492     $self->_drain_wbuf;
493 root 1.8 }
494 elmex 1.2
495 root 1.149 #sub _shutdown {
496     # my ($self) = @_;
497     #
498     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
499     # $self->{_eof} = 1; # tell starttls et. al to stop trying
500     #
501     # &_freetls;
502     #}
503 root 1.8
504 root 1.52 sub _error {
505 root 1.133 my ($self, $errno, $fatal, $message) = @_;
506 root 1.8
507 root 1.52 $! = $errno;
508 root 1.133 $message ||= "$!";
509 root 1.37
510 root 1.52 if ($self->{on_error}) {
511 root 1.133 $self->{on_error}($self, $fatal, $message);
512 root 1.151 $self->destroy if $fatal;
513 root 1.100 } elsif ($self->{fh}) {
514 root 1.149 $self->destroy;
515 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
516 root 1.52 }
517 elmex 1.1 }
518    
519 root 1.8 =item $fh = $handle->fh
520 elmex 1.1
521 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
522 elmex 1.1
523     =cut
524    
525 root 1.38 sub fh { $_[0]{fh} }
526 elmex 1.1
527 root 1.8 =item $handle->on_error ($cb)
528 elmex 1.1
529 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
530 elmex 1.1
531 root 1.8 =cut
532    
533     sub on_error {
534     $_[0]{on_error} = $_[1];
535     }
536    
537     =item $handle->on_eof ($cb)
538    
539     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
540 elmex 1.1
541     =cut
542    
543 root 1.8 sub on_eof {
544     $_[0]{on_eof} = $_[1];
545     }
546    
547 root 1.43 =item $handle->on_timeout ($cb)
548    
549 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
550     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
551     argument and method.
552 root 1.43
553     =cut
554    
555     sub on_timeout {
556     $_[0]{on_timeout} = $_[1];
557     }
558    
559 root 1.70 =item $handle->autocork ($boolean)
560    
561     Enables or disables the current autocork behaviour (see C<autocork>
562 root 1.105 constructor argument). Changes will only take effect on the next write.
563 root 1.70
564     =cut
565    
566 root 1.105 sub autocork {
567     $_[0]{autocork} = $_[1];
568     }
569    
570 root 1.70 =item $handle->no_delay ($boolean)
571    
572     Enables or disables the C<no_delay> setting (see constructor argument of
573     the same name for details).
574    
575     =cut
576    
577     sub no_delay {
578     $_[0]{no_delay} = $_[1];
579    
580     eval {
581     local $SIG{__DIE__};
582 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583     if $_[0]{fh};
584 root 1.70 };
585     }
586    
587 root 1.142 =item $handle->on_starttls ($cb)
588    
589     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590    
591     =cut
592    
593     sub on_starttls {
594     $_[0]{on_starttls} = $_[1];
595     }
596    
597     =item $handle->on_stoptls ($cb)
598    
599     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600    
601     =cut
602    
603     sub on_starttls {
604     $_[0]{on_stoptls} = $_[1];
605     }
606    
607 root 1.168 =item $handle->rbuf_max ($max_octets)
608    
609     Configures the C<rbuf_max> setting (C<undef> disables it).
610    
611     =cut
612    
613     sub rbuf_max {
614     $_[0]{rbuf_max} = $_[1];
615     }
616    
617 root 1.43 #############################################################################
618    
619     =item $handle->timeout ($seconds)
620    
621     Configures (or disables) the inactivity timeout.
622    
623     =cut
624    
625     sub timeout {
626     my ($self, $timeout) = @_;
627    
628     $self->{timeout} = $timeout;
629 root 1.174 delete $self->{_tw};
630 root 1.43 $self->_timeout;
631     }
632    
633     # reset the timeout watcher, as neccessary
634     # also check for time-outs
635     sub _timeout {
636     my ($self) = @_;
637    
638 root 1.159 if ($self->{timeout} && $self->{fh}) {
639 root 1.44 my $NOW = AnyEvent->now;
640 root 1.43
641     # when would the timeout trigger?
642     my $after = $self->{_activity} + $self->{timeout} - $NOW;
643    
644     # now or in the past already?
645     if ($after <= 0) {
646     $self->{_activity} = $NOW;
647    
648     if ($self->{on_timeout}) {
649 root 1.48 $self->{on_timeout}($self);
650 root 1.43 } else {
651 root 1.150 $self->_error (Errno::ETIMEDOUT);
652 root 1.43 }
653    
654 root 1.56 # callback could have changed timeout value, optimise
655 root 1.43 return unless $self->{timeout};
656    
657     # calculate new after
658     $after = $self->{timeout};
659     }
660    
661     Scalar::Util::weaken $self;
662 root 1.56 return unless $self; # ->error could have destroyed $self
663 root 1.43
664     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
665     delete $self->{_tw};
666     $self->_timeout;
667     });
668     } else {
669     delete $self->{_tw};
670     }
671     }
672    
673 root 1.9 #############################################################################
674    
675     =back
676    
677     =head2 WRITE QUEUE
678    
679     AnyEvent::Handle manages two queues per handle, one for writing and one
680     for reading.
681    
682     The write queue is very simple: you can add data to its end, and
683     AnyEvent::Handle will automatically try to get rid of it for you.
684    
685 elmex 1.20 When data could be written and the write buffer is shorter then the low
686 root 1.9 water mark, the C<on_drain> callback will be invoked.
687    
688     =over 4
689    
690 root 1.8 =item $handle->on_drain ($cb)
691    
692     Sets the C<on_drain> callback or clears it (see the description of
693     C<on_drain> in the constructor).
694    
695     =cut
696    
697     sub on_drain {
698 elmex 1.1 my ($self, $cb) = @_;
699    
700 root 1.8 $self->{on_drain} = $cb;
701    
702     $cb->($self)
703 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
704 root 1.8 }
705    
706     =item $handle->push_write ($data)
707    
708     Queues the given scalar to be written. You can push as much data as you
709     want (only limited by the available memory), as C<AnyEvent::Handle>
710     buffers it independently of the kernel.
