ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.189
Committed: Mon Sep 28 17:30:54 2009 UTC (14 years, 7 months ago) by root
Branch: MAIN
CVS Tags: rel-5_21, rel-5_201, rel-5_202
Changes since 1.188: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.159 filehandles.
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.131 =item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134 root 1.186 C<$retry> will continue with the next connection target (in case of
135 root 1.159 multi-homed hosts or SRV records there can be multiple connection
136 root 1.186 endpoints). At the time it is called the read and write queues, eof
137     status, tls status and similar properties of the handle will have been
138     reset.
139 root 1.159
140     In most cases, ignoring the C<$retry> parameter is the way to go.
141 root 1.158
142 root 1.159 =item on_connect_error => $cb->($handle, $message)
143 root 1.10
144 root 1.186 This callback is called when the connection could not be
145 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
146     message describing it (usually the same as C<"$!">).
147 root 1.8
148 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
149     fatal error instead.
150 root 1.82
151 root 1.159 =back
152 root 1.80
153 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
154 root 1.10
155 root 1.52 This is the error callback, which is called when, well, some error
156     occured, such as not being able to resolve the hostname, failure to
157     connect or a read error.
158    
159     Some errors are fatal (which is indicated by C<$fatal> being true). On
160 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
161     destroy >>) after invoking the error callback (which means you are free to
162     examine the handle object). Examples of fatal errors are an EOF condition
163 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164     cases where the other side can close the connection at their will it is
165     often easiest to not report C<EPIPE> errors in this callback.
166 root 1.82
167 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
168     against, but in some cases (TLS errors), this does not work well. It is
169     recommended to always output the C<$message> argument in human-readable
170     error messages (it's usually the same as C<"$!">).
171    
172 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
173     to simply ignore this parameter and instead abondon the handle object
174     when this callback is invoked. Examples of non-fatal errors are timeouts
175     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176 root 1.8
177 root 1.10 On callback entrance, the value of C<$!> contains the operating system
178 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179     C<EPROTO>).
180 root 1.8
181 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
182     you will not be notified of errors otherwise. The default simply calls
183 root 1.52 C<croak>.
184 root 1.8
185 root 1.40 =item on_read => $cb->($handle)
186 root 1.8
187     This sets the default read callback, which is called when data arrives
188 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
189     callback will only be called when at least one octet of data is in the
190     read buffer).
191 root 1.8
192     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
194 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
195     the beginning from it.
196 root 1.8
197     When an EOF condition is detected then AnyEvent::Handle will first try to
198     feed all the remaining data to the queued callbacks and C<on_read> before
199     calling the C<on_eof> callback. If no progress can be made, then a fatal
200     error will be raised (with C<$!> set to C<EPIPE>).
201 elmex 1.1
202 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
203     doesn't mean you I<require> some data: if there is an EOF and there
204     are outstanding read requests then an error will be flagged. With an
205     C<on_read> callback, the C<on_eof> callback will be invoked.
206    
207 root 1.159 =item on_eof => $cb->($handle)
208    
209     Set the callback to be called when an end-of-file condition is detected,
210     i.e. in the case of a socket, when the other side has closed the
211     connection cleanly, and there are no outstanding read requests in the
212     queue (if there are read requests, then an EOF counts as an unexpected
213     connection close and will be flagged as an error).
214    
215     For sockets, this just means that the other side has stopped sending data,
216     you can still try to write data, and, in fact, one can return from the EOF
217     callback and continue writing data, as only the read part has been shut
218     down.
219    
220     If an EOF condition has been detected but no C<on_eof> callback has been
221     set, then a fatal error will be raised with C<$!> set to <0>.
222    
223 root 1.40 =item on_drain => $cb->($handle)
224 elmex 1.1
225 root 1.8 This sets the callback that is called when the write buffer becomes empty
226     (or when the callback is set and the buffer is empty already).
227 elmex 1.1
228 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
229 elmex 1.2
230 root 1.69 This callback is useful when you don't want to put all of your write data
231     into the queue at once, for example, when you want to write the contents
232     of some file to the socket you might not want to read the whole file into
233     memory and push it into the queue, but instead only read more data from
234     the file when the write queue becomes empty.
235    
236 root 1.43 =item timeout => $fractional_seconds
237    
238 root 1.176 =item rtimeout => $fractional_seconds
239    
240     =item wtimeout => $fractional_seconds
241    
242     If non-zero, then these enables an "inactivity" timeout: whenever this
243     many seconds pass without a successful read or write on the underlying
244     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
245     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246     error will be raised).
247    
248     There are three variants of the timeouts that work fully independent
249     of each other, for both read and write, just read, and just write:
250     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
253 root 1.43
254     Note that timeout processing is also active when you currently do not have
255     any outstanding read or write requests: If you plan to keep the connection
256     idle then you should disable the timout temporarily or ignore the timeout
257 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258     restart the timeout.
259 root 1.43
260     Zero (the default) disables this timeout.
261    
262     =item on_timeout => $cb->($handle)
263    
264     Called whenever the inactivity timeout passes. If you return from this
265     callback, then the timeout will be reset as if some activity had happened,
266     so this condition is not fatal in any way.
267    
268 root 1.8 =item rbuf_max => <bytes>
269 elmex 1.2
270 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
271     when the read buffer ever (strictly) exceeds this size. This is useful to
272 root 1.88 avoid some forms of denial-of-service attacks.
273 elmex 1.2
274 root 1.8 For example, a server accepting connections from untrusted sources should
275     be configured to accept only so-and-so much data that it cannot act on
276     (for example, when expecting a line, an attacker could send an unlimited
277     amount of data without a callback ever being called as long as the line
278     isn't finished).
279 elmex 1.2
280 root 1.70 =item autocork => <boolean>
281    
282     When disabled (the default), then C<push_write> will try to immediately
283 root 1.88 write the data to the handle, if possible. This avoids having to register
284     a write watcher and wait for the next event loop iteration, but can
285     be inefficient if you write multiple small chunks (on the wire, this
286     disadvantage is usually avoided by your kernel's nagle algorithm, see
287     C<no_delay>, but this option can save costly syscalls).
288 root 1.70
289     When enabled, then writes will always be queued till the next event loop
290     iteration. This is efficient when you do many small writes per iteration,
291 root 1.88 but less efficient when you do a single write only per iteration (or when
292     the write buffer often is full). It also increases write latency.
293 root 1.70
294     =item no_delay => <boolean>
295    
296     When doing small writes on sockets, your operating system kernel might
297     wait a bit for more data before actually sending it out. This is called
298     the Nagle algorithm, and usually it is beneficial.
299    
300 root 1.88 In some situations you want as low a delay as possible, which can be
301     accomplishd by setting this option to a true value.
302 root 1.70
303 root 1.88 The default is your opertaing system's default behaviour (most likely
304     enabled), this option explicitly enables or disables it, if possible.
305 root 1.70
306 root 1.182 =item keepalive => <boolean>
307    
308     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309     normally, TCP connections have no time-out once established, so TCP
310 root 1.186 connections, once established, can stay alive forever even when the other
311 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
312     TCP connections whent he other side becomes unreachable. While the default
313     is OS-dependent, TCP keepalives usually kick in after around two hours,
314     and, if the other side doesn't reply, take down the TCP connection some 10
315     to 15 minutes later.
316    
317     It is harmless to specify this option for file handles that do not support
318     keepalives, and enabling it on connections that are potentially long-lived
319     is usually a good idea.
320    
321     =item oobinline => <boolean>
322    
323     BSD majorly fucked up the implementation of TCP urgent data. The result
324     is that almost no OS implements TCP according to the specs, and every OS
325     implements it slightly differently.
326    
327 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
328     is enabled) gives you the most portable way of getting urgent data, by
329     putting it into the stream.
330    
331     Since BSD emulation of OOB data on top of TCP's urgent data can have
332     security implications, AnyEvent::Handle sets this flag automatically
333 root 1.184 unless explicitly specified. Note that setting this flag after
334     establishing a connection I<may> be a bit too late (data loss could
335     already have occured on BSD systems), but at least it will protect you
336     from most attacks.
337 root 1.182
338 root 1.8 =item read_size => <bytes>
339 elmex 1.2
340 root 1.88 The default read block size (the amount of bytes this module will
341     try to read during each loop iteration, which affects memory
342     requirements). Default: C<8192>.
