ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.183
Committed: Thu Sep 3 12:45:35 2009 UTC (14 years, 9 months ago) by root
Branch: MAIN
Changes since 1.182: +11 -6 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 elmex 1.2 );
20    
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 elmex 1.1 =head1 METHODS
66    
67     =over 4
68    
69 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
70 elmex 1.1
71 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
72 elmex 1.1
73     =over 4
74    
75 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
76 root 1.158
77 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
78 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
79     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80     that mode.
81 root 1.8
82 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83    
84     Try to connect to the specified host and service (port), using
85     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86     default C<peername>.
87    
88     You have to specify either this parameter, or C<fh>, above.
89    
90 root 1.160 It is possible to push requests on the read and write queues, and modify
91     properties of the stream, even while AnyEvent::Handle is connecting.
92    
93 root 1.159 When this parameter is specified, then the C<on_prepare>,
94     C<on_connect_error> and C<on_connect> callbacks will be called under the
95     appropriate circumstances:
96    
97     =over 4
98    
99     =item on_prepare => $cb->($handle)
100    
101     This (rarely used) callback is called before a new connection is
102     attempted, but after the file handle has been created. It could be used to
103     prepare the file handle with parameters required for the actual connect
104     (as opposed to settings that can be changed when the connection is already
105     established).
106    
107 root 1.161 The return value of this callback should be the connect timeout value in
108     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
109     timeout is to be used).
110    
111 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
112    
113     This callback is called when a connection has been successfully established.
114    
115     The actual numeric host and port (the socket peername) are passed as
116     parameters, together with a retry callback.
117    
118     When, for some reason, the handle is not acceptable, then calling
119     C<$retry> will continue with the next conenction target (in case of
120     multi-homed hosts or SRV records there can be multiple connection
121     endpoints). When it is called then the read and write queues, eof status,
122     tls status and similar properties of the handle are being reset.
123    
124     In most cases, ignoring the C<$retry> parameter is the way to go.
125 root 1.158
126 root 1.159 =item on_connect_error => $cb->($handle, $message)
127 root 1.10
128 root 1.159 This callback is called when the conenction could not be
129     established. C<$!> will contain the relevant error code, and C<$message> a
130     message describing it (usually the same as C<"$!">).
131 root 1.8
132 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
133     fatal error instead.
134 root 1.82
135 root 1.159 =back
136 root 1.80
137 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
138 root 1.10
139 root 1.52 This is the error callback, which is called when, well, some error
140     occured, such as not being able to resolve the hostname, failure to
141     connect or a read error.
142    
143     Some errors are fatal (which is indicated by C<$fatal> being true). On
144 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
145     destroy >>) after invoking the error callback (which means you are free to
146     examine the handle object). Examples of fatal errors are an EOF condition
147 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148     cases where the other side can close the connection at their will it is
149     often easiest to not report C<EPIPE> errors in this callback.
150 root 1.82
151 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
152     against, but in some cases (TLS errors), this does not work well. It is
153     recommended to always output the C<$message> argument in human-readable
154     error messages (it's usually the same as C<"$!">).
155    
156 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
157     to simply ignore this parameter and instead abondon the handle object
158     when this callback is invoked. Examples of non-fatal errors are timeouts
159     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
160 root 1.8
161 root 1.10 On callback entrance, the value of C<$!> contains the operating system
162 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163     C<EPROTO>).
164 root 1.8
165 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
166     you will not be notified of errors otherwise. The default simply calls
167 root 1.52 C<croak>.
168 root 1.8
169 root 1.40 =item on_read => $cb->($handle)
170 root 1.8
171     This sets the default read callback, which is called when data arrives
172 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
173     callback will only be called when at least one octet of data is in the
174     read buffer).
175 root 1.8
176     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
177 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
178 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
179     the beginning from it.
180 root 1.8
181     When an EOF condition is detected then AnyEvent::Handle will first try to
182     feed all the remaining data to the queued callbacks and C<on_read> before
183     calling the C<on_eof> callback. If no progress can be made, then a fatal
184     error will be raised (with C<$!> set to C<EPIPE>).
185 elmex 1.1
186 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
187     doesn't mean you I<require> some data: if there is an EOF and there
188     are outstanding read requests then an error will be flagged. With an
189     C<on_read> callback, the C<on_eof> callback will be invoked.
190    
191 root 1.159 =item on_eof => $cb->($handle)
192    
193     Set the callback to be called when an end-of-file condition is detected,
194     i.e. in the case of a socket, when the other side has closed the
195     connection cleanly, and there are no outstanding read requests in the
196     queue (if there are read requests, then an EOF counts as an unexpected
197     connection close and will be flagged as an error).
198    
199     For sockets, this just means that the other side has stopped sending data,
200     you can still try to write data, and, in fact, one can return from the EOF
201     callback and continue writing data, as only the read part has been shut
202     down.
203    
204     If an EOF condition has been detected but no C<on_eof> callback has been
205     set, then a fatal error will be raised with C<$!> set to <0>.
206    
207 root 1.40 =item on_drain => $cb->($handle)
208 elmex 1.1
209 root 1.8 This sets the callback that is called when the write buffer becomes empty
210     (or when the callback is set and the buffer is empty already).
211 elmex 1.1
212 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
213 elmex 1.2
214 root 1.69 This callback is useful when you don't want to put all of your write data
215     into the queue at once, for example, when you want to write the contents
216     of some file to the socket you might not want to read the whole file into
217     memory and push it into the queue, but instead only read more data from
218     the file when the write queue becomes empty.
219    
220 root 1.43 =item timeout => $fractional_seconds
221    
222 root 1.176 =item rtimeout => $fractional_seconds
223    
224     =item wtimeout => $fractional_seconds
225    
226     If non-zero, then these enables an "inactivity" timeout: whenever this
227     many seconds pass without a successful read or write on the underlying
228     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
229     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230     error will be raised).
231    
232     There are three variants of the timeouts that work fully independent
233     of each other, for both read and write, just read, and just write:
234     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
237 root 1.43
238     Note that timeout processing is also active when you currently do not have
239     any outstanding read or write requests: If you plan to keep the connection
240     idle then you should disable the timout temporarily or ignore the timeout
241 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242     restart the timeout.
243 root 1.43
244     Zero (the default) disables this timeout.
245    
246     =item on_timeout => $cb->($handle)
247    
248     Called whenever the inactivity timeout passes. If you return from this
249     callback, then the timeout will be reset as if some activity had happened,
250     so this condition is not fatal in any way.
251    
252 root 1.8 =item rbuf_max => <bytes>
253 elmex 1.2
254 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
255     when the read buffer ever (strictly) exceeds this size. This is useful to
256 root 1.88 avoid some forms of denial-of-service attacks.
257 elmex 1.2
258 root 1.8 For example, a server accepting connections from untrusted sources should
259     be configured to accept only so-and-so much data that it cannot act on
260     (for example, when expecting a line, an attacker could send an unlimited
261     amount of data without a callback ever being called as long as the line
262     isn't finished).
263 elmex 1.2
264 root 1.70 =item autocork => <boolean>
265    
266     When disabled (the default), then C<push_write> will try to immediately
267 root 1.88 write the data to the handle, if possible. This avoids having to register
268     a write watcher and wait for the next event loop iteration, but can
269     be inefficient if you write multiple small chunks (on the wire, this
270     disadvantage is usually avoided by your kernel's nagle algorithm, see
271     C<no_delay>, but this option can save costly syscalls).
272 root 1.70
273     When enabled, then writes will always be queued till the next event loop
274     iteration. This is efficient when you do many small writes per iteration,
275 root 1.88 but less efficient when you do a single write only per iteration (or when
276     the write buffer often is full). It also increases write latency.
277 root 1.70
278     =item no_delay => <boolean>
279    
280     When doing small writes on sockets, your operating system kernel might
281     wait a bit for more data before actually sending it out. This is called
282     the Nagle algorithm, and usually it is beneficial.
283    
284 root 1.88 In some situations you want as low a delay as possible, which can be
285     accomplishd by setting this option to a true value.
286 root 1.70
287 root 1.88 The default is your opertaing system's default behaviour (most likely
288     enabled), this option explicitly enables or disables it, if possible.