711    
712     =cut
713    
714 root 1.17 sub _drain_wbuf {
715     my ($self) = @_;
716 root 1.8
717 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
718 root 1.35
719 root 1.8 Scalar::Util::weaken $self;
720 root 1.35
721 root 1.8 my $cb = sub {
722     my $len = syswrite $self->{fh}, $self->{wbuf};
723    
724 root 1.146 if (defined $len) {
725 root 1.8 substr $self->{wbuf}, 0, $len, "";
726    
727 root 1.44 $self->{_activity} = AnyEvent->now;
728 root 1.43
729 root 1.8 $self->{on_drain}($self)
730 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
731 root 1.8 && $self->{on_drain};
732    
733 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
734 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
735 root 1.52 $self->_error ($!, 1);
736 elmex 1.1 }
737 root 1.8 };
738    
739 root 1.35 # try to write data immediately
740 root 1.70 $cb->() unless $self->{autocork};
741 root 1.8
742 root 1.35 # if still data left in wbuf, we need to poll
743 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
744 root 1.35 if length $self->{wbuf};
745 root 1.8 };
746     }
747    
748 root 1.30 our %WH;
749    
750     sub register_write_type($$) {
751     $WH{$_[0]} = $_[1];
752     }
753    
754 root 1.17 sub push_write {
755     my $self = shift;
756    
757 root 1.29 if (@_ > 1) {
758     my $type = shift;
759    
760     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
761     ->($self, @_);
762     }
763    
764 root 1.93 if ($self->{tls}) {
765     $self->{_tls_wbuf} .= $_[0];
766 root 1.160 &_dotls ($self) if $self->{fh};
767 root 1.17 } else {
768 root 1.160 $self->{wbuf} .= $_[0];
769 root 1.159 $self->_drain_wbuf if $self->{fh};
770 root 1.17 }
771     }
772    
773 root 1.29 =item $handle->push_write (type => @args)
774    
775     Instead of formatting your data yourself, you can also let this module do
776     the job by specifying a type and type-specific arguments.
777    
778 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
779     drop by and tell us):
780 root 1.29
781     =over 4
782    
783     =item netstring => $string
784    
785     Formats the given value as netstring
786     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
787    
788     =cut
789    
790     register_write_type netstring => sub {
791     my ($self, $string) = @_;
792    
793 root 1.96 (length $string) . ":$string,"
794 root 1.29 };
795    
796 root 1.61 =item packstring => $format, $data
797    
798     An octet string prefixed with an encoded length. The encoding C<$format>
799     uses the same format as a Perl C<pack> format, but must specify a single
800     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
801     optional C<!>, C<< < >> or C<< > >> modifier).
802    
803     =cut
804    
805     register_write_type packstring => sub {
806     my ($self, $format, $string) = @_;
807    
808 root 1.65 pack "$format/a*", $string
809 root 1.61 };
810    
811 root 1.39 =item json => $array_or_hashref
812    
813 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
814     provide your own JSON object, this means it will be encoded to JSON text
815     in UTF-8.
816    
817     JSON objects (and arrays) are self-delimiting, so you can write JSON at
818     one end of a handle and read them at the other end without using any
819     additional framing.
820    
821 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
822     this module doesn't need delimiters after or between JSON texts to be
823     able to read them, many other languages depend on that.
824    
825     A simple RPC protocol that interoperates easily with others is to send
826     JSON arrays (or objects, although arrays are usually the better choice as
827     they mimic how function argument passing works) and a newline after each
828     JSON text:
829    
830     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
831     $handle->push_write ("\012");
832    
833     An AnyEvent::Handle receiver would simply use the C<json> read type and
834     rely on the fact that the newline will be skipped as leading whitespace:
835    
836     $handle->push_read (json => sub { my $array = $_[1]; ... });
837    
838     Other languages could read single lines terminated by a newline and pass
839     this line into their JSON decoder of choice.
840    
841 root 1.40 =cut
842    
843     register_write_type json => sub {
844     my ($self, $ref) = @_;
845    
846     require JSON;
847    
848     $self->{json} ? $self->{json}->encode ($ref)
849     : JSON::encode_json ($ref)
850     };
851    
852 root 1.63 =item storable => $reference
853    
854     Freezes the given reference using L<Storable> and writes it to the
855     handle. Uses the C<nfreeze> format.
856    
857     =cut
858    
859     register_write_type storable => sub {
860     my ($self, $ref) = @_;
861    
862     require Storable;
863    
864 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
865 root 1.63 };
866    
867 root 1.53 =back
868    
869 root 1.133 =item $handle->push_shutdown
870    
871     Sometimes you know you want to close the socket after writing your data
872     before it was actually written. One way to do that is to replace your
873 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
874     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875     replaces the C<on_drain> callback with:
876 root 1.133
877     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878    
879     This simply shuts down the write side and signals an EOF condition to the
880     the peer.
881    
882     You can rely on the normal read queue and C<on_eof> handling
883     afterwards. This is the cleanest way to close a connection.
884    
885     =cut
886    
887     sub push_shutdown {
888 root 1.142 my ($self) = @_;
889    
890     delete $self->{low_water_mark};
891     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892 root 1.133 }
893    
894 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
895 root 1.30
896     This function (not method) lets you add your own types to C<push_write>.
897     Whenever the given C<type> is used, C<push_write> will invoke the code
898     reference with the handle object and the remaining arguments.
899 root 1.29
900 root 1.30 The code reference is supposed to return a single octet string that will
901     be appended to the write buffer.
902 root 1.29
903 root 1.30 Note that this is a function, and all types registered this way will be
904     global, so try to use unique names.
905 root 1.29
906 root 1.30 =cut
907 root 1.29
908 root 1.8 #############################################################################
909    
910 root 1.9 =back
911    
912     =head2 READ QUEUE
913    
914     AnyEvent::Handle manages two queues per handle, one for writing and one
915     for reading.
916    
917     The read queue is more complex than the write queue. It can be used in two
918     ways, the "simple" way, using only C<on_read> and the "complex" way, using
919     a queue.
