ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.176
Committed: Sun Aug 9 00:20:35 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.175: +110 -59 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =cut
6    
7 root 1.176 our $VERSION = 4.92;
8 elmex 1.1
9     =head1 SYNOPSIS
10    
11     use AnyEvent;
12     use AnyEvent::Handle;
13    
14     my $cv = AnyEvent->condvar;
15    
16 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
17     fh => \*STDIN,
18     on_error => sub {
19 root 1.151 my ($hdl, $fatal, $msg) = @_;
20     warn "got error $msg\n";
21     $hdl->destroy;
22 root 1.149 $cv->send;
23 elmex 1.2 );
24    
25 root 1.31 # send some request line
26 root 1.149 $hdl->push_write ("getinfo\015\012");
27 root 1.31
28     # read the response line
29 root 1.149 $hdl->push_read (line => sub {
30     my ($hdl, $line) = @_;
31     warn "got line <$line>\n";
32 root 1.31 $cv->send;
33     });
34    
35     $cv->recv;
36 elmex 1.1
37     =head1 DESCRIPTION
38    
39 root 1.8 This module is a helper module to make it easier to do event-based I/O on
40 root 1.159 filehandles.
41 root 1.8
42 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
43     AnyEvent::Handle examples.
44    
45 root 1.8 In the following, when the documentation refers to of "bytes" then this
46     means characters. As sysread and syswrite are used for all I/O, their
47     treatment of characters applies to this module as well.
48 elmex 1.1
49 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
50     C<on_error> callback.
51    
52 root 1.8 All callbacks will be invoked with the handle object as their first
53     argument.
54 elmex 1.1
55 root 1.176 =cut
56    
57     package AnyEvent::Handle;
58    
59     use Scalar::Util ();
60     use List::Util ();
61     use Carp ();
62     use Errno qw(EAGAIN EINTR);
63    
64     use AnyEvent (); BEGIN { AnyEvent::common_sense }
65     use AnyEvent::Util qw(WSAEWOULDBLOCK);
66    
67 elmex 1.1 =head1 METHODS
68    
69     =over 4
70    
71 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
72 elmex 1.1
73 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
74 elmex 1.1
75     =over 4
76    
77 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
78 root 1.158
79 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
80 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
81     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
82     that mode.
83 root 1.8
84 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
85    
86     Try to connect to the specified host and service (port), using
87     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
88     default C<peername>.
89    
90     You have to specify either this parameter, or C<fh>, above.
91    
92 root 1.160 It is possible to push requests on the read and write queues, and modify
93     properties of the stream, even while AnyEvent::Handle is connecting.
94    
95 root 1.159 When this parameter is specified, then the C<on_prepare>,
96     C<on_connect_error> and C<on_connect> callbacks will be called under the
97     appropriate circumstances:
98    
99     =over 4
100    
101     =item on_prepare => $cb->($handle)
102    
103     This (rarely used) callback is called before a new connection is
104     attempted, but after the file handle has been created. It could be used to
105     prepare the file handle with parameters required for the actual connect
106     (as opposed to settings that can be changed when the connection is already
107     established).
108    
109 root 1.161 The return value of this callback should be the connect timeout value in
110     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
111     timeout is to be used).
112    
113 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
114    
115     This callback is called when a connection has been successfully established.
116    
117     The actual numeric host and port (the socket peername) are passed as
118     parameters, together with a retry callback.
119    
120     When, for some reason, the handle is not acceptable, then calling
121     C<$retry> will continue with the next conenction target (in case of
122     multi-homed hosts or SRV records there can be multiple connection
123     endpoints). When it is called then the read and write queues, eof status,
124     tls status and similar properties of the handle are being reset.
125    
126     In most cases, ignoring the C<$retry> parameter is the way to go.
127 root 1.158
128 root 1.159 =item on_connect_error => $cb->($handle, $message)
129 root 1.10
130 root 1.159 This callback is called when the conenction could not be
131     established. C<$!> will contain the relevant error code, and C<$message> a
132     message describing it (usually the same as C<"$!">).
133 root 1.8
134 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
135     fatal error instead.
136 root 1.82
137 root 1.159 =back
138 root 1.80
139 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
140 root 1.10
141 root 1.52 This is the error callback, which is called when, well, some error
142     occured, such as not being able to resolve the hostname, failure to
143     connect or a read error.
144    
145     Some errors are fatal (which is indicated by C<$fatal> being true). On
146 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
147     destroy >>) after invoking the error callback (which means you are free to
148     examine the handle object). Examples of fatal errors are an EOF condition
149 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
150     cases where the other side can close the connection at their will it is
151     often easiest to not report C<EPIPE> errors in this callback.
152 root 1.82
153 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
154     against, but in some cases (TLS errors), this does not work well. It is
155     recommended to always output the C<$message> argument in human-readable
156     error messages (it's usually the same as C<"$!">).
157    
158 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
159     to simply ignore this parameter and instead abondon the handle object
160     when this callback is invoked. Examples of non-fatal errors are timeouts
161     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
162 root 1.8
163 root 1.10 On callback entrance, the value of C<$!> contains the operating system
164 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
165     C<EPROTO>).
166 root 1.8
167 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
168     you will not be notified of errors otherwise. The default simply calls
169 root 1.52 C<croak>.
170 root 1.8
171 root 1.40 =item on_read => $cb->($handle)
172 root 1.8
173     This sets the default read callback, which is called when data arrives
174 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
175     callback will only be called when at least one octet of data is in the
176     read buffer).
177 root 1.8
178     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
179 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
180 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
181     the beginning from it.
182 root 1.8
183     When an EOF condition is detected then AnyEvent::Handle will first try to
184     feed all the remaining data to the queued callbacks and C<on_read> before
185     calling the C<on_eof> callback. If no progress can be made, then a fatal
186     error will be raised (with C<$!> set to C<EPIPE>).
187 elmex 1.1
188 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
189     doesn't mean you I<require> some data: if there is an EOF and there
190     are outstanding read requests then an error will be flagged. With an
191     C<on_read> callback, the C<on_eof> callback will be invoked.
192    
193 root 1.159 =item on_eof => $cb->($handle)
194    
195     Set the callback to be called when an end-of-file condition is detected,
196     i.e. in the case of a socket, when the other side has closed the
197     connection cleanly, and there are no outstanding read requests in the
198     queue (if there are read requests, then an EOF counts as an unexpected
199     connection close and will be flagged as an error).
200    
201     For sockets, this just means that the other side has stopped sending data,
202     you can still try to write data, and, in fact, one can return from the EOF
203     callback and continue writing data, as only the read part has been shut
204     down.
205    
206     If an EOF condition has been detected but no C<on_eof> callback has been
207     set, then a fatal error will be raised with C<$!> set to <0>.
208    
209 root 1.40 =item on_drain => $cb->($handle)
210 elmex 1.1
211 root 1.8 This sets the callback that is called when the write buffer becomes empty
212     (or when the callback is set and the buffer is empty already).
213 elmex 1.1
214 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
215 elmex 1.2
216 root 1.69 This callback is useful when you don't want to put all of your write data
217     into the queue at once, for example, when you want to write the contents
218     of some file to the socket you might not want to read the whole file into
219     memory and push it into the queue, but instead only read more data from
220     the file when the write queue becomes empty.
221    
222 root 1.43 =item timeout => $fractional_seconds
223    
224 root 1.176 =item rtimeout => $fractional_seconds
225    
226     =item wtimeout => $fractional_seconds
227    
228     If non-zero, then these enables an "inactivity" timeout: whenever this
229     many seconds pass without a successful read or write on the underlying
230     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
231     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
232     error will be raised).
233    
234     There are three variants of the timeouts that work fully independent
235     of each other, for both read and write, just read, and just write:
236     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
237     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
238     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
239 root 1.43
240     Note that timeout processing is also active when you currently do not have
241     any outstanding read or write requests: If you plan to keep the connection
242     idle then you should disable the timout temporarily or ignore the timeout
243 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
244     restart the timeout.
245 root 1.43
246     Zero (the default) disables this timeout.
247    
248     =item on_timeout => $cb->($handle)
249    
250     Called whenever the inactivity timeout passes. If you return from this
251     callback, then the timeout will be reset as if some activity had happened,
252     so this condition is not fatal in any way.