343 root 1.8
344     =item low_water_mark => <bytes>
345    
346     Sets the amount of bytes (default: C<0>) that make up an "empty" write
347     buffer: If the write reaches this size or gets even samller it is
348     considered empty.
349 elmex 1.2
350 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
351     the write buffer before it is fully drained, but this is a rare case, as
352     the operating system kernel usually buffers data as well, so the default
353     is good in almost all cases.
354    
355 root 1.62 =item linger => <seconds>
356    
357     If non-zero (default: C<3600>), then the destructor of the
358 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
359     write data and will install a watcher that will write this data to the
360     socket. No errors will be reported (this mostly matches how the operating
361     system treats outstanding data at socket close time).
362 root 1.62
363 root 1.88 This will not work for partial TLS data that could not be encoded
364 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
365     help.
366 root 1.62
367 root 1.133 =item peername => $string
368    
369 root 1.134 A string used to identify the remote site - usually the DNS hostname
370     (I<not> IDN!) used to create the connection, rarely the IP address.
371 root 1.131
372 root 1.133 Apart from being useful in error messages, this string is also used in TLS
373 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374     verification will be skipped when C<peername> is not specified or
375     C<undef>.
376 root 1.131
377 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
378    
379 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
380 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
381 root 1.88 established and will transparently encrypt/decrypt data afterwards.
382 root 1.19
383 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
384     appropriate error message.
385    
386 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
387 root 1.88 automatically when you try to create a TLS handle): this module doesn't
388     have a dependency on that module, so if your module requires it, you have
389     to add the dependency yourself.
390 root 1.26
391 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
392     C<accept>, and for the TLS client side of a connection, use C<connect>
393     mode.
394 root 1.19
395     You can also provide your own TLS connection object, but you have
396     to make sure that you call either C<Net::SSLeay::set_connect_state>
397     or C<Net::SSLeay::set_accept_state> on it before you pass it to
398 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
399     object.
400    
401     At some future point, AnyEvent::Handle might switch to another TLS
402     implementation, then the option to use your own session object will go
403     away.
404 root 1.19
405 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406     passing in the wrong integer will lead to certain crash. This most often
407     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408     segmentation fault.
409    
410 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
411 root 1.26
412 root 1.131 =item tls_ctx => $anyevent_tls
413 root 1.19
414 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
415 root 1.19 (unless a connection object was specified directly). If this parameter is
416     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417    
418 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
419     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420     new TLS context object.
421    
422 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
423 root 1.142
424     This callback will be invoked when the TLS/SSL handshake has finished. If
425     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426     (C<on_stoptls> will not be called in this case).
427    
428     The session in C<< $handle->{tls} >> can still be examined in this
429     callback, even when the handshake was not successful.
430    
431 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
432     callback is in effect, instead, the error message will be passed to C<on_starttls>.
433    
434     Without this callback, handshake failures lead to C<on_error> being
435     called, as normal.
436    
437     Note that you cannot call C<starttls> right again in this callback. If you
438     need to do that, start an zero-second timer instead whose callback can
439     then call C<< ->starttls >> again.
440    
441 root 1.142 =item on_stoptls => $cb->($handle)
442    
443     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444     set, then it will be invoked after freeing the TLS session. If it is not,
445     then a TLS shutdown condition will be treated like a normal EOF condition
446     on the handle.
447    
448     The session in C<< $handle->{tls} >> can still be examined in this
449     callback.
450    
451     This callback will only be called on TLS shutdowns, not when the
452     underlying handle signals EOF.
453    
454 root 1.40 =item json => JSON or JSON::XS object
455    
456     This is the json coder object used by the C<json> read and write types.
457    
458 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
459 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
460     texts.
461 root 1.40
462     Note that you are responsible to depend on the JSON module if you want to
463     use this functionality, as AnyEvent does not have a dependency itself.
464    
465 elmex 1.1 =back
466    
467     =cut
468    
469     sub new {
470 root 1.8 my $class = shift;
471     my $self = bless { @_ }, $class;
472    
473 root 1.159 if ($self->{fh}) {
474     $self->_start;
475     return unless $self->{fh}; # could be gone by now
476    
477     } elsif ($self->{connect}) {
478     require AnyEvent::Socket;
479    
480     $self->{peername} = $self->{connect}[0]
481     unless exists $self->{peername};
482    
483     $self->{_skip_drain_rbuf} = 1;
484    
485     {
486     Scalar::Util::weaken (my $self = $self);
487    
488     $self->{_connect} =
489     AnyEvent::Socket::tcp_connect (
490     $self->{connect}[0],
491     $self->{connect}[1],
492     sub {
493     my ($fh, $host, $port, $retry) = @_;
494    
495     if ($fh) {
496     $self->{fh} = $fh;
497    
498     delete $self->{_skip_drain_rbuf};
499     $self->_start;
500    
501     $self->{on_connect}
502     and $self->{on_connect}($self, $host, $port, sub {
503 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 root 1.159 $self->{_skip_drain_rbuf} = 1;
505     &$retry;
506     });
507    
508     } else {
509     if ($self->{on_connect_error}) {
510     $self->{on_connect_error}($self, "$!");
511     $self->destroy;
512     } else {
513 root 1.161 $self->_error ($!, 1);
514 root 1.159 }
515     }
516     },
517     sub {
518     local $self->{fh} = $_[0];
519    
520 root 1.161 $self->{on_prepare}
521     ? $self->{on_prepare}->($self)
522     : ()
523 root 1.159 }
524     );
525     }
526    
527     } else {
528     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529     }
530    
531     $self
532     }
533    
534     sub _start {
535     my ($self) = @_;
536 root 1.8
537     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
538 elmex 1.1
539 root 1.176 $self->{_activity} =
540     $self->{_ractivity} =
541     $self->{_wactivity} = AE::now;
542    
543 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
544     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
545     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
546    
547 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
548     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
549    
550     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
551 root 1.131
552 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
553 root 1.94 if $self->{tls};
554 root 1.19
555 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
556 root 1.10
557 root 1.66 $self->start_read
558 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
559 root 1.160
560     $self->_drain_wbuf;
561 root 1.8 }
562 elmex 1.2
563 root 1.52 sub _error {
564 root 1.133 my ($self, $errno, $fatal, $message) = @_;
565 root 1.8
566 root 1.52 $! = $errno;
567 root 1.133 $message ||= "$!";
568 root 1.37
569 root 1.52 if ($self->{on_error}) {
570 root 1.133 $self->{on_error}($self, $fatal, $message);
571 root 1.151 $self->destroy if $fatal;
572 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
573 root 1.149 $self->destroy;
574 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
575 root 1.52 }
576 elmex 1.1 }
577    
578 root 1.8 =item $fh = $handle->fh
579 elmex 1.1
580 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
581 elmex 1.1
582     =cut
583    
584 root 1.38 sub fh { $_[0]{fh} }
585 elmex 1.1
586 root 1.8 =item $handle->on_error ($cb)
587 elmex 1.1
588 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
589 elmex 1.1
590 root 1.8 =cut
591    
592     sub on_error {
593     $_[0]{on_error} = $_[1];
594     }
595    
596     =item $handle->on_eof ($cb)
597    
598     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
599 elmex 1.1
600     =cut
601    
602 root 1.8 sub on_eof {
603     $_[0]{on_eof} = $_[1];
604     }
605    
606 root 1.43 =item $handle->on_timeout ($cb)
607    
608 root 1.176 =item $handle->on_rtimeout ($cb)
609    
610     =item $handle->on_wtimeout ($cb)
611    
612     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
613     callback, or disables the callback (but not the timeout) if C<$cb> =
614     C<undef>. See the C<timeout> constructor argument and method.
615 root 1.43
616     =cut
617    
618 root 1.176 # see below
619 root 1.43
620 root 1.70 =item $handle->autocork ($boolean)
621    
622     Enables or disables the current autocork behaviour (see C<autocork>
623 root 1.105 constructor argument). Changes will only take effect on the next write.
624 root 1.70
625     =cut
626    
627 root 1.105 sub autocork {
628     $_[0]{autocork} = $_[1];
629     }
630    
631 root 1.70 =item $handle->no_delay ($boolean)
632    
633     Enables or disables the C<no_delay> setting (see constructor argument of
634     the same name for details).