920    
921     In the simple case, you just install an C<on_read> callback and whenever
922     new data arrives, it will be called. You can then remove some data (if
923 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
924     leave the data there if you want to accumulate more (e.g. when only a
925     partial message has been received so far).
926 root 1.9
927     In the more complex case, you want to queue multiple callbacks. In this
928     case, AnyEvent::Handle will call the first queued callback each time new
929 root 1.61 data arrives (also the first time it is queued) and removes it when it has
930     done its job (see C<push_read>, below).
931 root 1.9
932     This way you can, for example, push three line-reads, followed by reading
933     a chunk of data, and AnyEvent::Handle will execute them in order.
934    
935     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
936     the specified number of bytes which give an XML datagram.
937    
938     # in the default state, expect some header bytes
939     $handle->on_read (sub {
940     # some data is here, now queue the length-header-read (4 octets)
941 root 1.52 shift->unshift_read (chunk => 4, sub {
942 root 1.9 # header arrived, decode
943     my $len = unpack "N", $_[1];
944    
945     # now read the payload
946 root 1.52 shift->unshift_read (chunk => $len, sub {
947 root 1.9 my $xml = $_[1];
948     # handle xml
949     });
950     });
951     });
952    
953 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
954     and another line or "ERROR" for the first request that is sent, and 64
955     bytes for the second request. Due to the availability of a queue, we can
956     just pipeline sending both requests and manipulate the queue as necessary
957     in the callbacks.
958    
959     When the first callback is called and sees an "OK" response, it will
960     C<unshift> another line-read. This line-read will be queued I<before> the
961     64-byte chunk callback.
962 root 1.9
963 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
964 root 1.9 $handle->push_write ("request 1\015\012");
965    
966     # we expect "ERROR" or "OK" as response, so push a line read
967 root 1.52 $handle->push_read (line => sub {
968 root 1.9 # if we got an "OK", we have to _prepend_ another line,
969     # so it will be read before the second request reads its 64 bytes
970     # which are already in the queue when this callback is called
971     # we don't do this in case we got an error
972     if ($_[1] eq "OK") {
973 root 1.52 $_[0]->unshift_read (line => sub {
974 root 1.9 my $response = $_[1];
975     ...
976     });
977     }
978     });
979    
980 root 1.69 # request two, simply returns 64 octets
981 root 1.9 $handle->push_write ("request 2\015\012");
982    
983     # simply read 64 bytes, always
984 root 1.52 $handle->push_read (chunk => 64, sub {
985 root 1.9 my $response = $_[1];
986     ...
987     });
988    
989     =over 4
990    
991 root 1.10 =cut
992    
993 root 1.8 sub _drain_rbuf {
994     my ($self) = @_;
995 elmex 1.1
996 root 1.159 # avoid recursion
997 root 1.167 return if $self->{_skip_drain_rbuf};
998 root 1.159 local $self->{_skip_drain_rbuf} = 1;
999 root 1.59
1000     while () {
1001 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1002     # we are draining the buffer, and this can only happen with TLS.
1003 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004     if exists $self->{_tls_rbuf};
1005 root 1.115
1006 root 1.59 my $len = length $self->{rbuf};
1007 elmex 1.1
1008 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1009 root 1.29 unless ($cb->($self)) {
1010 root 1.163 # no progress can be made
1011     # (not enough data and no data forthcoming)
1012     $self->_error (Errno::EPIPE, 1), return
1013     if $self->{_eof};
1014 root 1.10
1015 root 1.38 unshift @{ $self->{_queue} }, $cb;
1016 root 1.55 last;
1017 root 1.8 }
1018     } elsif ($self->{on_read}) {
1019 root 1.61 last unless $len;
1020    
1021 root 1.8 $self->{on_read}($self);
1022    
1023     if (
1024 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1025     && !@{ $self->{_queue} } # and the queue is still empty
1026     && $self->{on_read} # but we still have on_read
1027 root 1.8 ) {
1028 root 1.55 # no further data will arrive
1029     # so no progress can be made
1030 root 1.150 $self->_error (Errno::EPIPE, 1), return
1031 root 1.55 if $self->{_eof};
1032    
1033     last; # more data might arrive
1034 elmex 1.1 }
1035 root 1.8 } else {
1036     # read side becomes idle
1037 root 1.93 delete $self->{_rw} unless $self->{tls};
1038 root 1.55 last;
1039 root 1.8 }
1040     }
1041    
1042 root 1.80 if ($self->{_eof}) {
1043 root 1.163 $self->{on_eof}
1044     ? $self->{on_eof}($self)
1045     : $self->_error (0, 1, "Unexpected end-of-file");
1046    
1047     return;
1048 root 1.80 }
1049 root 1.55
1050 root 1.169 if (
1051     defined $self->{rbuf_max}
1052     && $self->{rbuf_max} < length $self->{rbuf}
1053     ) {
1054     $self->_error (Errno::ENOSPC, 1), return;
1055     }
1056    
1057 root 1.55 # may need to restart read watcher
1058     unless ($self->{_rw}) {
1059     $self->start_read
1060     if $self->{on_read} || @{ $self->{_queue} };
1061     }
1062 elmex 1.1 }
1063    
1064 root 1.8 =item $handle->on_read ($cb)
1065 elmex 1.1
1066 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1067     the new callback is C<undef>). See the description of C<on_read> in the
1068     constructor.
1069 elmex 1.1
1070 root 1.8 =cut
1071    
1072     sub on_read {
1073     my ($self, $cb) = @_;
1074 elmex 1.1
1075 root 1.8 $self->{on_read} = $cb;
1076 root 1.159 $self->_drain_rbuf if $cb;
1077 elmex 1.1 }
1078    
1079 root 1.8 =item $handle->rbuf
1080    
1081     Returns the read buffer (as a modifiable lvalue).
1082 elmex 1.1
1083 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1084     member, if you want. However, the only operation allowed on the
1085     read buffer (apart from looking at it) is removing data from its
1086     beginning. Otherwise modifying or appending to it is not allowed and will
1087     lead to hard-to-track-down bugs.