253    
254 root 1.8 =item rbuf_max => <bytes>
255 elmex 1.2
256 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
257     when the read buffer ever (strictly) exceeds this size. This is useful to
258 root 1.88 avoid some forms of denial-of-service attacks.
259 elmex 1.2
260 root 1.8 For example, a server accepting connections from untrusted sources should
261     be configured to accept only so-and-so much data that it cannot act on
262     (for example, when expecting a line, an attacker could send an unlimited
263     amount of data without a callback ever being called as long as the line
264     isn't finished).
265 elmex 1.2
266 root 1.70 =item autocork => <boolean>
267    
268     When disabled (the default), then C<push_write> will try to immediately
269 root 1.88 write the data to the handle, if possible. This avoids having to register
270     a write watcher and wait for the next event loop iteration, but can
271     be inefficient if you write multiple small chunks (on the wire, this
272     disadvantage is usually avoided by your kernel's nagle algorithm, see
273     C<no_delay>, but this option can save costly syscalls).
274 root 1.70
275     When enabled, then writes will always be queued till the next event loop
276     iteration. This is efficient when you do many small writes per iteration,
277 root 1.88 but less efficient when you do a single write only per iteration (or when
278     the write buffer often is full). It also increases write latency.
279 root 1.70
280     =item no_delay => <boolean>
281    
282     When doing small writes on sockets, your operating system kernel might
283     wait a bit for more data before actually sending it out. This is called
284     the Nagle algorithm, and usually it is beneficial.
285    
286 root 1.88 In some situations you want as low a delay as possible, which can be
287     accomplishd by setting this option to a true value.
288 root 1.70
289 root 1.88 The default is your opertaing system's default behaviour (most likely
290     enabled), this option explicitly enables or disables it, if possible.
291 root 1.70
292 root 1.8 =item read_size => <bytes>
293 elmex 1.2
294 root 1.88 The default read block size (the amount of bytes this module will
295     try to read during each loop iteration, which affects memory
296     requirements). Default: C<8192>.
297 root 1.8
298     =item low_water_mark => <bytes>
299    
300     Sets the amount of bytes (default: C<0>) that make up an "empty" write
301     buffer: If the write reaches this size or gets even samller it is
302     considered empty.
303 elmex 1.2
304 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
305     the write buffer before it is fully drained, but this is a rare case, as
306     the operating system kernel usually buffers data as well, so the default
307     is good in almost all cases.
308    
309 root 1.62 =item linger => <seconds>
310    
311     If non-zero (default: C<3600>), then the destructor of the
312 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
313     write data and will install a watcher that will write this data to the
314     socket. No errors will be reported (this mostly matches how the operating
315     system treats outstanding data at socket close time).
316 root 1.62
317 root 1.88 This will not work for partial TLS data that could not be encoded
318 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
319     help.
320 root 1.62
321 root 1.133 =item peername => $string
322    
323 root 1.134 A string used to identify the remote site - usually the DNS hostname
324     (I<not> IDN!) used to create the connection, rarely the IP address.
325 root 1.131
326 root 1.133 Apart from being useful in error messages, this string is also used in TLS
327 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
328     verification will be skipped when C<peername> is not specified or
329     C<undef>.
330 root 1.131
331 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
332    
333 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
334 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
335     established and will transparently encrypt/decrypt data afterwards.
336 root 1.19
337 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
338     appropriate error message.
339    
340 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
341 root 1.88 automatically when you try to create a TLS handle): this module doesn't
342     have a dependency on that module, so if your module requires it, you have
343     to add the dependency yourself.
344 root 1.26
345 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
346     C<accept>, and for the TLS client side of a connection, use C<connect>
347     mode.
348 root 1.19
349     You can also provide your own TLS connection object, but you have
350     to make sure that you call either C<Net::SSLeay::set_connect_state>
351     or C<Net::SSLeay::set_accept_state> on it before you pass it to
352 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
353     object.
354    
355     At some future point, AnyEvent::Handle might switch to another TLS
356     implementation, then the option to use your own session object will go
357     away.
358 root 1.19
359 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
360     passing in the wrong integer will lead to certain crash. This most often
361     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
362     segmentation fault.
363    
364 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
365 root 1.26
366 root 1.131 =item tls_ctx => $anyevent_tls
367 root 1.19
368 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
369 root 1.19 (unless a connection object was specified directly). If this parameter is
370     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
371    
372 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
373     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
374     new TLS context object.
375    
376 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
377 root 1.142
378     This callback will be invoked when the TLS/SSL handshake has finished. If
379     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
380     (C<on_stoptls> will not be called in this case).
381    
382     The session in C<< $handle->{tls} >> can still be examined in this
383     callback, even when the handshake was not successful.
384    
385 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
386     callback is in effect, instead, the error message will be passed to C<on_starttls>.
387    
388     Without this callback, handshake failures lead to C<on_error> being
389     called, as normal.
390    
391     Note that you cannot call C<starttls> right again in this callback. If you
392     need to do that, start an zero-second timer instead whose callback can
393     then call C<< ->starttls >> again.
394    
395 root 1.142 =item on_stoptls => $cb->($handle)
396    
397     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
398     set, then it will be invoked after freeing the TLS session. If it is not,
399     then a TLS shutdown condition will be treated like a normal EOF condition
400     on the handle.
401    
402     The session in C<< $handle->{tls} >> can still be examined in this
403     callback.
404    
405     This callback will only be called on TLS shutdowns, not when the
406     underlying handle signals EOF.
407    
408 root 1.40 =item json => JSON or JSON::XS object
409    
410     This is the json coder object used by the C<json> read and write types.
411    
412 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
413 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
414     texts.
415 root 1.40
416     Note that you are responsible to depend on the JSON module if you want to
417     use this functionality, as AnyEvent does not have a dependency itself.
418    
419 elmex 1.1 =back
420    
421     =cut
422    
423     sub new {
424 root 1.8 my $class = shift;
425     my $self = bless { @_ }, $class;
426    
427 root 1.159 if ($self->{fh}) {
428     $self->_start;
429     return unless $self->{fh}; # could be gone by now
430    
431     } elsif ($self->{connect}) {
432     require AnyEvent::Socket;
433    
434     $self->{peername} = $self->{connect}[0]
435     unless exists $self->{peername};
436    
437     $self->{_skip_drain_rbuf} = 1;
438    
439     {
440     Scalar::Util::weaken (my $self = $self);
441    
442     $self->{_connect} =
443     AnyEvent::Socket::tcp_connect (
444     $self->{connect}[0],
445     $self->{connect}[1],
446     sub {
447     my ($fh, $host, $port, $retry) = @_;
448    
449     if ($fh) {
450     $self->{fh} = $fh;
451    
452     delete $self->{_skip_drain_rbuf};
453     $self->_start;
454    
455     $self->{on_connect}
456     and $self->{on_connect}($self, $host, $port, sub {
457     delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
458     $self->{_skip_drain_rbuf} = 1;
459     &$retry;
460     });
461    
462     } else {
463     if ($self->{on_connect_error}) {
464     $self->{on_connect_error}($self, "$!");
465     $self->destroy;
466     } else {
467 root 1.161 $self->_error ($!, 1);
468 root 1.159 }
469     }
470     },
471     sub {
472     local $self->{fh} = $_[0];
473    
474 root 1.161 $self->{on_prepare}
475     ? $self->{on_prepare}->($self)
476     : ()
477 root 1.159 }
478     );
479     }
480    
481     } else {
482     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
483     }
484    
485     $self
486     }
487    
488     sub _start {
489     my ($self) = @_;
490 root 1.8
491     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
492 elmex 1.1
493 root 1.176 $self->{_activity} =
494     $self->{_ractivity} =
495     $self->{_wactivity} = AE::now;
496    
497     $self->timeout (delete $self->{timeout} ) if $self->{timeout};
498     $self->rtimeout (delete $self->{rtimeout}) if $self->{rtimeout};
499     $self->wtimeout (delete $self->{wtimeout}) if $self->{wtimeout};
500 root 1.131
501     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
502    
503 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
504     if $self->{tls};
505 root 1.19
506 root 1.143 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
507 root 1.10
508 root 1.66 $self->start_read
509 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
510 root 1.160
511     $self->_drain_wbuf;
512 root 1.8 }
513 elmex 1.2
514 root 1.149 #sub _shutdown {
515     # my ($self) = @_;
516     #
517     # delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
518     # $self->{_eof} = 1; # tell starttls et. al to stop trying
519     #
520     # &_freetls;
521     #}
522 root 1.8
523 root 1.52 sub _error {
524 root 1.133 my ($self, $errno, $fatal, $message) = @_;
525 root 1.8
526 root 1.52 $! = $errno;
527 root 1.133 $message ||= "$!";
528 root 1.37
529 root 1.52 if ($self->{on_error}) {
530 root 1.133 $self->{on_error}($self, $fatal, $message);
531 root 1.151 $self->destroy if $fatal;
532 root 1.100 } elsif ($self->{fh}) {
533 root 1.149 $self->destroy;
534 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
535 root 1.52 }
536 elmex 1.1 }
537    
538 root 1.8 =item $fh = $handle->fh
539 elmex 1.1
540 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
541 elmex 1.1
542     =cut
543    
544 root 1.38 sub fh { $_[0]{fh} }
545 elmex 1.1
546 root 1.8 =item $handle->on_error ($cb)
547 elmex 1.1
548 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
549 elmex 1.1
550 root 1.8 =cut
551    
552     sub on_error {
553     $_[0]{on_error} = $_[1];
554     }
555    
556     =item $handle->on_eof ($cb)
557    
558     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
559 elmex 1.1
560     =cut
561    
562 root 1.8 sub on_eof {
563     $_[0]{on_eof} = $_[1];
564     }
565    
566 root 1.43 =item $handle->on_timeout ($cb)
567    
568 root 1.176 =item $handle->on_rtimeout ($cb)
569    
570     =item $handle->on_wtimeout ($cb)