289 root 1.70
290 root 1.182 =item keepalive => <boolean>
291    
292     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293     normally, TCP connections have no time-out once established, so TCP
294     conenctions, once established, can stay alive forever even when the other
295     side has long gone. TCP keepalives are a cheap way to take down long-lived
296     TCP connections whent he other side becomes unreachable. While the default
297     is OS-dependent, TCP keepalives usually kick in after around two hours,
298     and, if the other side doesn't reply, take down the TCP connection some 10
299     to 15 minutes later.
300    
301     It is harmless to specify this option for file handles that do not support
302     keepalives, and enabling it on connections that are potentially long-lived
303     is usually a good idea.
304    
305     =item oobinline => <boolean>
306    
307     BSD majorly fucked up the implementation of TCP urgent data. The result
308     is that almost no OS implements TCP according to the specs, and every OS
309     implements it slightly differently.
310    
311 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
312     is enabled) gives you the most portable way of getting urgent data, by
313     putting it into the stream.
314    
315     Since BSD emulation of OOB data on top of TCP's urgent data can have
316     security implications, AnyEvent::Handle sets this flag automatically
317     unless explicitly specified.
318 root 1.182
319 root 1.8 =item read_size => <bytes>
320 elmex 1.2
321 root 1.88 The default read block size (the amount of bytes this module will
322     try to read during each loop iteration, which affects memory
323     requirements). Default: C<8192>.
324 root 1.8
325     =item low_water_mark => <bytes>
326    
327     Sets the amount of bytes (default: C<0>) that make up an "empty" write
328     buffer: If the write reaches this size or gets even samller it is
329     considered empty.
330 elmex 1.2
331 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
332     the write buffer before it is fully drained, but this is a rare case, as
333     the operating system kernel usually buffers data as well, so the default
334     is good in almost all cases.
335    
336 root 1.62 =item linger => <seconds>
337    
338     If non-zero (default: C<3600>), then the destructor of the
339 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
340     write data and will install a watcher that will write this data to the
341     socket. No errors will be reported (this mostly matches how the operating
342     system treats outstanding data at socket close time).
343 root 1.62
344 root 1.88 This will not work for partial TLS data that could not be encoded
345 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
346     help.
347 root 1.62
348 root 1.133 =item peername => $string
349    
350 root 1.134 A string used to identify the remote site - usually the DNS hostname
351     (I<not> IDN!) used to create the connection, rarely the IP address.
352 root 1.131
353 root 1.133 Apart from being useful in error messages, this string is also used in TLS
354 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
355     verification will be skipped when C<peername> is not specified or
356     C<undef>.
357 root 1.131
358 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
359    
360 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
361 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
362     established and will transparently encrypt/decrypt data afterwards.
363 root 1.19
364 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
365     appropriate error message.
366    
367 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
368 root 1.88 automatically when you try to create a TLS handle): this module doesn't
369     have a dependency on that module, so if your module requires it, you have
370     to add the dependency yourself.
371 root 1.26
372 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
373     C<accept>, and for the TLS client side of a connection, use C<connect>
374     mode.
375 root 1.19
376     You can also provide your own TLS connection object, but you have
377     to make sure that you call either C<Net::SSLeay::set_connect_state>
378     or C<Net::SSLeay::set_accept_state> on it before you pass it to
379 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
380     object.
381    
382     At some future point, AnyEvent::Handle might switch to another TLS
383     implementation, then the option to use your own session object will go
384     away.
385 root 1.19
386 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
387     passing in the wrong integer will lead to certain crash. This most often
388     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
389     segmentation fault.
390    
391 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
392 root 1.26
393 root 1.131 =item tls_ctx => $anyevent_tls
394 root 1.19
395 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
396 root 1.19 (unless a connection object was specified directly). If this parameter is
397     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
398    
399 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
400     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
401     new TLS context object.
402    
403 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
404 root 1.142
405     This callback will be invoked when the TLS/SSL handshake has finished. If
406     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
407     (C<on_stoptls> will not be called in this case).
408    
409     The session in C<< $handle->{tls} >> can still be examined in this
410     callback, even when the handshake was not successful.
411    
412 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
413     callback is in effect, instead, the error message will be passed to C<on_starttls>.
414    
415     Without this callback, handshake failures lead to C<on_error> being
416     called, as normal.
417    
418     Note that you cannot call C<starttls> right again in this callback. If you
419     need to do that, start an zero-second timer instead whose callback can
420     then call C<< ->starttls >> again.
421    
422 root 1.142 =item on_stoptls => $cb->($handle)
423    
424     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
425     set, then it will be invoked after freeing the TLS session. If it is not,
426     then a TLS shutdown condition will be treated like a normal EOF condition
427     on the handle.
428    
429     The session in C<< $handle->{tls} >> can still be examined in this
430     callback.
431    
432     This callback will only be called on TLS shutdowns, not when the
433     underlying handle signals EOF.
434    
435 root 1.40 =item json => JSON or JSON::XS object
436    
437     This is the json coder object used by the C<json> read and write types.
438    
439 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
440 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
441     texts.
442 root 1.40
443     Note that you are responsible to depend on the JSON module if you want to
444     use this functionality, as AnyEvent does not have a dependency itself.
445    
446 elmex 1.1 =back
447    
448     =cut
449    
450     sub new {
451 root 1.8 my $class = shift;
452     my $self = bless { @_ }, $class;
453    
454 root 1.159 if ($self->{fh}) {
455     $self->_start;
456     return unless $self->{fh}; # could be gone by now
457    
458     } elsif ($self->{connect}) {
459     require AnyEvent::Socket;
460    
461     $self->{peername} = $self->{connect}[0]
462     unless exists $self->{peername};
463    
464     $self->{_skip_drain_rbuf} = 1;
465    
466     {
467     Scalar::Util::weaken (my $self = $self);
468    
469     $self->{_connect} =
470     AnyEvent::Socket::tcp_connect (
471     $self->{connect}[0],
472     $self->{connect}[1],
473     sub {
474     my ($fh, $host, $port, $retry) = @_;
475    
476     if ($fh) {
477     $self->{fh} = $fh;
478    
479     delete $self->{_skip_drain_rbuf};
480     $self->_start;
481    
482     $self->{on_connect}
483     and $self->{on_connect}($self, $host, $port, sub {
484 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
485 root 1.159 $self->{_skip_drain_rbuf} = 1;
486     &$retry;
487     });
488    
489     } else {
490     if ($self->{on_connect_error}) {
491     $self->{on_connect_error}($self, "$!");
492     $self->destroy;
493     } else {
494 root 1.161 $self->_error ($!, 1);
495 root 1.159 }
496     }
497     },
498     sub {
499     local $self->{fh} = $_[0];
500    
501 root 1.161 $self->{on_prepare}
502     ? $self->{on_prepare}->($self)
503     : ()
504 root 1.159 }
505     );
506     }
507    
508     } else {
509     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
510     }
511    
512     $self
513     }
514    
515     sub _start {
516     my ($self) = @_;
517 root 1.8
518     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
519 elmex 1.1
520 root 1.176 $self->{_activity} =
521     $self->{_ractivity} =
522     $self->{_wactivity} = AE::now;
523    
524 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
525     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
526     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
527    
528 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
529     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
530    
531     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
532 root 1.131
533 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
534 root 1.94 if $self->{tls};
535 root 1.19
536 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
537 root 1.10
538 root 1.66 $self->start_read
539 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
540 root 1.160
541     $self->_drain_wbuf;
542 root 1.8 }
543 elmex 1.2
544 root 1.52 sub _error {
545 root 1.133 my ($self, $errno, $fatal, $message) = @_;
546 root 1.8
547 root 1.52 $! = $errno;
548 root 1.133 $message ||= "$!";
549 root 1.37
550 root 1.52 if ($self->{on_error}) {
551 root 1.133 $self->{on_error}($self, $fatal, $message);
552 root 1.151 $self->destroy if $fatal;
553 root 1.100 } elsif ($self->{fh}) {
554 root 1.149 $self->destroy;
555 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
556 root 1.52 }
557 elmex 1.1 }
558    
559 root 1.8 =item $fh = $handle->fh
560 elmex 1.1
561 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
562 elmex 1.1
563     =cut
564    
565 root 1.38 sub fh { $_[0]{fh} }
566 elmex 1.1
567 root 1.8 =item $handle->on_error ($cb)
568 elmex 1.1
569 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
570 elmex 1.1
571 root 1.8 =cut
572    
573     sub on_error {
574     $_[0]{on_error} = $_[1];
575     }
576    
577     =item $handle->on_eof ($cb)
578    
579     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
580 elmex 1.1
581     =cut
582    
583 root 1.8 sub on_eof {
584     $_[0]{on_eof} = $_[1];
585     }
586    
587 root 1.43 =item $handle->on_timeout ($cb)
588    
589 root 1.176 =item $handle->on_rtimeout ($cb)
590    
591     =item $handle->on_wtimeout ($cb)
592    
593     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
594     callback, or disables the callback (but not the timeout) if C<$cb> =
595     C<undef>. See the C<timeout> constructor argument and method.
596 root 1.43
597     =cut
598    
599 root 1.176 # see below
600 root 1.43
601 root 1.70 =item $handle->autocork ($boolean)
602    
603     Enables or disables the current autocork behaviour (see C<autocork>
604 root 1.105 constructor argument). Changes will only take effect on the next write.