1088 elmex 1.1
1089 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1090     C<push_read> or C<unshift_read> methods are used. The other read methods
1091     automatically manage the read buffer.
1092 elmex 1.1
1093     =cut
1094    
1095 elmex 1.2 sub rbuf : lvalue {
1096 root 1.8 $_[0]{rbuf}
1097 elmex 1.2 }
1098 elmex 1.1
1099 root 1.8 =item $handle->push_read ($cb)
1100    
1101     =item $handle->unshift_read ($cb)
1102    
1103     Append the given callback to the end of the queue (C<push_read>) or
1104     prepend it (C<unshift_read>).
1105    
1106     The callback is called each time some additional read data arrives.
1107 elmex 1.1
1108 elmex 1.20 It must check whether enough data is in the read buffer already.
1109 elmex 1.1
1110 root 1.8 If not enough data is available, it must return the empty list or a false
1111     value, in which case it will be called repeatedly until enough data is
1112     available (or an error condition is detected).
1113    
1114     If enough data was available, then the callback must remove all data it is
1115     interested in (which can be none at all) and return a true value. After returning
1116     true, it will be removed from the queue.
1117 elmex 1.1
1118     =cut
1119    
1120 root 1.30 our %RH;
1121    
1122     sub register_read_type($$) {
1123     $RH{$_[0]} = $_[1];
1124     }
1125    
1126 root 1.8 sub push_read {
1127 root 1.28 my $self = shift;
1128     my $cb = pop;
1129    
1130     if (@_) {
1131     my $type = shift;
1132    
1133     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1134     ->($self, $cb, @_);
1135     }
1136 elmex 1.1
1137 root 1.38 push @{ $self->{_queue} }, $cb;
1138 root 1.159 $self->_drain_rbuf;
1139 elmex 1.1 }
1140    
1141 root 1.8 sub unshift_read {
1142 root 1.28 my $self = shift;
1143     my $cb = pop;
1144    
1145     if (@_) {
1146     my $type = shift;
1147    
1148     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1149     ->($self, $cb, @_);
1150     }
1151    
1152 root 1.8
1153 root 1.38 unshift @{ $self->{_queue} }, $cb;
1154 root 1.159 $self->_drain_rbuf;
1155 root 1.8 }
1156 elmex 1.1
1157 root 1.28 =item $handle->push_read (type => @args, $cb)
1158 elmex 1.1
1159 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1160 elmex 1.1
1161 root 1.28 Instead of providing a callback that parses the data itself you can chose
1162     between a number of predefined parsing formats, for chunks of data, lines
1163     etc.
1164 elmex 1.1
1165 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1166     drop by and tell us):
1167 root 1.28
1168     =over 4
1169    
1170 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1171 root 1.28
1172     Invoke the callback only once C<$octets> bytes have been read. Pass the
1173     data read to the callback. The callback will never be called with less
1174     data.
1175    
1176     Example: read 2 bytes.
1177    
1178     $handle->push_read (chunk => 2, sub {
1179     warn "yay ", unpack "H*", $_[1];
1180     });
1181 elmex 1.1
1182     =cut
1183    
1184 root 1.28 register_read_type chunk => sub {
1185     my ($self, $cb, $len) = @_;
1186 elmex 1.1
1187 root 1.8 sub {
1188     $len <= length $_[0]{rbuf} or return;
1189 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1190 root 1.8 1
1191     }
1192 root 1.28 };
1193 root 1.8
1194 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1195 elmex 1.1
1196 root 1.8 The callback will be called only once a full line (including the end of
1197     line marker, C<$eol>) has been read. This line (excluding the end of line
1198     marker) will be passed to the callback as second argument (C<$line>), and
1199     the end of line marker as the third argument (C<$eol>).
1200 elmex 1.1
1201 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1202     will be interpreted as a fixed record end marker, or it can be a regex
1203     object (e.g. created by C<qr>), in which case it is interpreted as a
1204     regular expression.
1205 elmex 1.1
1206 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1207     undef), then C<qr|\015?\012|> is used (which is good for most internet
1208     protocols).
1209 elmex 1.1
1210 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1211     not marked by the end of line marker.
1212 elmex 1.1
1213 root 1.8 =cut
1214 elmex 1.1
1215 root 1.28 register_read_type line => sub {
1216     my ($self, $cb, $eol) = @_;
1217 elmex 1.1
1218 root 1.76 if (@_ < 3) {
1219     # this is more than twice as fast as the generic code below
1220     sub {
1221     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1222 elmex 1.1
1223 root 1.76 $cb->($_[0], $1, $2);
1224     1
1225     }
1226     } else {
1227     $eol = quotemeta $eol unless ref $eol;
1228     $eol = qr|^(.*?)($eol)|s;
1229    
1230     sub {
1231     $_[0]{rbuf} =~ s/$eol// or return;
1232 elmex 1.1
1233 root 1.76 $cb->($_[0], $1, $2);
1234     1
1235     }
1236 root 1.8 }
1237 root 1.28 };
1238 elmex 1.1
1239 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1240 root 1.36
1241     Makes a regex match against the regex object C<$accept> and returns
1242     everything up to and including the match.
1243    
1244     Example: read a single line terminated by '\n'.
1245    
1246     $handle->push_read (regex => qr<\n>, sub { ... });
1247    
1248     If C<$reject> is given and not undef, then it determines when the data is
1249     to be rejected: it is matched against the data when the C<$accept> regex
1250     does not match and generates an C<EBADMSG> error when it matches. This is
1251     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1252     receive buffer overflow).
1253    
1254     Example: expect a single decimal number followed by whitespace, reject
1255     anything else (not the use of an anchor).
1256    
1257     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1258    
1259     If C<$skip> is given and not C<undef>, then it will be matched against
1260     the receive buffer when neither C<$accept> nor C<$reject> match,
1261     and everything preceding and including the match will be accepted
1262     unconditionally. This is useful to skip large amounts of data that you
1263     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1264     have to start matching from the beginning. This is purely an optimisation
1265     and is usually worth only when you expect more than a few kilobytes.