635    
636     =cut
637    
638     sub no_delay {
639     $_[0]{no_delay} = $_[1];
640    
641     eval {
642     local $SIG{__DIE__};
643 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
644     if $_[0]{fh};
645     };
646     }
647    
648     =item $handle->keepalive ($boolean)
649    
650     Enables or disables the C<keepalive> setting (see constructor argument of
651     the same name for details).
652    
653     =cut
654    
655     sub keepalive {
656     $_[0]{keepalive} = $_[1];
657    
658     eval {
659     local $SIG{__DIE__};
660     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
661     if $_[0]{fh};
662     };
663     }
664    
665     =item $handle->oobinline ($boolean)
666    
667     Enables or disables the C<oobinline> setting (see constructor argument of
668     the same name for details).
669    
670     =cut
671    
672     sub oobinline {
673     $_[0]{oobinline} = $_[1];
674    
675     eval {
676     local $SIG{__DIE__};
677     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
678     if $_[0]{fh};
679     };
680     }
681    
682     =item $handle->keepalive ($boolean)
683    
684     Enables or disables the C<keepalive> setting (see constructor argument of
685     the same name for details).
686    
687     =cut
688    
689     sub keepalive {
690     $_[0]{keepalive} = $_[1];
691    
692     eval {
693     local $SIG{__DIE__};
694     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
695 root 1.159 if $_[0]{fh};
696 root 1.70 };
697     }
698    
699 root 1.142 =item $handle->on_starttls ($cb)
700    
701     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
702    
703     =cut
704    
705     sub on_starttls {
706     $_[0]{on_starttls} = $_[1];
707     }
708    
709     =item $handle->on_stoptls ($cb)
710    
711     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
712    
713     =cut
714    
715 root 1.189 sub on_stoptls {
716 root 1.142 $_[0]{on_stoptls} = $_[1];
717     }
718    
719 root 1.168 =item $handle->rbuf_max ($max_octets)
720    
721     Configures the C<rbuf_max> setting (C<undef> disables it).
722    
723     =cut
724    
725     sub rbuf_max {
726     $_[0]{rbuf_max} = $_[1];
727     }
728    
729 root 1.43 #############################################################################
730    
731     =item $handle->timeout ($seconds)
732    
733 root 1.176 =item $handle->rtimeout ($seconds)
734    
735     =item $handle->wtimeout ($seconds)
736    
737 root 1.43 Configures (or disables) the inactivity timeout.
738    
739 root 1.176 =item $handle->timeout_reset
740    
741     =item $handle->rtimeout_reset
742    
743     =item $handle->wtimeout_reset
744    
745     Reset the activity timeout, as if data was received or sent.
746    
747     These methods are cheap to call.
748    
749 root 1.43 =cut
750    
751 root 1.176 for my $dir ("", "r", "w") {
752     my $timeout = "${dir}timeout";
753     my $tw = "_${dir}tw";
754     my $on_timeout = "on_${dir}timeout";
755     my $activity = "_${dir}activity";
756     my $cb;
757    
758     *$on_timeout = sub {
759     $_[0]{$on_timeout} = $_[1];
760     };
761    
762     *$timeout = sub {
763     my ($self, $new_value) = @_;
764 root 1.43
765 root 1.176 $self->{$timeout} = $new_value;
766     delete $self->{$tw}; &$cb;
767     };
768 root 1.43
769 root 1.176 *{"${dir}timeout_reset"} = sub {
770     $_[0]{$activity} = AE::now;
771     };
772 root 1.43
773 root 1.176 # main workhorse:
774     # reset the timeout watcher, as neccessary
775     # also check for time-outs
776     $cb = sub {
777     my ($self) = @_;
778    
779     if ($self->{$timeout} && $self->{fh}) {
780     my $NOW = AE::now;
781    
782     # when would the timeout trigger?
783     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
784    
785     # now or in the past already?
786     if ($after <= 0) {
787     $self->{$activity} = $NOW;
788 root 1.43
789 root 1.176 if ($self->{$on_timeout}) {
790     $self->{$on_timeout}($self);
791     } else {
792     $self->_error (Errno::ETIMEDOUT);
793     }
794 root 1.43
795 root 1.176 # callback could have changed timeout value, optimise
796     return unless $self->{$timeout};
797 root 1.43
798 root 1.176 # calculate new after
799     $after = $self->{$timeout};
800 root 1.43 }
801    
802 root 1.176 Scalar::Util::weaken $self;
803     return unless $self; # ->error could have destroyed $self
804 root 1.43
805 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
806     delete $self->{$tw};
807     $cb->($self);
808     };
809     } else {
810     delete $self->{$tw};
811 root 1.43 }
812     }
813     }
814    
815 root 1.9 #############################################################################
816    
817     =back
818    
819     =head2 WRITE QUEUE
820    
821     AnyEvent::Handle manages two queues per handle, one for writing and one
822     for reading.
823    
824     The write queue is very simple: you can add data to its end, and
825     AnyEvent::Handle will automatically try to get rid of it for you.
826    
827 elmex 1.20 When data could be written and the write buffer is shorter then the low
828 root 1.9 water mark, the C<on_drain> callback will be invoked.
829    
830     =over 4
831    
832 root 1.8 =item $handle->on_drain ($cb)
833    
834     Sets the C<on_drain> callback or clears it (see the description of
835     C<on_drain> in the constructor).
836    
837     =cut
838    
839     sub on_drain {
840 elmex 1.1 my ($self, $cb) = @_;
841    
842 root 1.8 $self->{on_drain} = $cb;
843    
844     $cb->($self)
845 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
846 root 1.8 }
847    
848     =item $handle->push_write ($data)
849    
850     Queues the given scalar to be written. You can push as much data as you
851     want (only limited by the available memory), as C<AnyEvent::Handle>
852     buffers it independently of the kernel.
853    
854     =cut
855    
856 root 1.17 sub _drain_wbuf {
857     my ($self) = @_;
858 root 1.8
859 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
860 root 1.35
861 root 1.8 Scalar::Util::weaken $self;
862 root 1.35
863 root 1.8 my $cb = sub {
864     my $len = syswrite $self->{fh}, $self->{wbuf};
865    
866 root 1.146 if (defined $len) {
867 root 1.8 substr $self->{wbuf}, 0, $len, "";
868    
869 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
870 root 1.43
871 root 1.8 $self->{on_drain}($self)
872 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
873 root 1.8 && $self->{on_drain};
874    
875 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
876 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
877 root 1.52 $self->_error ($!, 1);
878 elmex 1.1 }
879 root 1.8 };
880    
881 root 1.35 # try to write data immediately
882 root 1.70 $cb->() unless $self->{autocork};
883 root 1.8
884 root 1.35 # if still data left in wbuf, we need to poll
885 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
886 root 1.35 if length $self->{wbuf};
887 root 1.8 };
888     }
889    
890 root 1.30 our %WH;
891    
892 root 1.185 # deprecated
893 root 1.30 sub register_write_type($$) {
894     $WH{$_[0]} = $_[1];
895     }
896    
897 root 1.17 sub push_write {
898     my $self = shift;
899    
900 root 1.29 if (@_ > 1) {
901     my $type = shift;
902    
903 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
904     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
905 root 1.29 ->($self, @_);
906     }
907    
908 root 1.93 if ($self->{tls}) {
909     $self->{_tls_wbuf} .= $_[0];
910 root 1.160 &_dotls ($self) if $self->{fh};
911 root 1.17 } else {
912 root 1.160 $self->{wbuf} .= $_[0];
913 root 1.159 $self->_drain_wbuf if $self->{fh};
914 root 1.17 }
915     }
916    
917 root 1.29 =item $handle->push_write (type => @args)
918    
919 root 1.185 Instead of formatting your data yourself, you can also let this module
920     do the job by specifying a type and type-specific arguments. You
921     can also specify the (fully qualified) name of a package, in which
922     case AnyEvent tries to load the package and then expects to find the
923     C<anyevent_read_type> function inside (see "custom write types", below).
924 root 1.29
925 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
926     drop by and tell us):
927 root 1.29
928     =over 4
929    
930     =item netstring => $string
931    
932     Formats the given value as netstring
933     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
934    
935     =cut
936    
937     register_write_type netstring => sub {
938     my ($self, $string) = @_;
939    
940 root 1.96 (length $string) . ":$string,"
941 root 1.29 };
942    
943 root 1.61 =item packstring => $format, $data
944    
945     An octet string prefixed with an encoded length. The encoding C<$format>
946     uses the same format as a Perl C<pack> format, but must specify a single
947     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
948     optional C<!>, C<< < >> or C<< > >> modifier).