605 root 1.70
606     =cut
607    
608 root 1.105 sub autocork {
609     $_[0]{autocork} = $_[1];
610     }
611    
612 root 1.70 =item $handle->no_delay ($boolean)
613    
614     Enables or disables the C<no_delay> setting (see constructor argument of
615     the same name for details).
616    
617     =cut
618    
619     sub no_delay {
620     $_[0]{no_delay} = $_[1];
621    
622     eval {
623     local $SIG{__DIE__};
624 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
625     if $_[0]{fh};
626     };
627     }
628    
629     =item $handle->keepalive ($boolean)
630    
631     Enables or disables the C<keepalive> setting (see constructor argument of
632     the same name for details).
633    
634     =cut
635    
636     sub keepalive {
637     $_[0]{keepalive} = $_[1];
638    
639     eval {
640     local $SIG{__DIE__};
641     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
642     if $_[0]{fh};
643     };
644     }
645    
646     =item $handle->oobinline ($boolean)
647    
648     Enables or disables the C<oobinline> setting (see constructor argument of
649     the same name for details).
650    
651     =cut
652    
653     sub oobinline {
654     $_[0]{oobinline} = $_[1];
655    
656     eval {
657     local $SIG{__DIE__};
658     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
659     if $_[0]{fh};
660     };
661     }
662    
663     =item $handle->keepalive ($boolean)
664    
665     Enables or disables the C<keepalive> setting (see constructor argument of
666     the same name for details).
667    
668     =cut
669    
670     sub keepalive {
671     $_[0]{keepalive} = $_[1];
672    
673     eval {
674     local $SIG{__DIE__};
675     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
676 root 1.159 if $_[0]{fh};
677 root 1.70 };
678     }
679    
680 root 1.142 =item $handle->on_starttls ($cb)
681    
682     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
683    
684     =cut
685    
686     sub on_starttls {
687     $_[0]{on_starttls} = $_[1];
688     }
689    
690     =item $handle->on_stoptls ($cb)
691    
692     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
693    
694     =cut
695    
696     sub on_starttls {
697     $_[0]{on_stoptls} = $_[1];
698     }
699    
700 root 1.168 =item $handle->rbuf_max ($max_octets)
701    
702     Configures the C<rbuf_max> setting (C<undef> disables it).
703    
704     =cut
705    
706     sub rbuf_max {
707     $_[0]{rbuf_max} = $_[1];
708     }
709    
710 root 1.43 #############################################################################
711    
712     =item $handle->timeout ($seconds)
713    
714 root 1.176 =item $handle->rtimeout ($seconds)
715    
716     =item $handle->wtimeout ($seconds)
717    
718 root 1.43 Configures (or disables) the inactivity timeout.
719    
720 root 1.176 =item $handle->timeout_reset
721    
722     =item $handle->rtimeout_reset
723    
724     =item $handle->wtimeout_reset
725    
726     Reset the activity timeout, as if data was received or sent.
727    
728     These methods are cheap to call.
729    
730 root 1.43 =cut
731    
732 root 1.176 for my $dir ("", "r", "w") {
733     my $timeout = "${dir}timeout";
734     my $tw = "_${dir}tw";
735     my $on_timeout = "on_${dir}timeout";
736     my $activity = "_${dir}activity";
737     my $cb;
738    
739     *$on_timeout = sub {
740     $_[0]{$on_timeout} = $_[1];
741     };
742    
743     *$timeout = sub {
744     my ($self, $new_value) = @_;
745 root 1.43
746 root 1.176 $self->{$timeout} = $new_value;
747     delete $self->{$tw}; &$cb;
748     };
749 root 1.43
750 root 1.176 *{"${dir}timeout_reset"} = sub {
751     $_[0]{$activity} = AE::now;
752     };
753 root 1.43
754 root 1.176 # main workhorse:
755     # reset the timeout watcher, as neccessary
756     # also check for time-outs
757     $cb = sub {
758     my ($self) = @_;
759    
760     if ($self->{$timeout} && $self->{fh}) {
761     my $NOW = AE::now;
762    
763     # when would the timeout trigger?
764     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
765    
766     # now or in the past already?
767     if ($after <= 0) {
768     $self->{$activity} = $NOW;
769 root 1.43
770 root 1.176 if ($self->{$on_timeout}) {
771     $self->{$on_timeout}($self);
772     } else {
773     $self->_error (Errno::ETIMEDOUT);
774     }
775 root 1.43
776 root 1.176 # callback could have changed timeout value, optimise
777     return unless $self->{$timeout};
778 root 1.43
779 root 1.176 # calculate new after
780     $after = $self->{$timeout};
781 root 1.43 }
782    
783 root 1.176 Scalar::Util::weaken $self;
784     return unless $self; # ->error could have destroyed $self
785 root 1.43
786 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
787     delete $self->{$tw};
788     $cb->($self);
789     };
790     } else {
791     delete $self->{$tw};
792 root 1.43 }
793     }
794     }
795    
796 root 1.9 #############################################################################
797    
798     =back
799    
800     =head2 WRITE QUEUE
801    
802     AnyEvent::Handle manages two queues per handle, one for writing and one
803     for reading.
804    
805     The write queue is very simple: you can add data to its end, and
806     AnyEvent::Handle will automatically try to get rid of it for you.
807    
808 elmex 1.20 When data could be written and the write buffer is shorter then the low
809 root 1.9 water mark, the C<on_drain> callback will be invoked.
810    
811     =over 4
812    
813 root 1.8 =item $handle->on_drain ($cb)
814    
815     Sets the C<on_drain> callback or clears it (see the description of
816     C<on_drain> in the constructor).
817    
818     =cut
819    
820     sub on_drain {
821 elmex 1.1 my ($self, $cb) = @_;
822    
823 root 1.8 $self->{on_drain} = $cb;
824    
825     $cb->($self)
826 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
827 root 1.8 }
828    
829     =item $handle->push_write ($data)
830    
831     Queues the given scalar to be written. You can push as much data as you
832     want (only limited by the available memory), as C<AnyEvent::Handle>
833     buffers it independently of the kernel.
834    
835     =cut
836    
837 root 1.17 sub _drain_wbuf {
838     my ($self) = @_;
839 root 1.8
840 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
841 root 1.35
842 root 1.8 Scalar::Util::weaken $self;
843 root 1.35
844 root 1.8 my $cb = sub {
845     my $len = syswrite $self->{fh}, $self->{wbuf};
846    
847 root 1.146 if (defined $len) {
848 root 1.8 substr $self->{wbuf}, 0, $len, "";
849    
850 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
851 root 1.43
852 root 1.8 $self->{on_drain}($self)
853 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
854 root 1.8 && $self->{on_drain};
855    
856 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
857 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
858 root 1.52 $self->_error ($!, 1);
859 elmex 1.1 }
860 root 1.8 };
861    
862 root 1.35 # try to write data immediately
863 root 1.70 $cb->() unless $self->{autocork};
864 root 1.8
865 root 1.35 # if still data left in wbuf, we need to poll
866 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
867 root 1.35 if length $self->{wbuf};
868 root 1.8 };
869     }
870    
871 root 1.30 our %WH;
872    
873     sub register_write_type($$) {
874     $WH{$_[0]} = $_[1];
875     }
876    
877 root 1.17 sub push_write {
878     my $self = shift;
879    
880 root 1.29 if (@_ > 1) {
881     my $type = shift;
882    
883     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
884     ->($self, @_);
885     }
886    
887 root 1.93 if ($self->{tls}) {
888     $self->{_tls_wbuf} .= $_[0];
889 root 1.160 &_dotls ($self) if $self->{fh};
890 root 1.17 } else {
891 root 1.160 $self->{wbuf} .= $_[0];
892 root 1.159 $self->_drain_wbuf if $self->{fh};
893 root 1.17 }
894     }
895    
896 root 1.29 =item $handle->push_write (type => @args)
897    
898     Instead of formatting your data yourself, you can also let this module do
899     the job by specifying a type and type-specific arguments.