1266    
1267     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1268     expect the header to be very large (it isn't in practise, but...), we use
1269     a skip regex to skip initial portions. The skip regex is tricky in that
1270     it only accepts something not ending in either \015 or \012, as these are
1271     required for the accept regex.
1272    
1273     $handle->push_read (regex =>
1274     qr<\015\012\015\012>,
1275     undef, # no reject
1276     qr<^.*[^\015\012]>,
1277     sub { ... });
1278    
1279     =cut
1280    
1281     register_read_type regex => sub {
1282     my ($self, $cb, $accept, $reject, $skip) = @_;
1283    
1284     my $data;
1285     my $rbuf = \$self->{rbuf};
1286    
1287     sub {
1288     # accept
1289     if ($$rbuf =~ $accept) {
1290     $data .= substr $$rbuf, 0, $+[0], "";
1291     $cb->($self, $data);
1292     return 1;
1293     }
1294    
1295     # reject
1296     if ($reject && $$rbuf =~ $reject) {
1297 root 1.150 $self->_error (Errno::EBADMSG);
1298 root 1.36 }
1299    
1300     # skip
1301     if ($skip && $$rbuf =~ $skip) {
1302     $data .= substr $$rbuf, 0, $+[0], "";
1303     }
1304    
1305     ()
1306     }
1307     };
1308    
1309 root 1.61 =item netstring => $cb->($handle, $string)
1310    
1311     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1312    
1313     Throws an error with C<$!> set to EBADMSG on format violations.
1314    
1315     =cut
1316    
1317     register_read_type netstring => sub {
1318     my ($self, $cb) = @_;
1319    
1320     sub {
1321     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1322     if ($_[0]{rbuf} =~ /[^0-9]/) {
1323 root 1.150 $self->_error (Errno::EBADMSG);
1324 root 1.61 }
1325     return;
1326     }
1327    
1328     my $len = $1;
1329    
1330     $self->unshift_read (chunk => $len, sub {
1331     my $string = $_[1];
1332     $_[0]->unshift_read (chunk => 1, sub {
1333     if ($_[1] eq ",") {
1334     $cb->($_[0], $string);
1335     } else {
1336 root 1.150 $self->_error (Errno::EBADMSG);
1337 root 1.61 }
1338     });
1339     });
1340    
1341     1
1342     }
1343     };
1344    
1345     =item packstring => $format, $cb->($handle, $string)
1346    
1347     An octet string prefixed with an encoded length. The encoding C<$format>
1348     uses the same format as a Perl C<pack> format, but must specify a single
1349     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1350     optional C<!>, C<< < >> or C<< > >> modifier).
1351    
1352 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353     EPP uses a prefix of C<N> (4 octtes).
1354 root 1.61
1355     Example: read a block of data prefixed by its length in BER-encoded
1356     format (very efficient).
1357    
1358     $handle->push_read (packstring => "w", sub {
1359     my ($handle, $data) = @_;
1360     });
1361    
1362     =cut
1363    
1364     register_read_type packstring => sub {
1365     my ($self, $cb, $format) = @_;
1366    
1367     sub {
1368     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1369 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1370 root 1.61 or return;
1371    
1372 root 1.77 $format = length pack $format, $len;
1373 root 1.61
1374 root 1.77 # bypass unshift if we already have the remaining chunk
1375     if ($format + $len <= length $_[0]{rbuf}) {
1376     my $data = substr $_[0]{rbuf}, $format, $len;
1377     substr $_[0]{rbuf}, 0, $format + $len, "";
1378     $cb->($_[0], $data);
1379     } else {
1380     # remove prefix
1381     substr $_[0]{rbuf}, 0, $format, "";
1382    
1383     # read remaining chunk
1384     $_[0]->unshift_read (chunk => $len, $cb);
1385     }
1386 root 1.61
1387     1
1388     }
1389     };
1390    
1391 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1392    
1393 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1394     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1395 root 1.40
1396     If a C<json> object was passed to the constructor, then that will be used
1397     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1398    
1399     This read type uses the incremental parser available with JSON version
1400     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1401     dependency on your own: this module will load the JSON module, but
1402     AnyEvent does not depend on it itself.
1403    
1404     Since JSON texts are fully self-delimiting, the C<json> read and write
1405 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1406     the C<json> write type description, above, for an actual example.
1407 root 1.40
1408     =cut
1409    
1410     register_read_type json => sub {
1411 root 1.63 my ($self, $cb) = @_;
1412 root 1.40
1413 root 1.135 my $json = $self->{json} ||=
1414     eval { require JSON::XS; JSON::XS->new->utf8 }
1415     || do { require JSON; JSON->new->utf8 };
1416 root 1.40
1417     my $data;
1418     my $rbuf = \$self->{rbuf};
1419    
1420     sub {
1421 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1422 root 1.110
1423 root 1.113 if ($ref) {
1424     $self->{rbuf} = $json->incr_text;
1425     $json->incr_text = "";
1426     $cb->($self, $ref);
1427 root 1.110
1428     1
1429 root 1.113 } elsif ($@) {
1430 root 1.111 # error case
1431 root 1.110 $json->incr_skip;
1432 root 1.40
1433     $self->{rbuf} = $json->incr_text;
1434     $json->incr_text = "";
1435    
1436 root 1.150 $self->_error (Errno::EBADMSG);
1437 root 1.114
1438 root 1.113 ()
1439     } else {
1440     $self->{rbuf} = "";
1441 root 1.114
1442 root 1.113 ()
1443     }
1444 root 1.40 }
1445     };
1446    
1447 root 1.63 =item storable => $cb->($handle, $ref)
1448    
1449     Deserialises a L<Storable> frozen representation as written by the
1450     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1451     data).