949    
950     =cut
951    
952     register_write_type packstring => sub {
953     my ($self, $format, $string) = @_;
954    
955 root 1.65 pack "$format/a*", $string
956 root 1.61 };
957    
958 root 1.39 =item json => $array_or_hashref
959    
960 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
961     provide your own JSON object, this means it will be encoded to JSON text
962     in UTF-8.
963    
964     JSON objects (and arrays) are self-delimiting, so you can write JSON at
965     one end of a handle and read them at the other end without using any
966     additional framing.
967    
968 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
969     this module doesn't need delimiters after or between JSON texts to be
970     able to read them, many other languages depend on that.
971    
972     A simple RPC protocol that interoperates easily with others is to send
973     JSON arrays (or objects, although arrays are usually the better choice as
974     they mimic how function argument passing works) and a newline after each
975     JSON text:
976    
977     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
978     $handle->push_write ("\012");
979    
980     An AnyEvent::Handle receiver would simply use the C<json> read type and
981     rely on the fact that the newline will be skipped as leading whitespace:
982    
983     $handle->push_read (json => sub { my $array = $_[1]; ... });
984    
985     Other languages could read single lines terminated by a newline and pass
986     this line into their JSON decoder of choice.
987    
988 root 1.40 =cut
989    
990 root 1.179 sub json_coder() {
991     eval { require JSON::XS; JSON::XS->new->utf8 }
992     || do { require JSON; JSON->new->utf8 }
993     }
994    
995 root 1.40 register_write_type json => sub {
996     my ($self, $ref) = @_;
997    
998 root 1.179 my $json = $self->{json} ||= json_coder;
999 root 1.40
1000 root 1.179 $json->encode ($ref)
1001 root 1.40 };
1002    
1003 root 1.63 =item storable => $reference
1004    
1005     Freezes the given reference using L<Storable> and writes it to the
1006     handle. Uses the C<nfreeze> format.
1007    
1008     =cut
1009    
1010     register_write_type storable => sub {
1011     my ($self, $ref) = @_;
1012    
1013     require Storable;
1014    
1015 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1016 root 1.63 };
1017    
1018 root 1.53 =back
1019    
1020 root 1.133 =item $handle->push_shutdown
1021    
1022     Sometimes you know you want to close the socket after writing your data
1023     before it was actually written. One way to do that is to replace your
1024 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1025     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1026     replaces the C<on_drain> callback with:
1027 root 1.133
1028     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1029    
1030     This simply shuts down the write side and signals an EOF condition to the
1031     the peer.
1032    
1033     You can rely on the normal read queue and C<on_eof> handling
1034     afterwards. This is the cleanest way to close a connection.
1035    
1036     =cut
1037    
1038     sub push_shutdown {
1039 root 1.142 my ($self) = @_;
1040    
1041     delete $self->{low_water_mark};
1042     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1043 root 1.133 }
1044    
1045 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1046    
1047     Instead of one of the predefined types, you can also specify the name of
1048     a package. AnyEvent will try to load the package and then expects to find
1049     a function named C<anyevent_write_type> inside. If it isn't found, it
1050     progressively tries to load the parent package until it either finds the
1051     function (good) or runs out of packages (bad).
1052    
1053     Whenever the given C<type> is used, C<push_write> will the function with
1054     the handle object and the remaining arguments.
1055    
1056     The function is supposed to return a single octet string that will be
1057     appended to the write buffer, so you cna mentally treat this function as a
1058     "arguments to on-the-wire-format" converter.
1059 root 1.30
1060 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1061     arguments using the first one.
1062 root 1.29
1063 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1064 root 1.29
1065 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1066     # the "My" modules to be auto-loaded, or just about anywhere when the
1067     # My::Type::anyevent_write_type is defined before invoking it.
1068    
1069     package My::Type;
1070    
1071     sub anyevent_write_type {
1072     my ($handle, $delim, @args) = @_;
1073    
1074     join $delim, @args
1075     }
1076 root 1.29
1077 root 1.30 =cut
1078 root 1.29
1079 root 1.8 #############################################################################
1080    
1081 root 1.9 =back
1082    
1083     =head2 READ QUEUE
1084    
1085     AnyEvent::Handle manages two queues per handle, one for writing and one
1086     for reading.
1087    
1088     The read queue is more complex than the write queue. It can be used in two
1089     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1090     a queue.
1091    
1092     In the simple case, you just install an C<on_read> callback and whenever
1093     new data arrives, it will be called. You can then remove some data (if
1094 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1095     leave the data there if you want to accumulate more (e.g. when only a
1096     partial message has been received so far).
1097 root 1.9
1098     In the more complex case, you want to queue multiple callbacks. In this
1099     case, AnyEvent::Handle will call the first queued callback each time new
1100 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1101     done its job (see C<push_read>, below).
1102 root 1.9
1103     This way you can, for example, push three line-reads, followed by reading
1104     a chunk of data, and AnyEvent::Handle will execute them in order.
1105    
1106     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1107     the specified number of bytes which give an XML datagram.
1108    
1109     # in the default state, expect some header bytes
1110     $handle->on_read (sub {
1111     # some data is here, now queue the length-header-read (4 octets)
1112 root 1.52 shift->unshift_read (chunk => 4, sub {
1113 root 1.9 # header arrived, decode
1114     my $len = unpack "N", $_[1];
1115    
1116     # now read the payload
1117 root 1.52 shift->unshift_read (chunk => $len, sub {
1118 root 1.9 my $xml = $_[1];
1119     # handle xml
1120     });
1121     });
1122     });
1123    
1124 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1125     and another line or "ERROR" for the first request that is sent, and 64
1126     bytes for the second request. Due to the availability of a queue, we can
1127     just pipeline sending both requests and manipulate the queue as necessary
1128     in the callbacks.
1129    
1130     When the first callback is called and sees an "OK" response, it will
1131     C<unshift> another line-read. This line-read will be queued I<before> the
1132     64-byte chunk callback.
1133 root 1.9
1134 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1135 root 1.9 $handle->push_write ("request 1\015\012");
1136    
1137     # we expect "ERROR" or "OK" as response, so push a line read
1138 root 1.52 $handle->push_read (line => sub {
1139 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1140     # so it will be read before the second request reads its 64 bytes
1141     # which are already in the queue when this callback is called
1142     # we don't do this in case we got an error
1143     if ($_[1] eq "OK") {
1144 root 1.52 $_[0]->unshift_read (line => sub {
1145 root 1.9 my $response = $_[1];
1146     ...
1147     });
1148     }
1149     });
1150    
1151 root 1.69 # request two, simply returns 64 octets
1152 root 1.9 $handle->push_write ("request 2\015\012");
1153    
1154     # simply read 64 bytes, always
1155 root 1.52 $handle->push_read (chunk => 64, sub {
1156 root 1.9 my $response = $_[1];
1157     ...
1158     });
1159    
1160     =over 4
1161    
1162 root 1.10 =cut
1163    
1164 root 1.8 sub _drain_rbuf {
1165     my ($self) = @_;
1166 elmex 1.1
1167 root 1.159 # avoid recursion
1168 root 1.167 return if $self->{_skip_drain_rbuf};
1169 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1170 root 1.59
1171     while () {
1172 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1173     # we are draining the buffer, and this can only happen with TLS.