900    
901 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
902     drop by and tell us):
903 root 1.29
904     =over 4
905    
906     =item netstring => $string
907    
908     Formats the given value as netstring
909     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
910    
911     =cut
912    
913     register_write_type netstring => sub {
914     my ($self, $string) = @_;
915    
916 root 1.96 (length $string) . ":$string,"
917 root 1.29 };
918    
919 root 1.61 =item packstring => $format, $data
920    
921     An octet string prefixed with an encoded length. The encoding C<$format>
922     uses the same format as a Perl C<pack> format, but must specify a single
923     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
924     optional C<!>, C<< < >> or C<< > >> modifier).
925    
926     =cut
927    
928     register_write_type packstring => sub {
929     my ($self, $format, $string) = @_;
930    
931 root 1.65 pack "$format/a*", $string
932 root 1.61 };
933    
934 root 1.39 =item json => $array_or_hashref
935    
936 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
937     provide your own JSON object, this means it will be encoded to JSON text
938     in UTF-8.
939    
940     JSON objects (and arrays) are self-delimiting, so you can write JSON at
941     one end of a handle and read them at the other end without using any
942     additional framing.
943    
944 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
945     this module doesn't need delimiters after or between JSON texts to be
946     able to read them, many other languages depend on that.
947    
948     A simple RPC protocol that interoperates easily with others is to send
949     JSON arrays (or objects, although arrays are usually the better choice as
950     they mimic how function argument passing works) and a newline after each
951     JSON text:
952    
953     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
954     $handle->push_write ("\012");
955    
956     An AnyEvent::Handle receiver would simply use the C<json> read type and
957     rely on the fact that the newline will be skipped as leading whitespace:
958    
959     $handle->push_read (json => sub { my $array = $_[1]; ... });
960    
961     Other languages could read single lines terminated by a newline and pass
962     this line into their JSON decoder of choice.
963    
964 root 1.40 =cut
965    
966 root 1.179 sub json_coder() {
967     eval { require JSON::XS; JSON::XS->new->utf8 }
968     || do { require JSON; JSON->new->utf8 }
969     }
970    
971 root 1.40 register_write_type json => sub {
972     my ($self, $ref) = @_;
973    
974 root 1.179 my $json = $self->{json} ||= json_coder;
975 root 1.40
976 root 1.179 $json->encode ($ref)
977 root 1.40 };
978    
979 root 1.63 =item storable => $reference
980    
981     Freezes the given reference using L<Storable> and writes it to the
982     handle. Uses the C<nfreeze> format.
983    
984     =cut
985    
986     register_write_type storable => sub {
987     my ($self, $ref) = @_;
988    
989     require Storable;
990    
991 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
992 root 1.63 };
993    
994 root 1.53 =back
995    
996 root 1.133 =item $handle->push_shutdown
997    
998     Sometimes you know you want to close the socket after writing your data
999     before it was actually written. One way to do that is to replace your
1000 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1001     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1002     replaces the C<on_drain> callback with:
1003 root 1.133
1004     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1005    
1006     This simply shuts down the write side and signals an EOF condition to the
1007     the peer.
1008    
1009     You can rely on the normal read queue and C<on_eof> handling
1010     afterwards. This is the cleanest way to close a connection.
1011    
1012     =cut
1013    
1014     sub push_shutdown {
1015 root 1.142 my ($self) = @_;
1016    
1017     delete $self->{low_water_mark};
1018     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1019 root 1.133 }
1020    
1021 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
1022 root 1.30
1023     This function (not method) lets you add your own types to C<push_write>.
1024     Whenever the given C<type> is used, C<push_write> will invoke the code
1025     reference with the handle object and the remaining arguments.
1026 root 1.29
1027 root 1.30 The code reference is supposed to return a single octet string that will
1028     be appended to the write buffer.
1029 root 1.29
1030 root 1.30 Note that this is a function, and all types registered this way will be
1031     global, so try to use unique names.
1032 root 1.29
1033 root 1.30 =cut
1034 root 1.29
1035 root 1.8 #############################################################################
1036    
1037 root 1.9 =back
1038    
1039     =head2 READ QUEUE
1040    
1041     AnyEvent::Handle manages two queues per handle, one for writing and one
1042     for reading.
1043    
1044     The read queue is more complex than the write queue. It can be used in two
1045     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1046     a queue.
1047    
1048     In the simple case, you just install an C<on_read> callback and whenever
1049     new data arrives, it will be called. You can then remove some data (if
1050 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1051     leave the data there if you want to accumulate more (e.g. when only a
1052     partial message has been received so far).
1053 root 1.9
1054     In the more complex case, you want to queue multiple callbacks. In this
1055     case, AnyEvent::Handle will call the first queued callback each time new
1056 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1057     done its job (see C<push_read>, below).
1058 root 1.9
1059     This way you can, for example, push three line-reads, followed by reading
1060     a chunk of data, and AnyEvent::Handle will execute them in order.
1061    
1062     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1063     the specified number of bytes which give an XML datagram.
1064    
1065     # in the default state, expect some header bytes
1066     $handle->on_read (sub {
1067     # some data is here, now queue the length-header-read (4 octets)
1068 root 1.52 shift->unshift_read (chunk => 4, sub {
1069 root 1.9 # header arrived, decode
1070     my $len = unpack "N", $_[1];
1071    
1072     # now read the payload
1073 root 1.52 shift->unshift_read (chunk => $len, sub {
1074 root 1.9 my $xml = $_[1];
1075     # handle xml
1076     });
1077     });
1078     });
1079    
1080 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1081     and another line or "ERROR" for the first request that is sent, and 64
1082     bytes for the second request. Due to the availability of a queue, we can
1083     just pipeline sending both requests and manipulate the queue as necessary
1084     in the callbacks.
1085    
1086     When the first callback is called and sees an "OK" response, it will
1087     C<unshift> another line-read. This line-read will be queued I<before> the
1088     64-byte chunk callback.
1089 root 1.9
1090 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1091 root 1.9 $handle->push_write ("request 1\015\012");
1092    
1093     # we expect "ERROR" or "OK" as response, so push a line read
1094 root 1.52 $handle->push_read (line => sub {
1095 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1096     # so it will be read before the second request reads its 64 bytes
1097     # which are already in the queue when this callback is called
1098     # we don't do this in case we got an error
1099     if ($_[1] eq "OK") {
1100 root 1.52 $_[0]->unshift_read (line => sub {
1101 root 1.9 my $response = $_[1];
1102     ...
1103     });
1104     }
1105     });
1106    
1107 root 1.69 # request two, simply returns 64 octets
1108 root 1.9 $handle->push_write ("request 2\015\012");
1109    
1110     # simply read 64 bytes, always
1111 root 1.52 $handle->push_read (chunk => 64, sub {
1112 root 1.9 my $response = $_[1];
1113     ...
1114     });
1115    
1116     =over 4
1117    
1118 root 1.10 =cut
1119    
1120 root 1.8 sub _drain_rbuf {
1121     my ($self) = @_;
1122 elmex 1.1
1123 root 1.159 # avoid recursion
1124 root 1.167 return if $self->{_skip_drain_rbuf};
1125 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1126 root 1.59
1127     while () {
1128 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1129     # we are draining the buffer, and this can only happen with TLS.