1452    
1453     Raises C<EBADMSG> error if the data could not be decoded.
1454    
1455     =cut
1456    
1457     register_read_type storable => sub {
1458     my ($self, $cb) = @_;
1459    
1460     require Storable;
1461    
1462     sub {
1463     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1464 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1465 root 1.63 or return;
1466    
1467 root 1.77 my $format = length pack "w", $len;
1468 root 1.63
1469 root 1.77 # bypass unshift if we already have the remaining chunk
1470     if ($format + $len <= length $_[0]{rbuf}) {
1471     my $data = substr $_[0]{rbuf}, $format, $len;
1472     substr $_[0]{rbuf}, 0, $format + $len, "";
1473     $cb->($_[0], Storable::thaw ($data));
1474     } else {
1475     # remove prefix
1476     substr $_[0]{rbuf}, 0, $format, "";
1477    
1478     # read remaining chunk
1479     $_[0]->unshift_read (chunk => $len, sub {
1480     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1481     $cb->($_[0], $ref);
1482     } else {
1483 root 1.150 $self->_error (Errno::EBADMSG);
1484 root 1.77 }
1485     });
1486     }
1487    
1488     1
1489 root 1.63 }
1490     };
1491    
1492 root 1.28 =back
1493    
1494 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1495 root 1.30
1496     This function (not method) lets you add your own types to C<push_read>.
1497    
1498     Whenever the given C<type> is used, C<push_read> will invoke the code
1499     reference with the handle object, the callback and the remaining
1500     arguments.
1501    
1502     The code reference is supposed to return a callback (usually a closure)
1503     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1504    
1505     It should invoke the passed callback when it is done reading (remember to
1506 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1507 root 1.30
1508     Note that this is a function, and all types registered this way will be
1509     global, so try to use unique names.
1510    
1511     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1512     search for C<register_read_type>)).
1513    
1514 root 1.10 =item $handle->stop_read
1515    
1516     =item $handle->start_read
1517    
1518 root 1.18 In rare cases you actually do not want to read anything from the
1519 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1520 root 1.22 any queued callbacks will be executed then. To start reading again, call
1521 root 1.10 C<start_read>.
1522    
1523 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1524     you change the C<on_read> callback or push/unshift a read callback, and it
1525     will automatically C<stop_read> for you when neither C<on_read> is set nor
1526     there are any read requests in the queue.
1527    
1528 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1529     half-duplex connections).
1530    
1531 root 1.10 =cut
1532    
1533     sub stop_read {
1534     my ($self) = @_;
1535 elmex 1.1
1536 root 1.93 delete $self->{_rw} unless $self->{tls};
1537 root 1.8 }
1538 elmex 1.1
1539 root 1.10 sub start_read {
1540     my ($self) = @_;
1541    
1542 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1543 root 1.10 Scalar::Util::weaken $self;
1544    
1545 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1546 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1547 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1548 root 1.10
1549     if ($len > 0) {
1550 root 1.44 $self->{_activity} = AnyEvent->now;
1551 root 1.43
1552 root 1.93 if ($self->{tls}) {
1553     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1554 root 1.97
1555 root 1.93 &_dotls ($self);
1556     } else {
1557 root 1.159 $self->_drain_rbuf;
1558 root 1.93 }
1559 root 1.10
1560     } elsif (defined $len) {
1561 root 1.38 delete $self->{_rw};
1562     $self->{_eof} = 1;
1563 root 1.159 $self->_drain_rbuf;
1564 root 1.10
1565 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1566 root 1.52 return $self->_error ($!, 1);
1567 root 1.10 }
1568     });
1569     }
1570 elmex 1.1 }
1571    
1572 root 1.133 our $ERROR_SYSCALL;
1573     our $ERROR_WANT_READ;
1574    
1575     sub _tls_error {
1576     my ($self, $err) = @_;
1577    
1578     return $self->_error ($!, 1)
1579     if $err == Net::SSLeay::ERROR_SYSCALL ();
1580    
1581 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582    
1583     # reduce error string to look less scary
1584     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585    
1586 root 1.143 if ($self->{_on_starttls}) {
1587     (delete $self->{_on_starttls})->($self, undef, $err);
1588     &_freetls;
1589     } else {
1590     &_freetls;
1591 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1592 root 1.143 }
1593 root 1.133 }
1594    
1595 root 1.97 # poll the write BIO and send the data if applicable
1596 root 1.133 # also decode read data if possible
1597     # this is basiclaly our TLS state machine
1598     # more efficient implementations are possible with openssl,
1599     # but not with the buggy and incomplete Net::SSLeay.
1600 root 1.19 sub _dotls {
1601     my ($self) = @_;
1602    
1603 root 1.97 my $tmp;
1604 root 1.56
1605 root 1.38 if (length $self->{_tls_wbuf}) {
1606 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1607     substr $self->{_tls_wbuf}, 0, $tmp, "";
1608 root 1.22 }
1609 root 1.133
1610     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611     return $self->_tls_error ($tmp)
1612     if $tmp != $ERROR_WANT_READ
1613 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1614 root 1.19 }
1615    
1616 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617     unless (length $tmp) {
1618 root 1.143 $self->{_on_starttls}
1619     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 root 1.92 &_freetls;
1621 root 1.143
1622 root 1.142 if ($self->{on_stoptls}) {
1623     $self->{on_stoptls}($self);
1624     return;
1625     } else {
1626     # let's treat SSL-eof as we treat normal EOF
1627     delete $self->{_rw};
1628     $self->{_eof} = 1;
1629     }
1630 root 1.56 }
1631 root 1.91
1632 root 1.116 $self->{_tls_rbuf} .= $tmp;
1633 root 1.159 $self->_drain_rbuf;
1634 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1635 root 1.23 }
1636    
1637 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 root 1.133 return $self->_tls_error ($tmp)
1639     if $tmp != $ERROR_WANT_READ
1640 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1641 root 1.91
1642 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1643     $self->{wbuf} .= $tmp;
1644 root 1.91 $self->_drain_wbuf;
1645     }
1646 root 1.142
1647     $self->{_on_starttls}
1648     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1649 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1650 root 1.19 }
1651    
1652 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1653    
1654     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1655     object is created, you can also do that at a later time by calling
1656     C<starttls>.
1657    
1658 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1659     write data and then call C<< ->starttls >> then TLS negotiation will start
1660     immediately, after which the queued write data is then sent.