571    
572     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
573     callback, or disables the callback (but not the timeout) if C<$cb> =
574     C<undef>. See the C<timeout> constructor argument and method.
575 root 1.43
576     =cut
577    
578 root 1.176 # see below
579 root 1.43
580 root 1.70 =item $handle->autocork ($boolean)
581    
582     Enables or disables the current autocork behaviour (see C<autocork>
583 root 1.105 constructor argument). Changes will only take effect on the next write.
584 root 1.70
585     =cut
586    
587 root 1.105 sub autocork {
588     $_[0]{autocork} = $_[1];
589     }
590    
591 root 1.70 =item $handle->no_delay ($boolean)
592    
593     Enables or disables the C<no_delay> setting (see constructor argument of
594     the same name for details).
595    
596     =cut
597    
598     sub no_delay {
599     $_[0]{no_delay} = $_[1];
600    
601     eval {
602     local $SIG{__DIE__};
603 root 1.159 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
604     if $_[0]{fh};
605 root 1.70 };
606     }
607    
608 root 1.142 =item $handle->on_starttls ($cb)
609    
610     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
611    
612     =cut
613    
614     sub on_starttls {
615     $_[0]{on_starttls} = $_[1];
616     }
617    
618     =item $handle->on_stoptls ($cb)
619    
620     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
621    
622     =cut
623    
624     sub on_starttls {
625     $_[0]{on_stoptls} = $_[1];
626     }
627    
628 root 1.168 =item $handle->rbuf_max ($max_octets)
629    
630     Configures the C<rbuf_max> setting (C<undef> disables it).
631    
632     =cut
633    
634     sub rbuf_max {
635     $_[0]{rbuf_max} = $_[1];
636     }
637    
638 root 1.43 #############################################################################
639    
640     =item $handle->timeout ($seconds)
641    
642 root 1.176 =item $handle->rtimeout ($seconds)
643    
644     =item $handle->wtimeout ($seconds)
645    
646 root 1.43 Configures (or disables) the inactivity timeout.
647    
648 root 1.176 =item $handle->timeout_reset
649    
650     =item $handle->rtimeout_reset
651    
652     =item $handle->wtimeout_reset
653    
654     Reset the activity timeout, as if data was received or sent.
655    
656     These methods are cheap to call.
657    
658 root 1.43 =cut
659    
660 root 1.176 for my $dir ("", "r", "w") {
661     my $timeout = "${dir}timeout";
662     my $tw = "_${dir}tw";
663     my $on_timeout = "on_${dir}timeout";
664     my $activity = "_${dir}activity";
665     my $cb;
666    
667     *$on_timeout = sub {
668     $_[0]{$on_timeout} = $_[1];
669     };
670    
671     *$timeout = sub {
672     my ($self, $new_value) = @_;
673 root 1.43
674 root 1.176 $self->{$timeout} = $new_value;
675     delete $self->{$tw}; &$cb;
676     };
677 root 1.43
678 root 1.176 *{"${dir}timeout_reset"} = sub {
679     $_[0]{$activity} = AE::now;
680     };
681 root 1.43
682 root 1.176 # main workhorse:
683     # reset the timeout watcher, as neccessary
684     # also check for time-outs
685     $cb = sub {
686     my ($self) = @_;
687    
688     if ($self->{$timeout} && $self->{fh}) {
689     my $NOW = AE::now;
690    
691     # when would the timeout trigger?
692     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
693    
694     # now or in the past already?
695     if ($after <= 0) {
696     $self->{$activity} = $NOW;
697 root 1.43
698 root 1.176 if ($self->{$on_timeout}) {
699     $self->{$on_timeout}($self);
700     } else {
701     $self->_error (Errno::ETIMEDOUT);
702     }
703 root 1.43
704 root 1.176 # callback could have changed timeout value, optimise
705     return unless $self->{$timeout};
706 root 1.43
707 root 1.176 # calculate new after
708     $after = $self->{$timeout};
709 root 1.43 }
710    
711 root 1.176 Scalar::Util::weaken $self;
712     return unless $self; # ->error could have destroyed $self
713 root 1.43
714 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
715     delete $self->{$tw};
716     $cb->($self);
717     };
718     } else {
719     delete $self->{$tw};
720 root 1.43 }
721     }
722     }
723    
724 root 1.9 #############################################################################
725    
726     =back
727    
728     =head2 WRITE QUEUE
729    
730     AnyEvent::Handle manages two queues per handle, one for writing and one
731     for reading.
732    
733     The write queue is very simple: you can add data to its end, and
734     AnyEvent::Handle will automatically try to get rid of it for you.
735    
736 elmex 1.20 When data could be written and the write buffer is shorter then the low
737 root 1.9 water mark, the C<on_drain> callback will be invoked.
738    
739     =over 4
740    
741 root 1.8 =item $handle->on_drain ($cb)
742    
743     Sets the C<on_drain> callback or clears it (see the description of
744     C<on_drain> in the constructor).
745    
746     =cut
747    
748     sub on_drain {
749 elmex 1.1 my ($self, $cb) = @_;
750    
751 root 1.8 $self->{on_drain} = $cb;
752    
753     $cb->($self)
754 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
755 root 1.8 }
756    
757     =item $handle->push_write ($data)
758    
759     Queues the given scalar to be written. You can push as much data as you
760     want (only limited by the available memory), as C<AnyEvent::Handle>
761     buffers it independently of the kernel.
762    
763     =cut
764    
765 root 1.17 sub _drain_wbuf {
766     my ($self) = @_;
767 root 1.8
768 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
769 root 1.35
770 root 1.8 Scalar::Util::weaken $self;
771 root 1.35
772 root 1.8 my $cb = sub {
773     my $len = syswrite $self->{fh}, $self->{wbuf};
774    
775 root 1.146 if (defined $len) {
776 root 1.8 substr $self->{wbuf}, 0, $len, "";
777    
778 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
779 root 1.43
780 root 1.8 $self->{on_drain}($self)
781 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
782 root 1.8 && $self->{on_drain};
783    
784 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
785 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
786 root 1.52 $self->_error ($!, 1);
787 elmex 1.1 }
788 root 1.8 };
789    
790 root 1.35 # try to write data immediately
791 root 1.70 $cb->() unless $self->{autocork};
792 root 1.8
793 root 1.35 # if still data left in wbuf, we need to poll
794 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
795 root 1.35 if length $self->{wbuf};
796 root 1.8 };
797     }
798    
799 root 1.30 our %WH;
800    
801     sub register_write_type($$) {
802     $WH{$_[0]} = $_[1];
803     }
804    
805 root 1.17 sub push_write {
806     my $self = shift;
807    
808 root 1.29 if (@_ > 1) {
809     my $type = shift;
810    
811     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
812     ->($self, @_);
813     }
814    
815 root 1.93 if ($self->{tls}) {
816     $self->{_tls_wbuf} .= $_[0];
817 root 1.160 &_dotls ($self) if $self->{fh};
818 root 1.17 } else {
819 root 1.160 $self->{wbuf} .= $_[0];
820 root 1.159 $self->_drain_wbuf if $self->{fh};
821 root 1.17 }
822     }
823    
824 root 1.29 =item $handle->push_write (type => @args)
825    
826     Instead of formatting your data yourself, you can also let this module do
827     the job by specifying a type and type-specific arguments.