1130 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1131     if exists $self->{_tls_rbuf};
1132 root 1.115
1133 root 1.59 my $len = length $self->{rbuf};
1134 elmex 1.1
1135 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1136 root 1.29 unless ($cb->($self)) {
1137 root 1.163 # no progress can be made
1138     # (not enough data and no data forthcoming)
1139     $self->_error (Errno::EPIPE, 1), return
1140     if $self->{_eof};
1141 root 1.10
1142 root 1.38 unshift @{ $self->{_queue} }, $cb;
1143 root 1.55 last;
1144 root 1.8 }
1145     } elsif ($self->{on_read}) {
1146 root 1.61 last unless $len;
1147    
1148 root 1.8 $self->{on_read}($self);
1149    
1150     if (
1151 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1152     && !@{ $self->{_queue} } # and the queue is still empty
1153     && $self->{on_read} # but we still have on_read
1154 root 1.8 ) {
1155 root 1.55 # no further data will arrive
1156     # so no progress can be made
1157 root 1.150 $self->_error (Errno::EPIPE, 1), return
1158 root 1.55 if $self->{_eof};
1159    
1160     last; # more data might arrive
1161 elmex 1.1 }
1162 root 1.8 } else {
1163     # read side becomes idle
1164 root 1.93 delete $self->{_rw} unless $self->{tls};
1165 root 1.55 last;
1166 root 1.8 }
1167     }
1168    
1169 root 1.80 if ($self->{_eof}) {
1170 root 1.163 $self->{on_eof}
1171     ? $self->{on_eof}($self)
1172     : $self->_error (0, 1, "Unexpected end-of-file");
1173    
1174     return;
1175 root 1.80 }
1176 root 1.55
1177 root 1.169 if (
1178     defined $self->{rbuf_max}
1179     && $self->{rbuf_max} < length $self->{rbuf}
1180     ) {
1181     $self->_error (Errno::ENOSPC, 1), return;
1182     }
1183    
1184 root 1.55 # may need to restart read watcher
1185     unless ($self->{_rw}) {
1186     $self->start_read
1187     if $self->{on_read} || @{ $self->{_queue} };
1188     }
1189 elmex 1.1 }
1190    
1191 root 1.8 =item $handle->on_read ($cb)
1192 elmex 1.1
1193 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1194     the new callback is C<undef>). See the description of C<on_read> in the
1195     constructor.
1196 elmex 1.1
1197 root 1.8 =cut
1198    
1199     sub on_read {
1200     my ($self, $cb) = @_;
1201 elmex 1.1
1202 root 1.8 $self->{on_read} = $cb;
1203 root 1.159 $self->_drain_rbuf if $cb;
1204 elmex 1.1 }
1205    
1206 root 1.8 =item $handle->rbuf
1207    
1208     Returns the read buffer (as a modifiable lvalue).
1209 elmex 1.1
1210 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1211     member, if you want. However, the only operation allowed on the
1212     read buffer (apart from looking at it) is removing data from its
1213     beginning. Otherwise modifying or appending to it is not allowed and will
1214     lead to hard-to-track-down bugs.
1215 elmex 1.1
1216 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1217     C<push_read> or C<unshift_read> methods are used. The other read methods
1218     automatically manage the read buffer.
1219 elmex 1.1
1220     =cut
1221    
1222 elmex 1.2 sub rbuf : lvalue {
1223 root 1.8 $_[0]{rbuf}
1224 elmex 1.2 }
1225 elmex 1.1
1226 root 1.8 =item $handle->push_read ($cb)
1227    
1228     =item $handle->unshift_read ($cb)
1229    
1230     Append the given callback to the end of the queue (C<push_read>) or
1231     prepend it (C<unshift_read>).
1232    
1233     The callback is called each time some additional read data arrives.
1234 elmex 1.1
1235 elmex 1.20 It must check whether enough data is in the read buffer already.
1236 elmex 1.1
1237 root 1.8 If not enough data is available, it must return the empty list or a false
1238     value, in which case it will be called repeatedly until enough data is
1239     available (or an error condition is detected).
1240    
1241     If enough data was available, then the callback must remove all data it is
1242     interested in (which can be none at all) and return a true value. After returning
1243     true, it will be removed from the queue.
1244 elmex 1.1
1245     =cut
1246    
1247 root 1.30 our %RH;
1248    
1249     sub register_read_type($$) {
1250     $RH{$_[0]} = $_[1];
1251     }
1252    
1253 root 1.8 sub push_read {
1254 root 1.28 my $self = shift;
1255     my $cb = pop;
1256    
1257     if (@_) {
1258     my $type = shift;
1259    
1260     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
1261     ->($self, $cb, @_);
1262     }
1263 elmex 1.1
1264 root 1.38 push @{ $self->{_queue} }, $cb;
1265 root 1.159 $self->_drain_rbuf;
1266 elmex 1.1 }
1267    
1268 root 1.8 sub unshift_read {
1269 root 1.28 my $self = shift;
1270     my $cb = pop;
1271    
1272     if (@_) {
1273     my $type = shift;
1274    
1275     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1276     ->($self, $cb, @_);
1277     }
1278    
1279 root 1.38 unshift @{ $self->{_queue} }, $cb;
1280 root 1.159 $self->_drain_rbuf;
1281 root 1.8 }
1282 elmex 1.1
1283 root 1.28 =item $handle->push_read (type => @args, $cb)
1284 elmex 1.1
1285 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1286 elmex 1.1
1287 root 1.28 Instead of providing a callback that parses the data itself you can chose
1288     between a number of predefined parsing formats, for chunks of data, lines
1289     etc.
1290 elmex 1.1
1291 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1292     drop by and tell us):
1293 root 1.28
1294     =over 4
1295    
1296 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1297 root 1.28
1298     Invoke the callback only once C<$octets> bytes have been read. Pass the
1299     data read to the callback. The callback will never be called with less
1300     data.
1301    
1302     Example: read 2 bytes.
1303    
1304     $handle->push_read (chunk => 2, sub {
1305     warn "yay ", unpack "H*", $_[1];
1306     });
1307 elmex 1.1
1308     =cut
1309    
1310 root 1.28 register_read_type chunk => sub {
1311     my ($self, $cb, $len) = @_;
1312 elmex 1.1
1313 root 1.8 sub {
1314     $len <= length $_[0]{rbuf} or return;
1315 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1316 root 1.8 1
1317     }
1318 root 1.28 };
1319 root 1.8
1320 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1321 elmex 1.1
1322 root 1.8 The callback will be called only once a full line (including the end of
1323     line marker, C<$eol>) has been read. This line (excluding the end of line
1324     marker) will be passed to the callback as second argument (C<$line>), and
1325     the end of line marker as the third argument (C<$eol>).
1326 elmex 1.1
1327 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1328     will be interpreted as a fixed record end marker, or it can be a regex
1329     object (e.g. created by C<qr>), in which case it is interpreted as a
1330     regular expression.
1331 elmex 1.1
1332 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1333     undef), then C<qr|\015?\012|> is used (which is good for most internet
1334     protocols).
1335 elmex 1.1
1336 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1337     not marked by the end of line marker.
1338 elmex 1.1
1339 root 1.8 =cut
1340 elmex 1.1
1341 root 1.28 register_read_type line => sub {
1342     my ($self, $cb, $eol) = @_;
1343 elmex 1.1
1344 root 1.76 if (@_ < 3) {
1345     # this is more than twice as fast as the generic code below
1346     sub {
1347     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1348 elmex 1.1
1349 root 1.76 $cb->($_[0], $1, $2);
1350     1
1351     }
1352     } else {
1353     $eol = quotemeta $eol unless ref $eol;
1354     $eol = qr|^(.*?)($eol)|s;
1355    
1356     sub {
1357     $_[0]{rbuf} =~ s/$eol// or return;
1358 elmex 1.1
1359 root 1.76 $cb->($_[0], $1, $2);
1360     1
1361     }
1362 root 1.8 }
1363 root 1.28 };
1364 elmex 1.1
1365 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1366 root 1.36
1367     Makes a regex match against the regex object C<$accept> and returns
1368     everything up to and including the match.