1661    
1662 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1663     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1664    
1665 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1666     when AnyEvent::Handle has to create its own TLS connection object, or
1667     a hash reference with C<< key => value >> pairs that will be used to
1668     construct a new context.
1669    
1670     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1671     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1672     changed to your liking. Note that the handshake might have already started
1673     when this function returns.
1674 root 1.38
1675 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676     handshakes on the same stream. Best do not attempt to use the stream after
1677     stopping TLS.
1678 root 1.92
1679 root 1.25 =cut
1680    
1681 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1682    
1683 root 1.19 sub starttls {
1684 root 1.160 my ($self, $tls, $ctx) = @_;
1685    
1686     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687     if $self->{tls};
1688    
1689     $self->{tls} = $tls;
1690     $self->{tls_ctx} = $ctx if @_ > 2;
1691    
1692     return unless $self->{fh};
1693 root 1.19
1694 root 1.94 require Net::SSLeay;
1695    
1696 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698 root 1.133
1699 root 1.160 $tls = $self->{tls};
1700     $ctx = $self->{tls_ctx};
1701 root 1.131
1702 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703    
1704 root 1.131 if ("HASH" eq ref $ctx) {
1705     require AnyEvent::TLS;
1706    
1707 root 1.137 if ($ctx->{cache}) {
1708     my $key = $ctx+0;
1709     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710     } else {
1711     $ctx = new AnyEvent::TLS %$ctx;
1712     }
1713 root 1.131 }
1714 root 1.92
1715 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1716 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1717 root 1.19
1718 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1719     # but the openssl maintainers basically said: "trust us, it just works".
1720     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1721     # and mismaintained ssleay-module doesn't even offer them).
1722 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1723 root 1.87 #
1724     # in short: this is a mess.
1725     #
1726 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1727 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1728 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729     # have identity issues in that area.
1730 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1731     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1732     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1734 root 1.21
1735 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1736     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1737 root 1.19
1738 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739    
1740 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1741 root 1.19
1742 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1743 root 1.143 if $self->{on_starttls};
1744 root 1.142
1745 root 1.93 &_dotls; # need to trigger the initial handshake
1746     $self->start_read; # make sure we actually do read
1747 root 1.19 }
1748    
1749 root 1.25 =item $handle->stoptls
1750    
1751 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1752     sending a close notify to the other side, but since OpenSSL doesn't
1753 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1754     the stream afterwards.
1755 root 1.25
1756     =cut
1757    
1758     sub stoptls {
1759     my ($self) = @_;
1760    
1761 root 1.92 if ($self->{tls}) {
1762 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1763 root 1.92
1764     &_dotls;
1765    
1766 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1767     # # we, we... have to use openssl :/#d#
1768     # &_freetls;#d#
1769 root 1.92 }
1770     }
1771    
1772     sub _freetls {
1773     my ($self) = @_;
1774    
1775     return unless $self->{tls};
1776 root 1.38
1777 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 root 1.171 if $self->{tls} > 0;
1779 root 1.92
1780 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1781 root 1.25 }
1782    
1783 root 1.19 sub DESTROY {
1784 root 1.120 my ($self) = @_;
1785 root 1.19
1786 root 1.92 &_freetls;
1787 root 1.62
1788     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1789    
1790 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1791 root 1.62 my $fh = delete $self->{fh};
1792     my $wbuf = delete $self->{wbuf};
1793    
1794     my @linger;
1795    
1796     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1797     my $len = syswrite $fh, $wbuf, length $wbuf;
1798    
1799     if ($len > 0) {
1800     substr $wbuf, 0, $len, "";
1801     } else {
1802     @linger = (); # end
1803     }
1804     });
1805     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1806     @linger = ();
1807     });
1808     }
1809 root 1.19 }
1810    
1811 root 1.99 =item $handle->destroy
1812    
1813 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1814 root 1.141 no further callbacks will be invoked and as many resources as possible
1815 root 1.165 will be freed. Any method you will call on the handle object after
1816     destroying it in this way will be silently ignored (and it will return the
1817     empty list).
1818 root 1.99
1819 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1820     object and it will simply shut down. This works in fatal error and EOF
1821     callbacks, as well as code outside. It does I<NOT> work in a read or write
1822     callback, so when you want to destroy the AnyEvent::Handle object from
1823     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824     that case.
1825    
1826 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1827     will be removed as well, so if those are the only reference holders (as
1828     is common), then one doesn't need to do anything special to break any
1829     reference cycles.
1830    
1831 root 1.99 The handle might still linger in the background and write out remaining
1832     data, as specified by the C<linger> option, however.
1833    
1834     =cut
1835    
1836     sub destroy {
1837     my ($self) = @_;
1838    
1839     $self->DESTROY;
1840     %$self = ();
1841 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1842     }
1843    
1844 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845     #nop
1846 root 1.99 }
1847    
1848 root 1.19 =item AnyEvent::Handle::TLS_CTX
1849    
1850 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1851     for TLS mode.
1852 root 1.19
1853 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1854 root 1.19
1855     =cut
1856    
1857     our $TLS_CTX;
1858    
1859     sub TLS_CTX() {
1860 root 1.131 $TLS_CTX ||= do {
1861     require AnyEvent::TLS;
1862 root 1.19
1863 root 1.131 new AnyEvent::TLS
1864 root 1.19 }
1865     }
1866    
1867 elmex 1.1 =back
1868    
1869 root 1.95
1870     =head1 NONFREQUENTLY ASKED QUESTIONS
1871    
1872     =over 4
1873    
1874 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1875     still get further invocations!
1876    
1877     That's because AnyEvent::Handle keeps a reference to itself when handling
1878     read or write callbacks.
1879    
1880     It is only safe to "forget" the reference inside EOF or error callbacks,
1881     from within all other callbacks, you need to explicitly call the C<<
1882     ->destroy >> method.