828    
829 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
830     drop by and tell us):
831 root 1.29
832     =over 4
833    
834     =item netstring => $string
835    
836     Formats the given value as netstring
837     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
838    
839     =cut
840    
841     register_write_type netstring => sub {
842     my ($self, $string) = @_;
843    
844 root 1.96 (length $string) . ":$string,"
845 root 1.29 };
846    
847 root 1.61 =item packstring => $format, $data
848    
849     An octet string prefixed with an encoded length. The encoding C<$format>
850     uses the same format as a Perl C<pack> format, but must specify a single
851     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
852     optional C<!>, C<< < >> or C<< > >> modifier).
853    
854     =cut
855    
856     register_write_type packstring => sub {
857     my ($self, $format, $string) = @_;
858    
859 root 1.65 pack "$format/a*", $string
860 root 1.61 };
861    
862 root 1.39 =item json => $array_or_hashref
863    
864 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
865     provide your own JSON object, this means it will be encoded to JSON text
866     in UTF-8.
867    
868     JSON objects (and arrays) are self-delimiting, so you can write JSON at
869     one end of a handle and read them at the other end without using any
870     additional framing.
871    
872 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
873     this module doesn't need delimiters after or between JSON texts to be
874     able to read them, many other languages depend on that.
875    
876     A simple RPC protocol that interoperates easily with others is to send
877     JSON arrays (or objects, although arrays are usually the better choice as
878     they mimic how function argument passing works) and a newline after each
879     JSON text:
880    
881     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
882     $handle->push_write ("\012");
883    
884     An AnyEvent::Handle receiver would simply use the C<json> read type and
885     rely on the fact that the newline will be skipped as leading whitespace:
886    
887     $handle->push_read (json => sub { my $array = $_[1]; ... });
888    
889     Other languages could read single lines terminated by a newline and pass
890     this line into their JSON decoder of choice.
891    
892 root 1.40 =cut
893    
894     register_write_type json => sub {
895     my ($self, $ref) = @_;
896    
897     require JSON;
898    
899     $self->{json} ? $self->{json}->encode ($ref)
900     : JSON::encode_json ($ref)
901     };
902    
903 root 1.63 =item storable => $reference
904    
905     Freezes the given reference using L<Storable> and writes it to the
906     handle. Uses the C<nfreeze> format.
907    
908     =cut
909    
910     register_write_type storable => sub {
911     my ($self, $ref) = @_;
912    
913     require Storable;
914    
915 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
916 root 1.63 };
917    
918 root 1.53 =back
919    
920 root 1.133 =item $handle->push_shutdown
921    
922     Sometimes you know you want to close the socket after writing your data
923     before it was actually written. One way to do that is to replace your
924 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
925     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
926     replaces the C<on_drain> callback with:
927 root 1.133
928     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
929    
930     This simply shuts down the write side and signals an EOF condition to the
931     the peer.
932    
933     You can rely on the normal read queue and C<on_eof> handling
934     afterwards. This is the cleanest way to close a connection.
935    
936     =cut
937    
938     sub push_shutdown {
939 root 1.142 my ($self) = @_;
940    
941     delete $self->{low_water_mark};
942     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
943 root 1.133 }
944    
945 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
946 root 1.30
947     This function (not method) lets you add your own types to C<push_write>.
948     Whenever the given C<type> is used, C<push_write> will invoke the code
949     reference with the handle object and the remaining arguments.
950 root 1.29
951 root 1.30 The code reference is supposed to return a single octet string that will
952     be appended to the write buffer.
953 root 1.29
954 root 1.30 Note that this is a function, and all types registered this way will be
955     global, so try to use unique names.
956 root 1.29
957 root 1.30 =cut
958 root 1.29
959 root 1.8 #############################################################################
960    
961 root 1.9 =back
962    
963     =head2 READ QUEUE
964    
965     AnyEvent::Handle manages two queues per handle, one for writing and one
966     for reading.
967    
968     The read queue is more complex than the write queue. It can be used in two
969     ways, the "simple" way, using only C<on_read> and the "complex" way, using
970     a queue.
971    
972     In the simple case, you just install an C<on_read> callback and whenever
973     new data arrives, it will be called. You can then remove some data (if
974 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
975     leave the data there if you want to accumulate more (e.g. when only a
976     partial message has been received so far).
977 root 1.9
978     In the more complex case, you want to queue multiple callbacks. In this
979     case, AnyEvent::Handle will call the first queued callback each time new
980 root 1.61 data arrives (also the first time it is queued) and removes it when it has
981     done its job (see C<push_read>, below).
982 root 1.9
983     This way you can, for example, push three line-reads, followed by reading
984     a chunk of data, and AnyEvent::Handle will execute them in order.
985    
986     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
987     the specified number of bytes which give an XML datagram.
988    
989     # in the default state, expect some header bytes
990     $handle->on_read (sub {
991     # some data is here, now queue the length-header-read (4 octets)
992 root 1.52 shift->unshift_read (chunk => 4, sub {
993 root 1.9 # header arrived, decode
994     my $len = unpack "N", $_[1];
995    
996     # now read the payload
997 root 1.52 shift->unshift_read (chunk => $len, sub {
998 root 1.9 my $xml = $_[1];
999     # handle xml
1000     });
1001     });
1002     });
1003    
1004 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1005     and another line or "ERROR" for the first request that is sent, and 64
1006     bytes for the second request. Due to the availability of a queue, we can
1007     just pipeline sending both requests and manipulate the queue as necessary
1008     in the callbacks.
1009    
1010     When the first callback is called and sees an "OK" response, it will
1011     C<unshift> another line-read. This line-read will be queued I<before> the
1012     64-byte chunk callback.
1013 root 1.9
1014 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1015 root 1.9 $handle->push_write ("request 1\015\012");
1016    
1017     # we expect "ERROR" or "OK" as response, so push a line read
1018 root 1.52 $handle->push_read (line => sub {
1019 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1020     # so it will be read before the second request reads its 64 bytes
1021     # which are already in the queue when this callback is called
1022     # we don't do this in case we got an error
1023     if ($_[1] eq "OK") {
1024 root 1.52 $_[0]->unshift_read (line => sub {
1025 root 1.9 my $response = $_[1];
1026     ...
1027     });
1028     }
1029     });
1030    
1031 root 1.69 # request two, simply returns 64 octets
1032 root 1.9 $handle->push_write ("request 2\015\012");
1033    
1034     # simply read 64 bytes, always
1035 root 1.52 $handle->push_read (chunk => 64, sub {
1036 root 1.9 my $response = $_[1];
1037     ...
1038     });
1039    
1040     =over 4
1041    
1042 root 1.10 =cut
1043    
1044 root 1.8 sub _drain_rbuf {
1045     my ($self) = @_;
1046 elmex 1.1
1047 root 1.159 # avoid recursion
1048 root 1.167 return if $self->{_skip_drain_rbuf};
1049 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1050 root 1.59
1051     while () {
1052 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1053     # we are draining the buffer, and this can only happen with TLS.