1369    
1370     Example: read a single line terminated by '\n'.
1371    
1372     $handle->push_read (regex => qr<\n>, sub { ... });
1373    
1374     If C<$reject> is given and not undef, then it determines when the data is
1375     to be rejected: it is matched against the data when the C<$accept> regex
1376     does not match and generates an C<EBADMSG> error when it matches. This is
1377     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1378     receive buffer overflow).
1379    
1380     Example: expect a single decimal number followed by whitespace, reject
1381     anything else (not the use of an anchor).
1382    
1383     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1384    
1385     If C<$skip> is given and not C<undef>, then it will be matched against
1386     the receive buffer when neither C<$accept> nor C<$reject> match,
1387     and everything preceding and including the match will be accepted
1388     unconditionally. This is useful to skip large amounts of data that you
1389     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1390     have to start matching from the beginning. This is purely an optimisation
1391     and is usually worth only when you expect more than a few kilobytes.
1392    
1393     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1394     expect the header to be very large (it isn't in practise, but...), we use
1395     a skip regex to skip initial portions. The skip regex is tricky in that
1396     it only accepts something not ending in either \015 or \012, as these are
1397     required for the accept regex.
1398    
1399     $handle->push_read (regex =>
1400     qr<\015\012\015\012>,
1401     undef, # no reject
1402     qr<^.*[^\015\012]>,
1403     sub { ... });
1404    
1405     =cut
1406    
1407     register_read_type regex => sub {
1408     my ($self, $cb, $accept, $reject, $skip) = @_;
1409    
1410     my $data;
1411     my $rbuf = \$self->{rbuf};
1412    
1413     sub {
1414     # accept
1415     if ($$rbuf =~ $accept) {
1416     $data .= substr $$rbuf, 0, $+[0], "";
1417     $cb->($self, $data);
1418     return 1;
1419     }
1420    
1421     # reject
1422     if ($reject && $$rbuf =~ $reject) {
1423 root 1.150 $self->_error (Errno::EBADMSG);
1424 root 1.36 }
1425    
1426     # skip
1427     if ($skip && $$rbuf =~ $skip) {
1428     $data .= substr $$rbuf, 0, $+[0], "";
1429     }
1430    
1431     ()
1432     }
1433     };
1434    
1435 root 1.61 =item netstring => $cb->($handle, $string)
1436    
1437     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1438    
1439     Throws an error with C<$!> set to EBADMSG on format violations.
1440    
1441     =cut
1442    
1443     register_read_type netstring => sub {
1444     my ($self, $cb) = @_;
1445    
1446     sub {
1447     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1448     if ($_[0]{rbuf} =~ /[^0-9]/) {
1449 root 1.150 $self->_error (Errno::EBADMSG);
1450 root 1.61 }
1451     return;
1452     }
1453    
1454     my $len = $1;
1455    
1456     $self->unshift_read (chunk => $len, sub {
1457     my $string = $_[1];
1458     $_[0]->unshift_read (chunk => 1, sub {
1459     if ($_[1] eq ",") {
1460     $cb->($_[0], $string);
1461     } else {
1462 root 1.150 $self->_error (Errno::EBADMSG);
1463 root 1.61 }
1464     });
1465     });
1466    
1467     1
1468     }
1469     };
1470    
1471     =item packstring => $format, $cb->($handle, $string)
1472    
1473     An octet string prefixed with an encoded length. The encoding C<$format>
1474     uses the same format as a Perl C<pack> format, but must specify a single
1475     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1476     optional C<!>, C<< < >> or C<< > >> modifier).
1477    
1478 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1479     EPP uses a prefix of C<N> (4 octtes).
1480 root 1.61
1481     Example: read a block of data prefixed by its length in BER-encoded
1482     format (very efficient).
1483    
1484     $handle->push_read (packstring => "w", sub {
1485     my ($handle, $data) = @_;
1486     });
1487    
1488     =cut
1489    
1490     register_read_type packstring => sub {
1491     my ($self, $cb, $format) = @_;
1492    
1493     sub {
1494     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1495 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1496 root 1.61 or return;
1497    
1498 root 1.77 $format = length pack $format, $len;
1499 root 1.61
1500 root 1.77 # bypass unshift if we already have the remaining chunk
1501     if ($format + $len <= length $_[0]{rbuf}) {
1502     my $data = substr $_[0]{rbuf}, $format, $len;
1503     substr $_[0]{rbuf}, 0, $format + $len, "";
1504     $cb->($_[0], $data);
1505     } else {
1506     # remove prefix
1507     substr $_[0]{rbuf}, 0, $format, "";
1508    
1509     # read remaining chunk
1510     $_[0]->unshift_read (chunk => $len, $cb);
1511     }
1512 root 1.61
1513     1
1514     }
1515     };
1516    
1517 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1518    
1519 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1520     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1521 root 1.40
1522     If a C<json> object was passed to the constructor, then that will be used
1523     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1524    
1525     This read type uses the incremental parser available with JSON version
1526     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1527     dependency on your own: this module will load the JSON module, but
1528     AnyEvent does not depend on it itself.
1529    
1530     Since JSON texts are fully self-delimiting, the C<json> read and write
1531 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1532     the C<json> write type description, above, for an actual example.
1533 root 1.40
1534     =cut
1535    
1536     register_read_type json => sub {
1537 root 1.63 my ($self, $cb) = @_;
1538 root 1.40
1539 root 1.179 my $json = $self->{json} ||= json_coder;
1540 root 1.40
1541     my $data;
1542     my $rbuf = \$self->{rbuf};
1543    
1544     sub {
1545 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1546 root 1.110
1547 root 1.113 if ($ref) {
1548     $self->{rbuf} = $json->incr_text;
1549     $json->incr_text = "";
1550     $cb->($self, $ref);
1551 root 1.110
1552     1
1553 root 1.113 } elsif ($@) {
1554 root 1.111 # error case
1555 root 1.110 $json->incr_skip;
1556 root 1.40
1557     $self->{rbuf} = $json->incr_text;
1558     $json->incr_text = "";
1559    
1560 root 1.150 $self->_error (Errno::EBADMSG);
1561 root 1.114
1562 root 1.113 ()
1563     } else {
1564     $self->{rbuf} = "";
1565 root 1.114
1566 root 1.113 ()
1567     }
1568 root 1.40 }
1569     };
1570    
1571 root 1.63 =item storable => $cb->($handle, $ref)
1572    
1573     Deserialises a L<Storable> frozen representation as written by the
1574     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1575     data).
1576    
1577     Raises C<EBADMSG> error if the data could not be decoded.
1578    
1579     =cut
1580    
1581     register_read_type storable => sub {
1582     my ($self, $cb) = @_;
1583    
1584     require Storable;
1585    
1586     sub {
1587     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1588 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1589 root 1.63 or return;
1590    
1591 root 1.77 my $format = length pack "w", $len;
1592 root 1.63
1593 root 1.77 # bypass unshift if we already have the remaining chunk
1594     if ($format + $len <= length $_[0]{rbuf}) {
1595     my $data = substr $_[0]{rbuf}, $format, $len;
1596     substr $_[0]{rbuf}, 0, $format + $len, "";
1597     $cb->($_[0], Storable::thaw ($data));
1598     } else {
1599     # remove prefix
1600     substr $_[0]{rbuf}, 0, $format, "";
1601    
1602     # read remaining chunk
1603     $_[0]->unshift_read (chunk => $len, sub {
1604     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1605     $cb->($_[0], $ref);
1606     } else {
1607 root 1.150 $self->_error (Errno::EBADMSG);
1608 root 1.77 }
1609     });
1610     }
1611    
1612     1
1613 root 1.63 }
1614     };
1615    
1616 root 1.28 =back
1617    
1618 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1619 root 1.30
1620     This function (not method) lets you add your own types to C<push_read>.
1621    
1622     Whenever the given C<type> is used, C<push_read> will invoke the code
1623     reference with the handle object, the callback and the remaining
1624     arguments.
1625    
1626     The code reference is supposed to return a callback (usually a closure)
1627     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1628    
1629     It should invoke the passed callback when it is done reading (remember to
1630 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1631 root 1.30
1632     Note that this is a function, and all types registered this way will be
1633     global, so try to use unique names.
1634    
1635     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1636     search for C<register_read_type>)).