1174 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1175     if exists $self->{_tls_rbuf};
1176 root 1.115
1177 root 1.59 my $len = length $self->{rbuf};
1178 elmex 1.1
1179 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1180 root 1.29 unless ($cb->($self)) {
1181 root 1.163 # no progress can be made
1182     # (not enough data and no data forthcoming)
1183     $self->_error (Errno::EPIPE, 1), return
1184     if $self->{_eof};
1185 root 1.10
1186 root 1.38 unshift @{ $self->{_queue} }, $cb;
1187 root 1.55 last;
1188 root 1.8 }
1189     } elsif ($self->{on_read}) {
1190 root 1.61 last unless $len;
1191    
1192 root 1.8 $self->{on_read}($self);
1193    
1194     if (
1195 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1196     && !@{ $self->{_queue} } # and the queue is still empty
1197     && $self->{on_read} # but we still have on_read
1198 root 1.8 ) {
1199 root 1.55 # no further data will arrive
1200     # so no progress can be made
1201 root 1.150 $self->_error (Errno::EPIPE, 1), return
1202 root 1.55 if $self->{_eof};
1203    
1204     last; # more data might arrive
1205 elmex 1.1 }
1206 root 1.8 } else {
1207     # read side becomes idle
1208 root 1.93 delete $self->{_rw} unless $self->{tls};
1209 root 1.55 last;
1210 root 1.8 }
1211     }
1212    
1213 root 1.80 if ($self->{_eof}) {
1214 root 1.163 $self->{on_eof}
1215     ? $self->{on_eof}($self)
1216     : $self->_error (0, 1, "Unexpected end-of-file");
1217    
1218     return;
1219 root 1.80 }
1220 root 1.55
1221 root 1.169 if (
1222     defined $self->{rbuf_max}
1223     && $self->{rbuf_max} < length $self->{rbuf}
1224     ) {
1225     $self->_error (Errno::ENOSPC, 1), return;
1226     }
1227    
1228 root 1.55 # may need to restart read watcher
1229     unless ($self->{_rw}) {
1230     $self->start_read
1231     if $self->{on_read} || @{ $self->{_queue} };
1232     }
1233 elmex 1.1 }
1234    
1235 root 1.8 =item $handle->on_read ($cb)
1236 elmex 1.1
1237 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1238     the new callback is C<undef>). See the description of C<on_read> in the
1239     constructor.
1240 elmex 1.1
1241 root 1.8 =cut
1242    
1243     sub on_read {
1244     my ($self, $cb) = @_;
1245 elmex 1.1
1246 root 1.8 $self->{on_read} = $cb;
1247 root 1.159 $self->_drain_rbuf if $cb;
1248 elmex 1.1 }
1249    
1250 root 1.8 =item $handle->rbuf
1251    
1252     Returns the read buffer (as a modifiable lvalue).
1253 elmex 1.1
1254 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1255     member, if you want. However, the only operation allowed on the
1256     read buffer (apart from looking at it) is removing data from its
1257     beginning. Otherwise modifying or appending to it is not allowed and will
1258     lead to hard-to-track-down bugs.
1259 elmex 1.1
1260 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1261     C<push_read> or C<unshift_read> methods are used. The other read methods
1262     automatically manage the read buffer.
1263 elmex 1.1
1264     =cut
1265    
1266 elmex 1.2 sub rbuf : lvalue {
1267 root 1.8 $_[0]{rbuf}
1268 elmex 1.2 }
1269 elmex 1.1
1270 root 1.8 =item $handle->push_read ($cb)
1271    
1272     =item $handle->unshift_read ($cb)
1273    
1274     Append the given callback to the end of the queue (C<push_read>) or
1275     prepend it (C<unshift_read>).
1276    
1277     The callback is called each time some additional read data arrives.
1278 elmex 1.1
1279 elmex 1.20 It must check whether enough data is in the read buffer already.
1280 elmex 1.1
1281 root 1.8 If not enough data is available, it must return the empty list or a false
1282     value, in which case it will be called repeatedly until enough data is
1283     available (or an error condition is detected).
1284    
1285     If enough data was available, then the callback must remove all data it is
1286     interested in (which can be none at all) and return a true value. After returning
1287     true, it will be removed from the queue.
1288 elmex 1.1
1289     =cut
1290    
1291 root 1.30 our %RH;
1292    
1293     sub register_read_type($$) {
1294     $RH{$_[0]} = $_[1];
1295     }
1296    
1297 root 1.8 sub push_read {
1298 root 1.28 my $self = shift;
1299     my $cb = pop;
1300    
1301     if (@_) {
1302     my $type = shift;
1303    
1304 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1305     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1306 root 1.28 ->($self, $cb, @_);
1307     }
1308 elmex 1.1
1309 root 1.38 push @{ $self->{_queue} }, $cb;
1310 root 1.159 $self->_drain_rbuf;
1311 elmex 1.1 }
1312    
1313 root 1.8 sub unshift_read {
1314 root 1.28 my $self = shift;
1315     my $cb = pop;
1316    
1317     if (@_) {
1318     my $type = shift;
1319    
1320     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1321     ->($self, $cb, @_);
1322     }
1323    
1324 root 1.38 unshift @{ $self->{_queue} }, $cb;
1325 root 1.159 $self->_drain_rbuf;
1326 root 1.8 }
1327 elmex 1.1
1328 root 1.28 =item $handle->push_read (type => @args, $cb)
1329 elmex 1.1
1330 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1331 elmex 1.1
1332 root 1.28 Instead of providing a callback that parses the data itself you can chose
1333     between a number of predefined parsing formats, for chunks of data, lines
1334 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1335     which case AnyEvent tries to load the package and then expects to find the
1336     C<anyevent_read_type> function inside (see "custom read types", below).
1337 elmex 1.1
1338 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1339     drop by and tell us):
1340 root 1.28
1341     =over 4
1342    
1343 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1344 root 1.28
1345     Invoke the callback only once C<$octets> bytes have been read. Pass the
1346     data read to the callback. The callback will never be called with less
1347     data.
1348    
1349     Example: read 2 bytes.
1350    
1351     $handle->push_read (chunk => 2, sub {
1352     warn "yay ", unpack "H*", $_[1];
1353     });
1354 elmex 1.1
1355     =cut
1356    
1357 root 1.28 register_read_type chunk => sub {
1358     my ($self, $cb, $len) = @_;
1359 elmex 1.1
1360 root 1.8 sub {
1361     $len <= length $_[0]{rbuf} or return;
1362 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1363 root 1.8 1
1364     }
1365 root 1.28 };
1366 root 1.8
1367 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1368 elmex 1.1
1369 root 1.8 The callback will be called only once a full line (including the end of
1370     line marker, C<$eol>) has been read. This line (excluding the end of line
1371     marker) will be passed to the callback as second argument (C<$line>), and
1372     the end of line marker as the third argument (C<$eol>).
1373 elmex 1.1
1374 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1375     will be interpreted as a fixed record end marker, or it can be a regex
1376     object (e.g. created by C<qr>), in which case it is interpreted as a
1377     regular expression.
1378 elmex 1.1
1379 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1380     undef), then C<qr|\015?\012|> is used (which is good for most internet
1381     protocols).
1382 elmex 1.1
1383 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1384     not marked by the end of line marker.
1385 elmex 1.1
1386 root 1.8 =cut
1387 elmex 1.1
1388 root 1.28 register_read_type line => sub {
1389     my ($self, $cb, $eol) = @_;
1390 elmex 1.1
1391 root 1.76 if (@_ < 3) {
1392     # this is more than twice as fast as the generic code below
1393     sub {
1394     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1395 elmex 1.1
1396 root 1.76 $cb->($_[0], $1, $2);
1397     1
1398     }
1399     } else {
1400     $eol = quotemeta $eol unless ref $eol;
1401     $eol = qr|^(.*?)($eol)|s;
1402    
1403     sub {
1404     $_[0]{rbuf} =~ s/$eol// or return;
1405 elmex 1.1
1406 root 1.76 $cb->($_[0], $1, $2);
1407     1
1408     }
1409 root 1.8 }
1410 root 1.28 };
1411 elmex 1.1
1412 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1413 root 1.36
1414     Makes a regex match against the regex object C<$accept> and returns
1415     everything up to and including the match.
1416    
1417     Example: read a single line terminated by '\n'.
1418    
1419     $handle->push_read (regex => qr<\n>, sub { ... });
1420    
1421     If C<$reject> is given and not undef, then it determines when the data is
1422     to be rejected: it is matched against the data when the C<$accept> regex
1423     does not match and generates an C<EBADMSG> error when it matches. This is
1424     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1425     receive buffer overflow).
1426    
1427     Example: expect a single decimal number followed by whitespace, reject
1428     anything else (not the use of an anchor).