1054 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1055     if exists $self->{_tls_rbuf};
1056 root 1.115
1057 root 1.59 my $len = length $self->{rbuf};
1058 elmex 1.1
1059 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1060 root 1.29 unless ($cb->($self)) {
1061 root 1.163 # no progress can be made
1062     # (not enough data and no data forthcoming)
1063     $self->_error (Errno::EPIPE, 1), return
1064     if $self->{_eof};
1065 root 1.10
1066 root 1.38 unshift @{ $self->{_queue} }, $cb;
1067 root 1.55 last;
1068 root 1.8 }
1069     } elsif ($self->{on_read}) {
1070 root 1.61 last unless $len;
1071    
1072 root 1.8 $self->{on_read}($self);
1073    
1074     if (
1075 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1076     && !@{ $self->{_queue} } # and the queue is still empty
1077     && $self->{on_read} # but we still have on_read
1078 root 1.8 ) {
1079 root 1.55 # no further data will arrive
1080     # so no progress can be made
1081 root 1.150 $self->_error (Errno::EPIPE, 1), return
1082 root 1.55 if $self->{_eof};
1083    
1084     last; # more data might arrive
1085 elmex 1.1 }
1086 root 1.8 } else {
1087     # read side becomes idle
1088 root 1.93 delete $self->{_rw} unless $self->{tls};
1089 root 1.55 last;
1090 root 1.8 }
1091     }
1092    
1093 root 1.80 if ($self->{_eof}) {
1094 root 1.163 $self->{on_eof}
1095     ? $self->{on_eof}($self)
1096     : $self->_error (0, 1, "Unexpected end-of-file");
1097    
1098     return;
1099 root 1.80 }
1100 root 1.55
1101 root 1.169 if (
1102     defined $self->{rbuf_max}
1103     && $self->{rbuf_max} < length $self->{rbuf}
1104     ) {
1105     $self->_error (Errno::ENOSPC, 1), return;
1106     }
1107    
1108 root 1.55 # may need to restart read watcher
1109     unless ($self->{_rw}) {
1110     $self->start_read
1111     if $self->{on_read} || @{ $self->{_queue} };
1112     }
1113 elmex 1.1 }
1114    
1115 root 1.8 =item $handle->on_read ($cb)
1116 elmex 1.1
1117 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1118     the new callback is C<undef>). See the description of C<on_read> in the
1119     constructor.
1120 elmex 1.1
1121 root 1.8 =cut
1122    
1123     sub on_read {
1124     my ($self, $cb) = @_;
1125 elmex 1.1
1126 root 1.8 $self->{on_read} = $cb;
1127 root 1.159 $self->_drain_rbuf if $cb;
1128 elmex 1.1 }
1129    
1130 root 1.8 =item $handle->rbuf
1131    
1132     Returns the read buffer (as a modifiable lvalue).
1133 elmex 1.1
1134 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1135     member, if you want. However, the only operation allowed on the
1136     read buffer (apart from looking at it) is removing data from its
1137     beginning. Otherwise modifying or appending to it is not allowed and will
1138     lead to hard-to-track-down bugs.
1139 elmex 1.1
1140 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1141     C<push_read> or C<unshift_read> methods are used. The other read methods
1142     automatically manage the read buffer.
1143 elmex 1.1
1144     =cut
1145    
1146 elmex 1.2 sub rbuf : lvalue {
1147 root 1.8 $_[0]{rbuf}
1148 elmex 1.2 }
1149 elmex 1.1
1150 root 1.8 =item $handle->push_read ($cb)
1151    
1152     =item $handle->unshift_read ($cb)
1153    
1154     Append the given callback to the end of the queue (C<push_read>) or
1155     prepend it (C<unshift_read>).
1156    
1157     The callback is called each time some additional read data arrives.
1158 elmex 1.1
1159 elmex 1.20 It must check whether enough data is in the read buffer already.
1160 elmex 1.1
1161 root 1.8 If not enough data is available, it must return the empty list or a false
1162     value, in which case it will be called repeatedly until enough data is
1163     available (or an error condition is detected).
1164    
1165     If enough data was available, then the callback must remove all data it is
1166     interested in (which can be none at all) and return a true value. After returning
1167     true, it will be removed from the queue.
1168 elmex 1.1
1169     =cut
1170    
1171 root 1.30 our %RH;
1172    
1173     sub register_read_type($$) {
1174     $RH{$_[0]} = $_[1];
1175     }
1176    
1177 root 1.8 sub push_read {
1178 root 1.28 my $self = shift;
1179     my $cb = pop;
1180    
1181     if (@_) {
1182     my $type = shift;
1183    
1184     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1185     ->($self, $cb, @_);
1186     }
1187 elmex 1.1
1188 root 1.38 push @{ $self->{_queue} }, $cb;
1189 root 1.159 $self->_drain_rbuf;
1190 elmex 1.1 }
1191    
1192 root 1.8 sub unshift_read {
1193 root 1.28 my $self = shift;
1194     my $cb = pop;
1195    
1196     if (@_) {
1197     my $type = shift;
1198    
1199     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1200     ->($self, $cb, @_);
1201     }
1202    
1203 root 1.8
1204 root 1.38 unshift @{ $self->{_queue} }, $cb;
1205 root 1.159 $self->_drain_rbuf;
1206 root 1.8 }
1207 elmex 1.1
1208 root 1.28 =item $handle->push_read (type => @args, $cb)
1209 elmex 1.1
1210 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1211 elmex 1.1
1212 root 1.28 Instead of providing a callback that parses the data itself you can chose
1213     between a number of predefined parsing formats, for chunks of data, lines
1214     etc.
1215 elmex 1.1
1216 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1217     drop by and tell us):
1218 root 1.28
1219     =over 4
1220    
1221 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1222 root 1.28
1223     Invoke the callback only once C<$octets> bytes have been read. Pass the
1224     data read to the callback. The callback will never be called with less
1225     data.
1226    
1227     Example: read 2 bytes.
1228    
1229     $handle->push_read (chunk => 2, sub {
1230     warn "yay ", unpack "H*", $_[1];
1231     });
1232 elmex 1.1
1233     =cut
1234    
1235 root 1.28 register_read_type chunk => sub {
1236     my ($self, $cb, $len) = @_;
1237 elmex 1.1
1238 root 1.8 sub {
1239     $len <= length $_[0]{rbuf} or return;
1240 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1241 root 1.8 1
1242     }
1243 root 1.28 };
1244 root 1.8
1245 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1246 elmex 1.1
1247 root 1.8 The callback will be called only once a full line (including the end of
1248     line marker, C<$eol>) has been read. This line (excluding the end of line
1249     marker) will be passed to the callback as second argument (C<$line>), and
1250     the end of line marker as the third argument (C<$eol>).
1251 elmex 1.1
1252 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1253     will be interpreted as a fixed record end marker, or it can be a regex
1254     object (e.g. created by C<qr>), in which case it is interpreted as a
1255     regular expression.
1256 elmex 1.1
1257 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1258     undef), then C<qr|\015?\012|> is used (which is good for most internet
1259     protocols).
1260 elmex 1.1
1261 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1262     not marked by the end of line marker.
1263 elmex 1.1
1264 root 1.8 =cut
1265 elmex 1.1
1266 root 1.28 register_read_type line => sub {
1267     my ($self, $cb, $eol) = @_;
1268 elmex 1.1
1269 root 1.76 if (@_ < 3) {
1270     # this is more than twice as fast as the generic code below
1271     sub {
1272     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1273 elmex 1.1
1274 root 1.76 $cb->($_[0], $1, $2);
1275     1
1276     }
1277     } else {
1278     $eol = quotemeta $eol unless ref $eol;
1279     $eol = qr|^(.*?)($eol)|s;
1280    
1281     sub {
1282     $_[0]{rbuf} =~ s/$eol// or return;
1283 elmex 1.1
1284 root 1.76 $cb->($_[0], $1, $2);
1285     1
1286     }
1287 root 1.8 }
1288 root 1.28 };
1289 elmex 1.1
1290 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1291 root 1.36
1292     Makes a regex match against the regex object C<$accept> and returns
1293     everything up to and including the match.
1294    
1295     Example: read a single line terminated by '\n'.
1296    
1297     $handle->push_read (regex => qr<\n>, sub { ... });
1298    
1299     If C<$reject> is given and not undef, then it determines when the data is
1300     to be rejected: it is matched against the data when the C<$accept> regex
1301     does not match and generates an C<EBADMSG> error when it matches. This is
1302     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1303     receive buffer overflow).