1637    
1638 root 1.10 =item $handle->stop_read
1639    
1640     =item $handle->start_read
1641    
1642 root 1.18 In rare cases you actually do not want to read anything from the
1643 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1644 root 1.22 any queued callbacks will be executed then. To start reading again, call
1645 root 1.10 C<start_read>.
1646    
1647 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1648     you change the C<on_read> callback or push/unshift a read callback, and it
1649     will automatically C<stop_read> for you when neither C<on_read> is set nor
1650     there are any read requests in the queue.
1651    
1652 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1653     half-duplex connections).
1654    
1655 root 1.10 =cut
1656    
1657     sub stop_read {
1658     my ($self) = @_;
1659 elmex 1.1
1660 root 1.93 delete $self->{_rw} unless $self->{tls};
1661 root 1.8 }
1662 elmex 1.1
1663 root 1.10 sub start_read {
1664     my ($self) = @_;
1665    
1666 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1667 root 1.10 Scalar::Util::weaken $self;
1668    
1669 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1670 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1671 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1672 root 1.10
1673     if ($len > 0) {
1674 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1675 root 1.43
1676 root 1.93 if ($self->{tls}) {
1677     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1678 root 1.97
1679 root 1.93 &_dotls ($self);
1680     } else {
1681 root 1.159 $self->_drain_rbuf;
1682 root 1.93 }
1683 root 1.10
1684     } elsif (defined $len) {
1685 root 1.38 delete $self->{_rw};
1686     $self->{_eof} = 1;
1687 root 1.159 $self->_drain_rbuf;
1688 root 1.10
1689 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1690 root 1.52 return $self->_error ($!, 1);
1691 root 1.10 }
1692 root 1.175 };
1693 root 1.10 }
1694 elmex 1.1 }
1695    
1696 root 1.133 our $ERROR_SYSCALL;
1697     our $ERROR_WANT_READ;
1698    
1699     sub _tls_error {
1700     my ($self, $err) = @_;
1701    
1702     return $self->_error ($!, 1)
1703     if $err == Net::SSLeay::ERROR_SYSCALL ();
1704    
1705 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1706    
1707     # reduce error string to look less scary
1708     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1709    
1710 root 1.143 if ($self->{_on_starttls}) {
1711     (delete $self->{_on_starttls})->($self, undef, $err);
1712     &_freetls;
1713     } else {
1714     &_freetls;
1715 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1716 root 1.143 }
1717 root 1.133 }
1718    
1719 root 1.97 # poll the write BIO and send the data if applicable
1720 root 1.133 # also decode read data if possible
1721     # this is basiclaly our TLS state machine
1722     # more efficient implementations are possible with openssl,
1723     # but not with the buggy and incomplete Net::SSLeay.
1724 root 1.19 sub _dotls {
1725     my ($self) = @_;
1726    
1727 root 1.97 my $tmp;
1728 root 1.56
1729 root 1.38 if (length $self->{_tls_wbuf}) {
1730 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1731     substr $self->{_tls_wbuf}, 0, $tmp, "";
1732 root 1.22 }
1733 root 1.133
1734     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1735     return $self->_tls_error ($tmp)
1736     if $tmp != $ERROR_WANT_READ
1737 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1738 root 1.19 }
1739    
1740 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1741     unless (length $tmp) {
1742 root 1.143 $self->{_on_starttls}
1743     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1744 root 1.92 &_freetls;
1745 root 1.143
1746 root 1.142 if ($self->{on_stoptls}) {
1747     $self->{on_stoptls}($self);
1748     return;
1749     } else {
1750     # let's treat SSL-eof as we treat normal EOF
1751     delete $self->{_rw};
1752     $self->{_eof} = 1;
1753     }
1754 root 1.56 }
1755 root 1.91
1756 root 1.116 $self->{_tls_rbuf} .= $tmp;
1757 root 1.159 $self->_drain_rbuf;
1758 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1759 root 1.23 }
1760    
1761 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1762 root 1.133 return $self->_tls_error ($tmp)
1763     if $tmp != $ERROR_WANT_READ
1764 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1765 root 1.91
1766 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1767     $self->{wbuf} .= $tmp;
1768 root 1.91 $self->_drain_wbuf;
1769     }
1770 root 1.142
1771     $self->{_on_starttls}
1772     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1773 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1774 root 1.19 }
1775    
1776 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1777    
1778     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1779     object is created, you can also do that at a later time by calling
1780     C<starttls>.
1781    
1782 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1783     write data and then call C<< ->starttls >> then TLS negotiation will start
1784     immediately, after which the queued write data is then sent.
1785    
1786 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1787     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1788    
1789 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1790     when AnyEvent::Handle has to create its own TLS connection object, or
1791     a hash reference with C<< key => value >> pairs that will be used to
1792     construct a new context.
1793    
1794     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1795     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1796     changed to your liking. Note that the handshake might have already started
1797     when this function returns.
1798 root 1.38
1799 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1800     handshakes on the same stream. Best do not attempt to use the stream after
1801     stopping TLS.
1802 root 1.92
1803 root 1.25 =cut
1804    
1805 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1806    
1807 root 1.19 sub starttls {
1808 root 1.160 my ($self, $tls, $ctx) = @_;
1809    
1810     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1811     if $self->{tls};
1812    
1813     $self->{tls} = $tls;
1814     $self->{tls_ctx} = $ctx if @_ > 2;
1815    
1816     return unless $self->{fh};
1817 root 1.19
1818 root 1.94 require Net::SSLeay;
1819    
1820 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1821     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1822 root 1.133
1823 root 1.180 $tls = delete $self->{tls};
1824 root 1.160 $ctx = $self->{tls_ctx};
1825 root 1.131
1826 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1827    
1828 root 1.131 if ("HASH" eq ref $ctx) {
1829     require AnyEvent::TLS;
1830    
1831 root 1.137 if ($ctx->{cache}) {
1832     my $key = $ctx+0;
1833     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1834     } else {
1835     $ctx = new AnyEvent::TLS %$ctx;
1836     }
1837 root 1.131 }
1838 root 1.92
1839 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1840 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1841 root 1.19
1842 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1843     # but the openssl maintainers basically said: "trust us, it just works".
1844     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1845     # and mismaintained ssleay-module doesn't even offer them).
1846 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1847 root 1.87 #
1848     # in short: this is a mess.
1849     #
1850 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1851 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1852 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1853     # have identity issues in that area.
1854 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1855     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1856     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1857 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1858 root 1.21
1859 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1860     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1861 root 1.19
1862 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1863    
1864 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1865 root 1.19
1866 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1867 root 1.143 if $self->{on_starttls};
1868 root 1.142
1869 root 1.93 &_dotls; # need to trigger the initial handshake
1870     $self->start_read; # make sure we actually do read
1871 root 1.19 }
1872    
1873 root 1.25 =item $handle->stoptls
1874    
1875 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1876     sending a close notify to the other side, but since OpenSSL doesn't
1877 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1878     the stream afterwards.
1879 root 1.25
1880     =cut
1881    
1882     sub stoptls {
1883     my ($self) = @_;
1884    
1885 root 1.92 if ($self->{tls}) {
1886 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1887 root 1.92
1888     &_dotls;
1889    
1890 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1891     # # we, we... have to use openssl :/#d#
1892     # &_freetls;#d#
1893 root 1.92 }
1894     }
1895    
1896     sub _freetls {
1897     my ($self) = @_;
1898    
1899     return unless $self->{tls};
1900 root 1.38
1901 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1902 root 1.171 if $self->{tls} > 0;
1903 root 1.92
1904 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1905 root 1.25 }
1906    
1907 root 1.19 sub DESTROY {
1908 root 1.120 my ($self) = @_;
1909 root 1.19
1910 root 1.92 &_freetls;
1911 root 1.62
1912     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1913    
1914 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1915 root 1.62 my $fh = delete $self->{fh};
1916     my $wbuf = delete $self->{wbuf};
1917    
1918     my @linger;
1919    
1920 root 1.175 push @linger, AE::io $fh, 1, sub {
1921 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1922    
1923     if ($len > 0) {
1924     substr $wbuf, 0, $len, "";
1925     } else {
1926     @linger = (); # end
1927     }
1928 root 1.175 };
1929     push @linger, AE::timer $linger, 0, sub {
1930 root 1.62 @linger = ();
1931 root 1.175 };
1932 root 1.62 }
1933 root 1.19 }
1934    
1935 root 1.99 =item $handle->destroy
1936    
1937 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1938 root 1.141 no further callbacks will be invoked and as many resources as possible
1939 root 1.165 will be freed. Any method you will call on the handle object after
1940     destroying it in this way will be silently ignored (and it will return the
1941     empty list).