1429    
1430     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1431    
1432     If C<$skip> is given and not C<undef>, then it will be matched against
1433     the receive buffer when neither C<$accept> nor C<$reject> match,
1434     and everything preceding and including the match will be accepted
1435     unconditionally. This is useful to skip large amounts of data that you
1436     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1437     have to start matching from the beginning. This is purely an optimisation
1438     and is usually worth only when you expect more than a few kilobytes.
1439    
1440     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1441     expect the header to be very large (it isn't in practise, but...), we use
1442     a skip regex to skip initial portions. The skip regex is tricky in that
1443     it only accepts something not ending in either \015 or \012, as these are
1444     required for the accept regex.
1445    
1446     $handle->push_read (regex =>
1447     qr<\015\012\015\012>,
1448     undef, # no reject
1449     qr<^.*[^\015\012]>,
1450     sub { ... });
1451    
1452     =cut
1453    
1454     register_read_type regex => sub {
1455     my ($self, $cb, $accept, $reject, $skip) = @_;
1456    
1457     my $data;
1458     my $rbuf = \$self->{rbuf};
1459    
1460     sub {
1461     # accept
1462     if ($$rbuf =~ $accept) {
1463     $data .= substr $$rbuf, 0, $+[0], "";
1464     $cb->($self, $data);
1465     return 1;
1466     }
1467    
1468     # reject
1469     if ($reject && $$rbuf =~ $reject) {
1470 root 1.150 $self->_error (Errno::EBADMSG);
1471 root 1.36 }
1472    
1473     # skip
1474     if ($skip && $$rbuf =~ $skip) {
1475     $data .= substr $$rbuf, 0, $+[0], "";
1476     }
1477    
1478     ()
1479     }
1480     };
1481    
1482 root 1.61 =item netstring => $cb->($handle, $string)
1483    
1484     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1485    
1486     Throws an error with C<$!> set to EBADMSG on format violations.
1487    
1488     =cut
1489    
1490     register_read_type netstring => sub {
1491     my ($self, $cb) = @_;
1492    
1493     sub {
1494     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1495     if ($_[0]{rbuf} =~ /[^0-9]/) {
1496 root 1.150 $self->_error (Errno::EBADMSG);
1497 root 1.61 }
1498     return;
1499     }
1500    
1501     my $len = $1;
1502    
1503     $self->unshift_read (chunk => $len, sub {
1504     my $string = $_[1];
1505     $_[0]->unshift_read (chunk => 1, sub {
1506     if ($_[1] eq ",") {
1507     $cb->($_[0], $string);
1508     } else {
1509 root 1.150 $self->_error (Errno::EBADMSG);
1510 root 1.61 }
1511     });
1512     });
1513    
1514     1
1515     }
1516     };
1517    
1518     =item packstring => $format, $cb->($handle, $string)
1519    
1520     An octet string prefixed with an encoded length. The encoding C<$format>
1521     uses the same format as a Perl C<pack> format, but must specify a single
1522     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1523     optional C<!>, C<< < >> or C<< > >> modifier).
1524    
1525 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1526     EPP uses a prefix of C<N> (4 octtes).
1527 root 1.61
1528     Example: read a block of data prefixed by its length in BER-encoded
1529     format (very efficient).
1530    
1531     $handle->push_read (packstring => "w", sub {
1532     my ($handle, $data) = @_;
1533     });
1534    
1535     =cut
1536    
1537     register_read_type packstring => sub {
1538     my ($self, $cb, $format) = @_;
1539    
1540     sub {
1541     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1542 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1543 root 1.61 or return;
1544    
1545 root 1.77 $format = length pack $format, $len;
1546 root 1.61
1547 root 1.77 # bypass unshift if we already have the remaining chunk
1548     if ($format + $len <= length $_[0]{rbuf}) {
1549     my $data = substr $_[0]{rbuf}, $format, $len;
1550     substr $_[0]{rbuf}, 0, $format + $len, "";
1551     $cb->($_[0], $data);
1552     } else {
1553     # remove prefix
1554     substr $_[0]{rbuf}, 0, $format, "";
1555    
1556     # read remaining chunk
1557     $_[0]->unshift_read (chunk => $len, $cb);
1558     }
1559 root 1.61
1560     1
1561     }
1562     };
1563    
1564 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1565    
1566 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1567     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1568 root 1.40
1569     If a C<json> object was passed to the constructor, then that will be used
1570     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1571    
1572     This read type uses the incremental parser available with JSON version
1573     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1574     dependency on your own: this module will load the JSON module, but
1575     AnyEvent does not depend on it itself.
1576    
1577     Since JSON texts are fully self-delimiting, the C<json> read and write
1578 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1579     the C<json> write type description, above, for an actual example.
1580 root 1.40
1581     =cut
1582    
1583     register_read_type json => sub {
1584 root 1.63 my ($self, $cb) = @_;
1585 root 1.40
1586 root 1.179 my $json = $self->{json} ||= json_coder;
1587 root 1.40
1588     my $data;
1589     my $rbuf = \$self->{rbuf};
1590    
1591     sub {
1592 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1593 root 1.110
1594 root 1.113 if ($ref) {
1595     $self->{rbuf} = $json->incr_text;
1596     $json->incr_text = "";
1597     $cb->($self, $ref);
1598 root 1.110
1599     1
1600 root 1.113 } elsif ($@) {
1601 root 1.111 # error case
1602 root 1.110 $json->incr_skip;
1603 root 1.40
1604     $self->{rbuf} = $json->incr_text;
1605     $json->incr_text = "";
1606    
1607 root 1.150 $self->_error (Errno::EBADMSG);
1608 root 1.114
1609 root 1.113 ()
1610     } else {
1611     $self->{rbuf} = "";
1612 root 1.114
1613 root 1.113 ()
1614     }
1615 root 1.40 }
1616     };
1617    
1618 root 1.63 =item storable => $cb->($handle, $ref)
1619    
1620     Deserialises a L<Storable> frozen representation as written by the
1621     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1622     data).
1623    
1624     Raises C<EBADMSG> error if the data could not be decoded.
1625    
1626     =cut
1627    
1628     register_read_type storable => sub {
1629     my ($self, $cb) = @_;
1630    
1631     require Storable;
1632    
1633     sub {
1634     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1635 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1636 root 1.63 or return;
1637    
1638 root 1.77 my $format = length pack "w", $len;
1639 root 1.63
1640 root 1.77 # bypass unshift if we already have the remaining chunk
1641     if ($format + $len <= length $_[0]{rbuf}) {
1642     my $data = substr $_[0]{rbuf}, $format, $len;
1643     substr $_[0]{rbuf}, 0, $format + $len, "";
1644     $cb->($_[0], Storable::thaw ($data));
1645     } else {
1646     # remove prefix
1647     substr $_[0]{rbuf}, 0, $format, "";
1648    
1649     # read remaining chunk
1650     $_[0]->unshift_read (chunk => $len, sub {
1651     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1652     $cb->($_[0], $ref);
1653     } else {
1654 root 1.150 $self->_error (Errno::EBADMSG);
1655 root 1.77 }
1656     });
1657     }
1658    
1659     1
1660 root 1.63 }
1661     };
1662    
1663 root 1.28 =back
1664    
1665 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1666 root 1.30
1667 root 1.185 Instead of one of the predefined types, you can also specify the name
1668     of a package. AnyEvent will try to load the package and then expects to
1669     find a function named C<anyevent_read_type> inside. If it isn't found, it
1670     progressively tries to load the parent package until it either finds the
1671     function (good) or runs out of packages (bad).
1672    
1673     Whenever this type is used, C<push_read> will invoke the function with the
1674     handle object, the original callback and the remaining arguments.
1675    
1676     The function is supposed to return a callback (usually a closure) that
1677     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1678     mentally treat the function as a "configurable read type to read callback"
1679     converter.
1680    
1681     It should invoke the original callback when it is done reading (remember
1682     to pass C<$handle> as first argument as all other callbacks do that,
1683     although there is no strict requirement on this).
1684 root 1.30
1685 root 1.185 For examples, see the source of this module (F<perldoc -m
1686     AnyEvent::Handle>, search for C<register_read_type>)).
1687 root 1.30
1688 root 1.10 =item $handle->stop_read
1689    
1690     =item $handle->start_read
1691    
1692 root 1.18 In rare cases you actually do not want to read anything from the
1693 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1694 root 1.22 any queued callbacks will be executed then. To start reading again, call
1695 root 1.10 C<start_read>.