1304    
1305     Example: expect a single decimal number followed by whitespace, reject
1306     anything else (not the use of an anchor).
1307    
1308     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1309    
1310     If C<$skip> is given and not C<undef>, then it will be matched against
1311     the receive buffer when neither C<$accept> nor C<$reject> match,
1312     and everything preceding and including the match will be accepted
1313     unconditionally. This is useful to skip large amounts of data that you
1314     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1315     have to start matching from the beginning. This is purely an optimisation
1316     and is usually worth only when you expect more than a few kilobytes.
1317    
1318     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1319     expect the header to be very large (it isn't in practise, but...), we use
1320     a skip regex to skip initial portions. The skip regex is tricky in that
1321     it only accepts something not ending in either \015 or \012, as these are
1322     required for the accept regex.
1323    
1324     $handle->push_read (regex =>
1325     qr<\015\012\015\012>,
1326     undef, # no reject
1327     qr<^.*[^\015\012]>,
1328     sub { ... });
1329    
1330     =cut
1331    
1332     register_read_type regex => sub {
1333     my ($self, $cb, $accept, $reject, $skip) = @_;
1334    
1335     my $data;
1336     my $rbuf = \$self->{rbuf};
1337    
1338     sub {
1339     # accept
1340     if ($$rbuf =~ $accept) {
1341     $data .= substr $$rbuf, 0, $+[0], "";
1342     $cb->($self, $data);
1343     return 1;
1344     }
1345    
1346     # reject
1347     if ($reject && $$rbuf =~ $reject) {
1348 root 1.150 $self->_error (Errno::EBADMSG);
1349 root 1.36 }
1350    
1351     # skip
1352     if ($skip && $$rbuf =~ $skip) {
1353     $data .= substr $$rbuf, 0, $+[0], "";
1354     }
1355    
1356     ()
1357     }
1358     };
1359    
1360 root 1.61 =item netstring => $cb->($handle, $string)
1361    
1362     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1363    
1364     Throws an error with C<$!> set to EBADMSG on format violations.
1365    
1366     =cut
1367    
1368     register_read_type netstring => sub {
1369     my ($self, $cb) = @_;
1370    
1371     sub {
1372     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1373     if ($_[0]{rbuf} =~ /[^0-9]/) {
1374 root 1.150 $self->_error (Errno::EBADMSG);
1375 root 1.61 }
1376     return;
1377     }
1378    
1379     my $len = $1;
1380    
1381     $self->unshift_read (chunk => $len, sub {
1382     my $string = $_[1];
1383     $_[0]->unshift_read (chunk => 1, sub {
1384     if ($_[1] eq ",") {
1385     $cb->($_[0], $string);
1386     } else {
1387 root 1.150 $self->_error (Errno::EBADMSG);
1388 root 1.61 }
1389     });
1390     });
1391    
1392     1
1393     }
1394     };
1395    
1396     =item packstring => $format, $cb->($handle, $string)
1397    
1398     An octet string prefixed with an encoded length. The encoding C<$format>
1399     uses the same format as a Perl C<pack> format, but must specify a single
1400     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1401     optional C<!>, C<< < >> or C<< > >> modifier).
1402    
1403 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1404     EPP uses a prefix of C<N> (4 octtes).
1405 root 1.61
1406     Example: read a block of data prefixed by its length in BER-encoded
1407     format (very efficient).
1408    
1409     $handle->push_read (packstring => "w", sub {
1410     my ($handle, $data) = @_;
1411     });
1412    
1413     =cut
1414    
1415     register_read_type packstring => sub {
1416     my ($self, $cb, $format) = @_;
1417    
1418     sub {
1419     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1420 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1421 root 1.61 or return;
1422    
1423 root 1.77 $format = length pack $format, $len;
1424 root 1.61
1425 root 1.77 # bypass unshift if we already have the remaining chunk
1426     if ($format + $len <= length $_[0]{rbuf}) {
1427     my $data = substr $_[0]{rbuf}, $format, $len;
1428     substr $_[0]{rbuf}, 0, $format + $len, "";
1429     $cb->($_[0], $data);
1430     } else {
1431     # remove prefix
1432     substr $_[0]{rbuf}, 0, $format, "";
1433    
1434     # read remaining chunk
1435     $_[0]->unshift_read (chunk => $len, $cb);
1436     }
1437 root 1.61
1438     1
1439     }
1440     };
1441    
1442 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1443    
1444 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1445     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1446 root 1.40
1447     If a C<json> object was passed to the constructor, then that will be used
1448     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1449    
1450     This read type uses the incremental parser available with JSON version
1451     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1452     dependency on your own: this module will load the JSON module, but
1453     AnyEvent does not depend on it itself.
1454    
1455     Since JSON texts are fully self-delimiting, the C<json> read and write
1456 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1457     the C<json> write type description, above, for an actual example.
1458 root 1.40
1459     =cut
1460    
1461     register_read_type json => sub {
1462 root 1.63 my ($self, $cb) = @_;
1463 root 1.40
1464 root 1.135 my $json = $self->{json} ||=
1465     eval { require JSON::XS; JSON::XS->new->utf8 }
1466     || do { require JSON; JSON->new->utf8 };
1467 root 1.40
1468     my $data;
1469     my $rbuf = \$self->{rbuf};
1470    
1471     sub {
1472 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1473 root 1.110
1474 root 1.113 if ($ref) {
1475     $self->{rbuf} = $json->incr_text;
1476     $json->incr_text = "";
1477     $cb->($self, $ref);
1478 root 1.110
1479     1
1480 root 1.113 } elsif ($@) {
1481 root 1.111 # error case
1482 root 1.110 $json->incr_skip;
1483 root 1.40
1484     $self->{rbuf} = $json->incr_text;
1485     $json->incr_text = "";
1486    
1487 root 1.150 $self->_error (Errno::EBADMSG);
1488 root 1.114
1489 root 1.113 ()
1490     } else {
1491     $self->{rbuf} = "";
1492 root 1.114
1493 root 1.113 ()
1494     }
1495 root 1.40 }
1496     };
1497    
1498 root 1.63 =item storable => $cb->($handle, $ref)
1499    
1500     Deserialises a L<Storable> frozen representation as written by the
1501     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1502     data).
1503    
1504     Raises C<EBADMSG> error if the data could not be decoded.
1505    
1506     =cut
1507    
1508     register_read_type storable => sub {
1509     my ($self, $cb) = @_;
1510    
1511     require Storable;
1512    
1513     sub {
1514     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1515 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1516 root 1.63 or return;
1517    
1518 root 1.77 my $format = length pack "w", $len;
1519 root 1.63
1520 root 1.77 # bypass unshift if we already have the remaining chunk
1521     if ($format + $len <= length $_[0]{rbuf}) {
1522     my $data = substr $_[0]{rbuf}, $format, $len;
1523     substr $_[0]{rbuf}, 0, $format + $len, "";
1524     $cb->($_[0], Storable::thaw ($data));
1525     } else {
1526     # remove prefix
1527     substr $_[0]{rbuf}, 0, $format, "";
1528    
1529     # read remaining chunk
1530     $_[0]->unshift_read (chunk => $len, sub {
1531     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1532     $cb->($_[0], $ref);
1533     } else {
1534 root 1.150 $self->_error (Errno::EBADMSG);
1535 root 1.77 }
1536     });
1537     }
1538    
1539     1
1540 root 1.63 }
1541     };
1542    
1543 root 1.28 =back
1544    
1545 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1546 root 1.30
1547     This function (not method) lets you add your own types to C<push_read>.
1548    
1549     Whenever the given C<type> is used, C<push_read> will invoke the code
1550     reference with the handle object, the callback and the remaining
1551     arguments.
1552    
1553     The code reference is supposed to return a callback (usually a closure)
1554     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1555    
1556     It should invoke the passed callback when it is done reading (remember to
1557 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1558 root 1.30
1559     Note that this is a function, and all types registered this way will be
1560     global, so try to use unique names.
1561    
1562     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1563     search for C<register_read_type>)).
1564    
1565 root 1.10 =item $handle->stop_read
1566    
1567     =item $handle->start_read
1568    
1569 root 1.18 In rare cases you actually do not want to read anything from the
1570 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1571 root 1.22 any queued callbacks will be executed then. To start reading again, call
1572 root 1.10 C<start_read>.