1942 root 1.99
1943 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1944     object and it will simply shut down. This works in fatal error and EOF
1945     callbacks, as well as code outside. It does I<NOT> work in a read or write
1946     callback, so when you want to destroy the AnyEvent::Handle object from
1947     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1948     that case.
1949    
1950 root 1.149 Destroying the handle object in this way has the advantage that callbacks
1951     will be removed as well, so if those are the only reference holders (as
1952     is common), then one doesn't need to do anything special to break any
1953     reference cycles.
1954    
1955 root 1.99 The handle might still linger in the background and write out remaining
1956     data, as specified by the C<linger> option, however.
1957    
1958     =cut
1959    
1960     sub destroy {
1961     my ($self) = @_;
1962    
1963     $self->DESTROY;
1964     %$self = ();
1965 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
1966     }
1967    
1968 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
1969     #nop
1970 root 1.99 }
1971    
1972 root 1.19 =item AnyEvent::Handle::TLS_CTX
1973    
1974 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
1975     for TLS mode.
1976 root 1.19
1977 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
1978 root 1.19
1979     =cut
1980    
1981     our $TLS_CTX;
1982    
1983     sub TLS_CTX() {
1984 root 1.131 $TLS_CTX ||= do {
1985     require AnyEvent::TLS;
1986 root 1.19
1987 root 1.131 new AnyEvent::TLS
1988 root 1.19 }
1989     }
1990    
1991 elmex 1.1 =back
1992    
1993 root 1.95
1994     =head1 NONFREQUENTLY ASKED QUESTIONS
1995    
1996     =over 4
1997    
1998 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
1999     still get further invocations!
2000    
2001     That's because AnyEvent::Handle keeps a reference to itself when handling
2002     read or write callbacks.
2003    
2004     It is only safe to "forget" the reference inside EOF or error callbacks,
2005     from within all other callbacks, you need to explicitly call the C<<
2006     ->destroy >> method.
2007    
2008     =item I get different callback invocations in TLS mode/Why can't I pause
2009     reading?
2010    
2011     Unlike, say, TCP, TLS connections do not consist of two independent
2012     communication channels, one for each direction. Or put differently. The
2013     read and write directions are not independent of each other: you cannot
2014     write data unless you are also prepared to read, and vice versa.
2015    
2016     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2017     callback invocations when you are not expecting any read data - the reason
2018     is that AnyEvent::Handle always reads in TLS mode.
2019    
2020     During the connection, you have to make sure that you always have a
2021     non-empty read-queue, or an C<on_read> watcher. At the end of the
2022     connection (or when you no longer want to use it) you can call the
2023     C<destroy> method.
2024    
2025 root 1.95 =item How do I read data until the other side closes the connection?
2026    
2027 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2028     to achieve this is by setting an C<on_read> callback that does nothing,
2029     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2030     will be in C<$_[0]{rbuf}>:
2031 root 1.95
2032     $handle->on_read (sub { });
2033     $handle->on_eof (undef);
2034     $handle->on_error (sub {
2035     my $data = delete $_[0]{rbuf};
2036     });
2037    
2038     The reason to use C<on_error> is that TCP connections, due to latencies
2039     and packets loss, might get closed quite violently with an error, when in
2040     fact, all data has been received.
2041    
2042 root 1.101 It is usually better to use acknowledgements when transferring data,
2043 root 1.95 to make sure the other side hasn't just died and you got the data
2044     intact. This is also one reason why so many internet protocols have an
2045     explicit QUIT command.
2046    
2047 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2048     all data has been written?
2049 root 1.95
2050     After writing your last bits of data, set the C<on_drain> callback
2051     and destroy the handle in there - with the default setting of
2052     C<low_water_mark> this will be called precisely when all data has been
2053     written to the socket:
2054    
2055     $handle->push_write (...);
2056     $handle->on_drain (sub {
2057     warn "all data submitted to the kernel\n";
2058     undef $handle;
2059     });
2060    
2061 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2062     consider using C<< ->push_shutdown >> instead.
2063    
2064     =item I want to contact a TLS/SSL server, I don't care about security.
2065    
2066     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2067     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2068     parameter:
2069    
2070 root 1.144 tcp_connect $host, $port, sub {
2071     my ($fh) = @_;
2072 root 1.143
2073 root 1.144 my $handle = new AnyEvent::Handle
2074     fh => $fh,
2075     tls => "connect",
2076     on_error => sub { ... };
2077    
2078     $handle->push_write (...);
2079     };
2080 root 1.143
2081     =item I want to contact a TLS/SSL server, I do care about security.
2082    
2083 root 1.144 Then you should additionally enable certificate verification, including
2084     peername verification, if the protocol you use supports it (see
2085     L<AnyEvent::TLS>, C<verify_peername>).
2086    
2087     E.g. for HTTPS:
2088    
2089     tcp_connect $host, $port, sub {
2090     my ($fh) = @_;
2091    
2092     my $handle = new AnyEvent::Handle
2093     fh => $fh,
2094     peername => $host,
2095     tls => "connect",
2096     tls_ctx => { verify => 1, verify_peername => "https" },
2097     ...
2098    
2099     Note that you must specify the hostname you connected to (or whatever
2100     "peername" the protocol needs) as the C<peername> argument, otherwise no
2101     peername verification will be done.
2102    
2103     The above will use the system-dependent default set of trusted CA
2104     certificates. If you want to check against a specific CA, add the
2105     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2106    
2107     tls_ctx => {
2108     verify => 1,
2109     verify_peername => "https",
2110     ca_file => "my-ca-cert.pem",
2111     },
2112    
2113     =item I want to create a TLS/SSL server, how do I do that?
2114    
2115     Well, you first need to get a server certificate and key. You have
2116     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2117     self-signed certificate (cheap. check the search engine of your choice,
2118     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2119     nice program for that purpose).
2120    
2121     Then create a file with your private key (in PEM format, see
2122     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2123     file should then look like this:
2124    
2125     -----BEGIN RSA PRIVATE KEY-----
2126     ...header data
2127     ... lots of base64'y-stuff
2128     -----END RSA PRIVATE KEY-----
2129    
2130     -----BEGIN CERTIFICATE-----
2131     ... lots of base64'y-stuff
2132     -----END CERTIFICATE-----
2133    
2134     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2135     specify this file as C<cert_file>:
2136    
2137     tcp_server undef, $port, sub {
2138     my ($fh) = @_;
2139    
2140     my $handle = new AnyEvent::Handle
2141     fh => $fh,
2142     tls => "accept",
2143     tls_ctx => { cert_file => "my-server-keycert.pem" },
2144     ...
2145 root 1.143
2146 root 1.144 When you have intermediate CA certificates that your clients might not
2147     know about, just append them to the C<cert_file>.
2148 root 1.143
2149 root 1.95 =back
2150    
2151    
2152 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2153    
2154     In many cases, you might want to subclass AnyEvent::Handle.
2155    
2156     To make this easier, a given version of AnyEvent::Handle uses these
2157     conventions:
2158    
2159     =over 4
2160    
2161     =item * all constructor arguments become object members.
2162    
2163     At least initially, when you pass a C<tls>-argument to the constructor it
2164 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2165 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2166    
2167     =item * other object member names are prefixed with an C<_>.
2168    
2169     All object members not explicitly documented (internal use) are prefixed
2170     with an underscore character, so the remaining non-C<_>-namespace is free
2171     for use for subclasses.
2172    
2173     =item * all members not documented here and not prefixed with an underscore
2174     are free to use in subclasses.
2175    
2176     Of course, new versions of AnyEvent::Handle may introduce more "public"
2177     member variables, but thats just life, at least it is documented.
2178    
2179     =back
2180    
2181 elmex 1.1 =head1 AUTHOR
2182    
2183 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2184 elmex 1.1
2185     =cut
2186    
2187     1; # End of AnyEvent::Handle