1696    
1697 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1698     you change the C<on_read> callback or push/unshift a read callback, and it
1699     will automatically C<stop_read> for you when neither C<on_read> is set nor
1700     there are any read requests in the queue.
1701    
1702 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1703     half-duplex connections).
1704    
1705 root 1.10 =cut
1706    
1707     sub stop_read {
1708     my ($self) = @_;
1709 elmex 1.1
1710 root 1.93 delete $self->{_rw} unless $self->{tls};
1711 root 1.8 }
1712 elmex 1.1
1713 root 1.10 sub start_read {
1714     my ($self) = @_;
1715    
1716 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1717 root 1.10 Scalar::Util::weaken $self;
1718    
1719 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1720 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1721 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1722 root 1.10
1723     if ($len > 0) {
1724 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1725 root 1.43
1726 root 1.93 if ($self->{tls}) {
1727     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1728 root 1.97
1729 root 1.93 &_dotls ($self);
1730     } else {
1731 root 1.159 $self->_drain_rbuf;
1732 root 1.93 }
1733 root 1.10
1734     } elsif (defined $len) {
1735 root 1.38 delete $self->{_rw};
1736     $self->{_eof} = 1;
1737 root 1.159 $self->_drain_rbuf;
1738 root 1.10
1739 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1740 root 1.52 return $self->_error ($!, 1);
1741 root 1.10 }
1742 root 1.175 };
1743 root 1.10 }
1744 elmex 1.1 }
1745    
1746 root 1.133 our $ERROR_SYSCALL;
1747     our $ERROR_WANT_READ;
1748    
1749     sub _tls_error {
1750     my ($self, $err) = @_;
1751    
1752     return $self->_error ($!, 1)
1753     if $err == Net::SSLeay::ERROR_SYSCALL ();
1754    
1755 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1756    
1757     # reduce error string to look less scary
1758     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1759    
1760 root 1.143 if ($self->{_on_starttls}) {
1761     (delete $self->{_on_starttls})->($self, undef, $err);
1762     &_freetls;
1763     } else {
1764     &_freetls;
1765 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1766 root 1.143 }
1767 root 1.133 }
1768    
1769 root 1.97 # poll the write BIO and send the data if applicable
1770 root 1.133 # also decode read data if possible
1771     # this is basiclaly our TLS state machine
1772     # more efficient implementations are possible with openssl,
1773     # but not with the buggy and incomplete Net::SSLeay.
1774 root 1.19 sub _dotls {
1775     my ($self) = @_;
1776    
1777 root 1.97 my $tmp;
1778 root 1.56
1779 root 1.38 if (length $self->{_tls_wbuf}) {
1780 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1781     substr $self->{_tls_wbuf}, 0, $tmp, "";
1782 root 1.22 }
1783 root 1.133
1784     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1785     return $self->_tls_error ($tmp)
1786     if $tmp != $ERROR_WANT_READ
1787 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1788 root 1.19 }
1789    
1790 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1791     unless (length $tmp) {
1792 root 1.143 $self->{_on_starttls}
1793     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1794 root 1.92 &_freetls;
1795 root 1.143
1796 root 1.142 if ($self->{on_stoptls}) {
1797     $self->{on_stoptls}($self);
1798     return;
1799     } else {
1800     # let's treat SSL-eof as we treat normal EOF
1801     delete $self->{_rw};
1802     $self->{_eof} = 1;
1803     }
1804 root 1.56 }
1805 root 1.91
1806 root 1.116 $self->{_tls_rbuf} .= $tmp;
1807 root 1.159 $self->_drain_rbuf;
1808 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1809 root 1.23 }
1810    
1811 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1812 root 1.133 return $self->_tls_error ($tmp)
1813     if $tmp != $ERROR_WANT_READ
1814 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1815 root 1.91
1816 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1817     $self->{wbuf} .= $tmp;
1818 root 1.91 $self->_drain_wbuf;
1819     }
1820 root 1.142
1821     $self->{_on_starttls}
1822     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1823 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1824 root 1.19 }
1825    
1826 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1827    
1828     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1829     object is created, you can also do that at a later time by calling
1830     C<starttls>.
1831    
1832 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1833     write data and then call C<< ->starttls >> then TLS negotiation will start
1834     immediately, after which the queued write data is then sent.
1835    
1836 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1837     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1838    
1839 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1840     when AnyEvent::Handle has to create its own TLS connection object, or
1841     a hash reference with C<< key => value >> pairs that will be used to
1842     construct a new context.
1843    
1844     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1845     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1846     changed to your liking. Note that the handshake might have already started
1847     when this function returns.
1848 root 1.38
1849 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1850     handshakes on the same stream. Best do not attempt to use the stream after
1851     stopping TLS.
1852 root 1.92
1853 root 1.25 =cut
1854    
1855 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1856    
1857 root 1.19 sub starttls {
1858 root 1.160 my ($self, $tls, $ctx) = @_;
1859    
1860     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1861     if $self->{tls};
1862    
1863     $self->{tls} = $tls;
1864     $self->{tls_ctx} = $ctx if @_ > 2;
1865    
1866     return unless $self->{fh};
1867 root 1.19
1868 root 1.94 require Net::SSLeay;
1869    
1870 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1871     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1872 root 1.133
1873 root 1.180 $tls = delete $self->{tls};
1874 root 1.160 $ctx = $self->{tls_ctx};
1875 root 1.131
1876 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1877    
1878 root 1.131 if ("HASH" eq ref $ctx) {
1879     require AnyEvent::TLS;
1880    
1881 root 1.137 if ($ctx->{cache}) {
1882     my $key = $ctx+0;
1883     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1884     } else {
1885     $ctx = new AnyEvent::TLS %$ctx;
1886     }
1887 root 1.131 }
1888 root 1.92
1889 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1890 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1891 root 1.19
1892 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1893     # but the openssl maintainers basically said: "trust us, it just works".
1894     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1895     # and mismaintained ssleay-module doesn't even offer them).
1896 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1897 root 1.87 #
1898     # in short: this is a mess.
1899     #
1900 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1901 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1902 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1903     # have identity issues in that area.
1904 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1905     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1906     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1907 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1908 root 1.21
1909 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1910     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1911 root 1.19
1912 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1913    
1914 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1915 root 1.19
1916 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1917 root 1.143 if $self->{on_starttls};
1918 root 1.142
1919 root 1.93 &_dotls; # need to trigger the initial handshake
1920     $self->start_read; # make sure we actually do read
1921 root 1.19 }
1922    
1923 root 1.25 =item $handle->stoptls
1924    
1925 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1926     sending a close notify to the other side, but since OpenSSL doesn't
1927 root 1.160 support non-blocking shut downs, it is not guarenteed that you can re-use
1928     the stream afterwards.
1929 root 1.25
1930     =cut
1931    
1932     sub stoptls {
1933     my ($self) = @_;
1934    
1935 root 1.92 if ($self->{tls}) {
1936 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1937 root 1.92
1938     &_dotls;
1939    
1940 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1941     # # we, we... have to use openssl :/#d#
1942     # &_freetls;#d#
1943 root 1.92 }
1944     }
1945    
1946     sub _freetls {
1947     my ($self) = @_;
1948    
1949     return unless $self->{tls};
1950 root 1.38
1951 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1952 root 1.171 if $self->{tls} > 0;
1953 root 1.92
1954 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1955 root 1.25 }
1956    
1957 root 1.19 sub DESTROY {
1958 root 1.120 my ($self) = @_;
1959 root 1.19
1960 root 1.92 &_freetls;
1961 root 1.62
1962     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1963    
1964 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1965 root 1.62 my $fh = delete $self->{fh};
1966     my $wbuf = delete $self->{wbuf};
1967    
1968     my @linger;
1969    
1970 root 1.175 push @linger, AE::io $fh, 1, sub {
1971 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
1972    
1973     if ($len > 0) {
1974     substr $wbuf, 0, $len, "";
1975     } else {
1976     @linger = (); # end
1977     }
1978 root 1.175 };
1979     push @linger, AE::timer $linger, 0, sub {
1980 root 1.62 @linger = ();
1981 root 1.175 };
1982 root 1.62 }
1983 root 1.19 }
1984    
1985 root 1.99 =item $handle->destroy
1986    
1987 root 1.101 Shuts down the handle object as much as possible - this call ensures that
1988 root 1.141 no further callbacks will be invoked and as many resources as possible
1989 root 1.165 will be freed. Any method you will call on the handle object after
1990     destroying it in this way will be silently ignored (and it will return the
1991     empty list).