1573    
1574 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1575     you change the C<on_read> callback or push/unshift a read callback, and it
1576     will automatically C<stop_read> for you when neither C<on_read> is set nor
1577     there are any read requests in the queue.
1578    
1579 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1580     half-duplex connections).
1581    
1582 root 1.10 =cut
1583    
1584     sub stop_read {
1585     my ($self) = @_;
1586 elmex 1.1
1587 root 1.93 delete $self->{_rw} unless $self->{tls};
1588 root 1.8 }
1589 elmex 1.1
1590 root 1.10 sub start_read {
1591     my ($self) = @_;
1592    
1593 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1594 root 1.10 Scalar::Util::weaken $self;
1595    
1596 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1597 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1598 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1599 root 1.10
1600     if ($len > 0) {
1601 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1602 root 1.43
1603 root 1.93 if ($self->{tls}) {
1604     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1605 root 1.97
1606 root 1.93 &_dotls ($self);
1607     } else {
1608 root 1.159 $self->_drain_rbuf;
1609 root 1.93 }
1610 root 1.10
1611     } elsif (defined $len) {
1612 root 1.38 delete $self->{_rw};
1613     $self->{_eof} = 1;
1614 root 1.159 $self->_drain_rbuf;
1615 root 1.10
1616 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1617 root 1.52 return $self->_error ($!, 1);
1618 root 1.10 }
1619 root 1.175 };
1620 root 1.10 }
1621 elmex 1.1 }
1622    
1623 root 1.133 our $ERROR_SYSCALL;
1624     our $ERROR_WANT_READ;
1625    
1626     sub _tls_error {
1627     my ($self, $err) = @_;
1628    
1629     return $self->_error ($!, 1)
1630     if $err == Net::SSLeay::ERROR_SYSCALL ();
1631    
1632 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1633    
1634     # reduce error string to look less scary
1635     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1636    
1637 root 1.143 if ($self->{_on_starttls}) {
1638     (delete $self->{_on_starttls})->($self, undef, $err);
1639     &_freetls;
1640     } else {
1641     &_freetls;
1642 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1643 root 1.143 }
1644 root 1.133 }
1645    
1646 root 1.97 # poll the write BIO and send the data if applicable
1647 root 1.133 # also decode read data if possible
1648     # this is basiclaly our TLS state machine
1649     # more efficient implementations are possible with openssl,
1650     # but not with the buggy and incomplete Net::SSLeay.
1651 root 1.19 sub _dotls {
1652     my ($self) = @_;
1653    
1654 root 1.97 my $tmp;
1655 root 1.56
1656 root 1.38 if (length $self->{_tls_wbuf}) {
1657 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1658     substr $self->{_tls_wbuf}, 0, $tmp, "";
1659 root 1.22 }
1660 root 1.133
1661     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1662     return $self->_tls_error ($tmp)
1663     if $tmp != $ERROR_WANT_READ
1664 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1665 root 1.19 }
1666    
1667 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1668     unless (length $tmp) {
1669 root 1.143 $self->{_on_starttls}
1670     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1671 root 1.92 &_freetls;
1672 root 1.143
1673 root 1.142 if ($self->{on_stoptls}) {
1674     $self->{on_stoptls}($self);
1675     return;
1676     } else {
1677     # let's treat SSL-eof as we treat normal EOF
1678     delete $self->{_rw};
1679     $self->{_eof} = 1;
1680     }
1681 root 1.56 }
1682 root 1.91
1683 root 1.116 $self->{_tls_rbuf} .= $tmp;
1684 root 1.159 $self->_drain_rbuf;
1685 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1686 root 1.23 }
1687    
1688 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1689 root 1.133 return $self->_tls_error ($tmp)
1690     if $tmp != $ERROR_WANT_READ
1691 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1692 root 1.91
1693 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1694     $self->{wbuf} .= $tmp;
1695 root 1.91 $self->_drain_wbuf;
1696     }
1697 root 1.142
1698     $self->{_on_starttls}
1699     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1700 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1701 root 1.19 }
1702    
1703 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1704    
1705     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1706     object is created, you can also do that at a later time by calling
1707     C<starttls>.
1708    
1709 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1710     write data and then call C<< ->starttls >> then TLS negotiation will start
1711     immediately, after which the queued write data is then sent.
1712    
1713 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1714     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1715    
1716 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1717     when AnyEvent::Handle has to create its own TLS connection object, or
1718     a hash reference with C<< key => value >> pairs that will be used to
1719     construct a new context.
1720    
1721     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1722     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1723     changed to your liking. Note that the handshake might have already started
1724     when this function returns.
1725 root 1.38
1726 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1727     handshakes on the same stream. Best do not attempt to use the stream after
1728     stopping TLS.
1729 root 1.92
1730 root 1.25 =cut
1731    
1732 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1733    
1734 root 1.19 sub starttls {
1735 root 1.160 my ($self, $tls, $ctx) = @_;
1736    
1737     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1738     if $self->{tls};
1739    
1740     $self->{tls} = $tls;
1741     $self->{tls_ctx} = $ctx if @_ > 2;
1742    
1743     return unless $self->{fh};
1744 root 1.19
1745 root 1.94 require Net::SSLeay;
1746    
1747 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1748     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1749 root 1.133
1750 root 1.160 $tls = $self->{tls};
1751     $ctx = $self->{tls_ctx};
1752 root 1.131
1753 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1754    
1755 root 1.131 if ("HASH" eq ref $ctx) {
1756     require AnyEvent::TLS;
1757    
1758 root 1.137 if ($ctx->{cache}) {
1759     my $key = $ctx+0;
1760     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1761     } else {
1762     $ctx = new AnyEvent::TLS %$ctx;
1763     }
1764 root 1.131 }
1765 root 1.92
1766 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1767 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1768 root 1.19
1769 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1770     # but the openssl maintainers basically said: "trust us, it just works".
1771     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1772     # and mismaintained ssleay-module doesn't even offer them).
1773 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1774 root 1.87 #
1775     # in short: this is a mess.
1776     #
1777 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1778 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1779 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1780     # have identity issues in that area.
1781 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1782     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1783     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1784 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1785 root 1.21
1786 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1787     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1788 root 1.19
1789 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1790    
1791 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1792 root 1.19
1793 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1794 root 1.143 if $self->{on_starttls};
1795 root 1.142
1796 root 1.93 &_dotls; # need to trigger the initial handshake
1797     $self->start_read; # make sure we actually do read
1798 root 1.19 }
1799    
1800 root 1.25 =item $handle->stoptls
1801    
1802 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1803     sending a close notify to the other side, but since OpenSSL doesn't
1804 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1805     the stream afterwards.
1806 root 1.25
1807     =cut
1808    
1809     sub stoptls {
1810     my ($self) = @_;
1811    
1812 root 1.92 if ($self->{tls}) {
1813 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1814 root 1.92
1815     &_dotls;
1816    
1817 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1818     # # we, we... have to use openssl :/#d#
1819     # &_freetls;#d#
1820 root 1.92 }
1821     }
1822    
1823     sub _freetls {
1824     my ($self) = @_;
1825    
1826     return unless $self->{tls};
1827 root 1.38
1828 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1829 root 1.171 if $self->{tls} > 0;
1830 root 1.92
1831 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1832 root 1.25 }
1833    
1834 root 1.19 sub DESTROY {
1835 root 1.120 my ($self) = @_;
1836 root 1.19
1837 root 1.92 &_freetls;
1838 root 1.62
1839     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1840    
1841 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1842 root 1.62 my $fh = delete $self->{fh};
1843     my $wbuf = delete $self->{wbuf};
1844    
1845     my @linger;
1846    
1847 root 1.175 push @linger, AE::io $fh, 1, sub {
1848 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1849    
1850     if ($len > 0) {
1851     substr $wbuf, 0, $len, "";
1852     } else {
1853     @linger = (); # end
1854     }
1855 root 1.175 };
1856     push @linger, AE::timer $linger, 0, sub {
1857 root 1.62 @linger = ();
1858 root 1.175 };
1859 root 1.62 }
1860 root 1.19 }
1861    
1862 root 1.99 =item $handle->destroy
1863    
1864 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1865 root 1.141 no further callbacks will be invoked and as many resources as possible
1866 root 1.165 will be freed. Any method you will call on the handle object after
1867     destroying it in this way will be silently ignored (and it will return the
1868     empty list).