1883    
1884     =item I get different callback invocations in TLS mode/Why can't I pause
1885     reading?
1886    
1887     Unlike, say, TCP, TLS connections do not consist of two independent
1888     communication channels, one for each direction. Or put differently. The
1889     read and write directions are not independent of each other: you cannot
1890     write data unless you are also prepared to read, and vice versa.
1891    
1892     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893     callback invocations when you are not expecting any read data - the reason
1894     is that AnyEvent::Handle always reads in TLS mode.
1895    
1896     During the connection, you have to make sure that you always have a
1897     non-empty read-queue, or an C<on_read> watcher. At the end of the
1898     connection (or when you no longer want to use it) you can call the
1899     C<destroy> method.
1900    
1901 root 1.95 =item How do I read data until the other side closes the connection?
1902    
1903 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1904     to achieve this is by setting an C<on_read> callback that does nothing,
1905     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906     will be in C<$_[0]{rbuf}>:
1907 root 1.95
1908     $handle->on_read (sub { });
1909     $handle->on_eof (undef);
1910     $handle->on_error (sub {
1911     my $data = delete $_[0]{rbuf};
1912     });
1913    
1914     The reason to use C<on_error> is that TCP connections, due to latencies
1915     and packets loss, might get closed quite violently with an error, when in
1916     fact, all data has been received.
1917    
1918 root 1.101 It is usually better to use acknowledgements when transferring data,
1919 root 1.95 to make sure the other side hasn't just died and you got the data
1920     intact. This is also one reason why so many internet protocols have an
1921     explicit QUIT command.
1922    
1923 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1924     all data has been written?
1925 root 1.95
1926     After writing your last bits of data, set the C<on_drain> callback
1927     and destroy the handle in there - with the default setting of
1928     C<low_water_mark> this will be called precisely when all data has been
1929     written to the socket:
1930    
1931     $handle->push_write (...);
1932     $handle->on_drain (sub {
1933     warn "all data submitted to the kernel\n";
1934     undef $handle;
1935     });
1936    
1937 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1938     consider using C<< ->push_shutdown >> instead.
1939    
1940     =item I want to contact a TLS/SSL server, I don't care about security.
1941    
1942     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944     parameter:
1945    
1946 root 1.144 tcp_connect $host, $port, sub {
1947     my ($fh) = @_;
1948 root 1.143
1949 root 1.144 my $handle = new AnyEvent::Handle
1950     fh => $fh,
1951     tls => "connect",
1952     on_error => sub { ... };
1953    
1954     $handle->push_write (...);
1955     };
1956 root 1.143
1957     =item I want to contact a TLS/SSL server, I do care about security.
1958    
1959 root 1.144 Then you should additionally enable certificate verification, including
1960     peername verification, if the protocol you use supports it (see
1961     L<AnyEvent::TLS>, C<verify_peername>).
1962    
1963     E.g. for HTTPS:
1964    
1965     tcp_connect $host, $port, sub {
1966     my ($fh) = @_;
1967    
1968     my $handle = new AnyEvent::Handle
1969     fh => $fh,
1970     peername => $host,
1971     tls => "connect",
1972     tls_ctx => { verify => 1, verify_peername => "https" },
1973     ...
1974    
1975     Note that you must specify the hostname you connected to (or whatever
1976     "peername" the protocol needs) as the C<peername> argument, otherwise no
1977     peername verification will be done.
1978    
1979     The above will use the system-dependent default set of trusted CA
1980     certificates. If you want to check against a specific CA, add the
1981     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982    
1983     tls_ctx => {
1984     verify => 1,
1985     verify_peername => "https",
1986     ca_file => "my-ca-cert.pem",
1987     },
1988    
1989     =item I want to create a TLS/SSL server, how do I do that?
1990    
1991     Well, you first need to get a server certificate and key. You have
1992     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993     self-signed certificate (cheap. check the search engine of your choice,
1994     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995     nice program for that purpose).
1996    
1997     Then create a file with your private key (in PEM format, see
1998     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999     file should then look like this:
2000    
2001     -----BEGIN RSA PRIVATE KEY-----
2002     ...header data
2003     ... lots of base64'y-stuff
2004     -----END RSA PRIVATE KEY-----
2005    
2006     -----BEGIN CERTIFICATE-----
2007     ... lots of base64'y-stuff
2008     -----END CERTIFICATE-----
2009    
2010     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011     specify this file as C<cert_file>:
2012    
2013     tcp_server undef, $port, sub {
2014     my ($fh) = @_;
2015    
2016     my $handle = new AnyEvent::Handle
2017     fh => $fh,
2018     tls => "accept",
2019     tls_ctx => { cert_file => "my-server-keycert.pem" },
2020     ...
2021 root 1.143
2022 root 1.144 When you have intermediate CA certificates that your clients might not
2023     know about, just append them to the C<cert_file>.
2024 root 1.143
2025 root 1.95 =back
2026    
2027    
2028 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2029    
2030     In many cases, you might want to subclass AnyEvent::Handle.
2031    
2032     To make this easier, a given version of AnyEvent::Handle uses these
2033     conventions:
2034    
2035     =over 4
2036    
2037     =item * all constructor arguments become object members.
2038    
2039     At least initially, when you pass a C<tls>-argument to the constructor it
2040 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2041 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2042    
2043     =item * other object member names are prefixed with an C<_>.
2044    
2045     All object members not explicitly documented (internal use) are prefixed
2046     with an underscore character, so the remaining non-C<_>-namespace is free
2047     for use for subclasses.
2048    
2049     =item * all members not documented here and not prefixed with an underscore
2050     are free to use in subclasses.
2051    
2052     Of course, new versions of AnyEvent::Handle may introduce more "public"
2053     member variables, but thats just life, at least it is documented.
2054    
2055     =back
2056    
2057 elmex 1.1 =head1 AUTHOR
2058    
2059 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2060 elmex 1.1
2061     =cut
2062    
2063     1; # End of AnyEvent::Handle