1992 root 1.99
1993 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
1994     object and it will simply shut down. This works in fatal error and EOF
1995     callbacks, as well as code outside. It does I<NOT> work in a read or write
1996     callback, so when you want to destroy the AnyEvent::Handle object from
1997     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1998     that case.
1999    
2000 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2001     will be removed as well, so if those are the only reference holders (as
2002     is common), then one doesn't need to do anything special to break any
2003     reference cycles.
2004    
2005 root 1.99 The handle might still linger in the background and write out remaining
2006     data, as specified by the C<linger> option, however.
2007    
2008     =cut
2009    
2010     sub destroy {
2011     my ($self) = @_;
2012    
2013     $self->DESTROY;
2014     %$self = ();
2015 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2016     }
2017    
2018 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2019     #nop
2020 root 1.99 }
2021    
2022 root 1.19 =item AnyEvent::Handle::TLS_CTX
2023    
2024 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2025     for TLS mode.
2026 root 1.19
2027 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2028 root 1.19
2029     =cut
2030    
2031     our $TLS_CTX;
2032    
2033     sub TLS_CTX() {
2034 root 1.131 $TLS_CTX ||= do {
2035     require AnyEvent::TLS;
2036 root 1.19
2037 root 1.131 new AnyEvent::TLS
2038 root 1.19 }
2039     }
2040    
2041 elmex 1.1 =back
2042    
2043 root 1.95
2044     =head1 NONFREQUENTLY ASKED QUESTIONS
2045    
2046     =over 4
2047    
2048 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2049     still get further invocations!
2050    
2051     That's because AnyEvent::Handle keeps a reference to itself when handling
2052     read or write callbacks.
2053    
2054     It is only safe to "forget" the reference inside EOF or error callbacks,
2055     from within all other callbacks, you need to explicitly call the C<<
2056     ->destroy >> method.
2057    
2058     =item I get different callback invocations in TLS mode/Why can't I pause
2059     reading?
2060    
2061     Unlike, say, TCP, TLS connections do not consist of two independent
2062     communication channels, one for each direction. Or put differently. The
2063     read and write directions are not independent of each other: you cannot
2064     write data unless you are also prepared to read, and vice versa.
2065    
2066     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2067     callback invocations when you are not expecting any read data - the reason
2068     is that AnyEvent::Handle always reads in TLS mode.
2069    
2070     During the connection, you have to make sure that you always have a
2071     non-empty read-queue, or an C<on_read> watcher. At the end of the
2072     connection (or when you no longer want to use it) you can call the
2073     C<destroy> method.
2074    
2075 root 1.95 =item How do I read data until the other side closes the connection?
2076    
2077 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2078     to achieve this is by setting an C<on_read> callback that does nothing,
2079     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2080     will be in C<$_[0]{rbuf}>:
2081 root 1.95
2082     $handle->on_read (sub { });
2083     $handle->on_eof (undef);
2084     $handle->on_error (sub {
2085     my $data = delete $_[0]{rbuf};
2086     });
2087    
2088     The reason to use C<on_error> is that TCP connections, due to latencies
2089     and packets loss, might get closed quite violently with an error, when in
2090     fact, all data has been received.
2091    
2092 root 1.101 It is usually better to use acknowledgements when transferring data,
2093 root 1.95 to make sure the other side hasn't just died and you got the data
2094     intact. This is also one reason why so many internet protocols have an
2095     explicit QUIT command.
2096    
2097 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2098     all data has been written?
2099 root 1.95
2100     After writing your last bits of data, set the C<on_drain> callback
2101     and destroy the handle in there - with the default setting of
2102     C<low_water_mark> this will be called precisely when all data has been
2103     written to the socket:
2104    
2105     $handle->push_write (...);
2106     $handle->on_drain (sub {
2107     warn "all data submitted to the kernel\n";
2108     undef $handle;
2109     });
2110    
2111 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2112     consider using C<< ->push_shutdown >> instead.
2113    
2114     =item I want to contact a TLS/SSL server, I don't care about security.
2115    
2116     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2117     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2118     parameter:
2119    
2120 root 1.144 tcp_connect $host, $port, sub {
2121     my ($fh) = @_;
2122 root 1.143
2123 root 1.144 my $handle = new AnyEvent::Handle
2124     fh => $fh,
2125     tls => "connect",
2126     on_error => sub { ... };
2127    
2128     $handle->push_write (...);
2129     };
2130 root 1.143
2131     =item I want to contact a TLS/SSL server, I do care about security.
2132    
2133 root 1.144 Then you should additionally enable certificate verification, including
2134     peername verification, if the protocol you use supports it (see
2135     L<AnyEvent::TLS>, C<verify_peername>).
2136    
2137     E.g. for HTTPS:
2138    
2139     tcp_connect $host, $port, sub {
2140     my ($fh) = @_;
2141    
2142     my $handle = new AnyEvent::Handle
2143     fh => $fh,
2144     peername => $host,
2145     tls => "connect",
2146     tls_ctx => { verify => 1, verify_peername => "https" },
2147     ...
2148    
2149     Note that you must specify the hostname you connected to (or whatever
2150     "peername" the protocol needs) as the C<peername> argument, otherwise no
2151     peername verification will be done.
2152    
2153     The above will use the system-dependent default set of trusted CA
2154     certificates. If you want to check against a specific CA, add the
2155     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2156    
2157     tls_ctx => {
2158     verify => 1,
2159     verify_peername => "https",
2160     ca_file => "my-ca-cert.pem",
2161     },
2162    
2163     =item I want to create a TLS/SSL server, how do I do that?
2164    
2165     Well, you first need to get a server certificate and key. You have
2166     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2167     self-signed certificate (cheap. check the search engine of your choice,
2168     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2169     nice program for that purpose).
2170    
2171     Then create a file with your private key (in PEM format, see
2172     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2173     file should then look like this:
2174    
2175     -----BEGIN RSA PRIVATE KEY-----
2176     ...header data
2177     ... lots of base64'y-stuff
2178     -----END RSA PRIVATE KEY-----
2179    
2180     -----BEGIN CERTIFICATE-----
2181     ... lots of base64'y-stuff
2182     -----END CERTIFICATE-----
2183    
2184     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2185     specify this file as C<cert_file>:
2186    
2187     tcp_server undef, $port, sub {
2188     my ($fh) = @_;
2189    
2190     my $handle = new AnyEvent::Handle
2191     fh => $fh,
2192     tls => "accept",
2193     tls_ctx => { cert_file => "my-server-keycert.pem" },
2194     ...
2195 root 1.143
2196 root 1.144 When you have intermediate CA certificates that your clients might not
2197     know about, just append them to the C<cert_file>.
2198 root 1.143
2199 root 1.95 =back
2200    
2201    
2202 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2203    
2204     In many cases, you might want to subclass AnyEvent::Handle.
2205    
2206     To make this easier, a given version of AnyEvent::Handle uses these
2207     conventions:
2208    
2209     =over 4
2210    
2211     =item * all constructor arguments become object members.
2212    
2213     At least initially, when you pass a C<tls>-argument to the constructor it
2214 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2215 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2216    
2217     =item * other object member names are prefixed with an C<_>.
2218    
2219     All object members not explicitly documented (internal use) are prefixed
2220     with an underscore character, so the remaining non-C<_>-namespace is free
2221     for use for subclasses.
2222    
2223     =item * all members not documented here and not prefixed with an underscore
2224     are free to use in subclasses.
2225    
2226     Of course, new versions of AnyEvent::Handle may introduce more "public"
2227     member variables, but thats just life, at least it is documented.
2228    
2229     =back
2230    
2231 elmex 1.1 =head1 AUTHOR
2232    
2233 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2234 elmex 1.1
2235     =cut
2236    
2237     1; # End of AnyEvent::Handle