1869 root 1.99
1870 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1871     object and it will simply shut down. This works in fatal error and EOF
1872     callbacks, as well as code outside. It does I<NOT> work in a read or write
1873     callback, so when you want to destroy the AnyEvent::Handle object from
1874     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1875     that case.
1876    
1877 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1878     will be removed as well, so if those are the only reference holders (as
1879     is common), then one doesn't need to do anything special to break any
1880     reference cycles.
1881    
1882 root 1.99 The handle might still linger in the background and write out remaining
1883     data, as specified by the C<linger> option, however.
1884    
1885     =cut
1886    
1887     sub destroy {
1888     my ($self) = @_;
1889    
1890     $self->DESTROY;
1891     %$self = ();
1892 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1893     }
1894    
1895 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1896     #nop
1897 root 1.99 }
1898    
1899 root 1.19 =item AnyEvent::Handle::TLS_CTX
1900    
1901 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1902     for TLS mode.
1903 root 1.19
1904 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1905 root 1.19
1906     =cut
1907    
1908     our $TLS_CTX;
1909    
1910     sub TLS_CTX() {
1911 root 1.131 $TLS_CTX ||= do {
1912     require AnyEvent::TLS;
1913 root 1.19
1914 root 1.131 new AnyEvent::TLS
1915 root 1.19 }
1916     }
1917    
1918 elmex 1.1 =back
1919    
1920 root 1.95
1921     =head1 NONFREQUENTLY ASKED QUESTIONS
1922    
1923     =over 4
1924    
1925 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1926     still get further invocations!
1927    
1928     That's because AnyEvent::Handle keeps a reference to itself when handling
1929     read or write callbacks.
1930    
1931     It is only safe to "forget" the reference inside EOF or error callbacks,
1932     from within all other callbacks, you need to explicitly call the C<<
1933     ->destroy >> method.
1934    
1935     =item I get different callback invocations in TLS mode/Why can't I pause
1936     reading?
1937    
1938     Unlike, say, TCP, TLS connections do not consist of two independent
1939     communication channels, one for each direction. Or put differently. The
1940     read and write directions are not independent of each other: you cannot
1941     write data unless you are also prepared to read, and vice versa.
1942    
1943     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1944     callback invocations when you are not expecting any read data - the reason
1945     is that AnyEvent::Handle always reads in TLS mode.
1946    
1947     During the connection, you have to make sure that you always have a
1948     non-empty read-queue, or an C<on_read> watcher. At the end of the
1949     connection (or when you no longer want to use it) you can call the
1950     C<destroy> method.
1951    
1952 root 1.95 =item How do I read data until the other side closes the connection?
1953    
1954 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1955     to achieve this is by setting an C<on_read> callback that does nothing,
1956     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1957     will be in C<$_[0]{rbuf}>:
1958 root 1.95
1959     $handle->on_read (sub { });
1960     $handle->on_eof (undef);
1961     $handle->on_error (sub {
1962     my $data = delete $_[0]{rbuf};
1963     });
1964    
1965     The reason to use C<on_error> is that TCP connections, due to latencies
1966     and packets loss, might get closed quite violently with an error, when in
1967     fact, all data has been received.
1968    
1969 root 1.101 It is usually better to use acknowledgements when transferring data,
1970 root 1.95 to make sure the other side hasn't just died and you got the data
1971     intact. This is also one reason why so many internet protocols have an
1972     explicit QUIT command.
1973    
1974 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1975     all data has been written?
1976 root 1.95
1977     After writing your last bits of data, set the C<on_drain> callback
1978     and destroy the handle in there - with the default setting of
1979     C<low_water_mark> this will be called precisely when all data has been
1980     written to the socket:
1981    
1982     $handle->push_write (...);
1983     $handle->on_drain (sub {
1984     warn "all data submitted to the kernel\n";
1985     undef $handle;
1986     });
1987    
1988 root 1.143 If you just want to queue some data and then signal EOF to the other side,
1989     consider using C<< ->push_shutdown >> instead.
1990    
1991     =item I want to contact a TLS/SSL server, I don't care about security.
1992    
1993     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1994     simply connect to it and then create the AnyEvent::Handle with the C<tls>
1995     parameter:
1996    
1997 root 1.144 tcp_connect $host, $port, sub {
1998     my ($fh) = @_;
1999 root 1.143
2000 root 1.144 my $handle = new AnyEvent::Handle
2001     fh => $fh,
2002     tls => "connect",
2003     on_error => sub { ... };
2004    
2005     $handle->push_write (...);
2006     };
2007 root 1.143
2008     =item I want to contact a TLS/SSL server, I do care about security.
2009    
2010 root 1.144 Then you should additionally enable certificate verification, including
2011     peername verification, if the protocol you use supports it (see
2012     L<AnyEvent::TLS>, C<verify_peername>).
2013    
2014     E.g. for HTTPS:
2015    
2016     tcp_connect $host, $port, sub {
2017     my ($fh) = @_;
2018    
2019     my $handle = new AnyEvent::Handle
2020     fh => $fh,
2021     peername => $host,
2022     tls => "connect",
2023     tls_ctx => { verify => 1, verify_peername => "https" },
2024     ...
2025    
2026     Note that you must specify the hostname you connected to (or whatever
2027     "peername" the protocol needs) as the C<peername> argument, otherwise no
2028     peername verification will be done.
2029    
2030     The above will use the system-dependent default set of trusted CA
2031     certificates. If you want to check against a specific CA, add the
2032     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2033    
2034     tls_ctx => {
2035     verify => 1,
2036     verify_peername => "https",
2037     ca_file => "my-ca-cert.pem",
2038     },
2039    
2040     =item I want to create a TLS/SSL server, how do I do that?
2041    
2042     Well, you first need to get a server certificate and key. You have
2043     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2044     self-signed certificate (cheap. check the search engine of your choice,
2045     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2046     nice program for that purpose).
2047    
2048     Then create a file with your private key (in PEM format, see
2049     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2050     file should then look like this:
2051    
2052     -----BEGIN RSA PRIVATE KEY-----
2053     ...header data
2054     ... lots of base64'y-stuff
2055     -----END RSA PRIVATE KEY-----
2056    
2057     -----BEGIN CERTIFICATE-----
2058     ... lots of base64'y-stuff
2059     -----END CERTIFICATE-----
2060    
2061     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2062     specify this file as C<cert_file>:
2063    
2064     tcp_server undef, $port, sub {
2065     my ($fh) = @_;
2066    
2067     my $handle = new AnyEvent::Handle
2068     fh => $fh,
2069     tls => "accept",
2070     tls_ctx => { cert_file => "my-server-keycert.pem" },
2071     ...
2072 root 1.143
2073 root 1.144 When you have intermediate CA certificates that your clients might not
2074     know about, just append them to the C<cert_file>.
2075 root 1.143
2076 root 1.95 =back
2077    
2078    
2079 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2080    
2081     In many cases, you might want to subclass AnyEvent::Handle.
2082    
2083     To make this easier, a given version of AnyEvent::Handle uses these
2084     conventions:
2085    
2086     =over 4
2087    
2088     =item * all constructor arguments become object members.
2089    
2090     At least initially, when you pass a C<tls>-argument to the constructor it
2091 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2092 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2093    
2094     =item * other object member names are prefixed with an C<_>.
2095    
2096     All object members not explicitly documented (internal use) are prefixed
2097     with an underscore character, so the remaining non-C<_>-namespace is free
2098     for use for subclasses.
2099    
2100     =item * all members not documented here and not prefixed with an underscore
2101     are free to use in subclasses.
2102    
2103     Of course, new versions of AnyEvent::Handle may introduce more "public"
2104     member variables, but thats just life, at least it is documented.
2105    
2106     =back
2107    
2108 elmex 1.1 =head1 AUTHOR
2109    
2110 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2111 elmex 1.1
2112     =cut
2113    
2114     1; # End of AnyEvent::Handle