ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.195
Committed: Sat Jun 5 09:08:14 2010 UTC (13 years, 11 months ago) by root
Branch: MAIN
CVS Tags: rel-5_27
Changes since 1.194: +3 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.194 stream-based filehandles (sockets, pipes or other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134 root 1.186 C<$retry> will continue with the next connection target (in case of
135 root 1.159 multi-homed hosts or SRV records there can be multiple connection
136 root 1.186 endpoints). At the time it is called the read and write queues, eof
137     status, tls status and similar properties of the handle will have been
138     reset.
139 root 1.159
140     In most cases, ignoring the C<$retry> parameter is the way to go.
141 root 1.158
142 root 1.159 =item on_connect_error => $cb->($handle, $message)
143 root 1.10
144 root 1.186 This callback is called when the connection could not be
145 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
146     message describing it (usually the same as C<"$!">).
147 root 1.8
148 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
149     fatal error instead.
150 root 1.82
151 root 1.159 =back
152 root 1.80
153 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
154 root 1.10
155 root 1.52 This is the error callback, which is called when, well, some error
156     occured, such as not being able to resolve the hostname, failure to
157     connect or a read error.
158    
159     Some errors are fatal (which is indicated by C<$fatal> being true). On
160 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
161     destroy >>) after invoking the error callback (which means you are free to
162     examine the handle object). Examples of fatal errors are an EOF condition
163 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164     cases where the other side can close the connection at their will it is
165     often easiest to not report C<EPIPE> errors in this callback.
166 root 1.82
167 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
168     against, but in some cases (TLS errors), this does not work well. It is
169     recommended to always output the C<$message> argument in human-readable
170     error messages (it's usually the same as C<"$!">).
171    
172 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
173     to simply ignore this parameter and instead abondon the handle object
174     when this callback is invoked. Examples of non-fatal errors are timeouts
175     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176 root 1.8
177 root 1.10 On callback entrance, the value of C<$!> contains the operating system
178 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179     C<EPROTO>).
180 root 1.8
181 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
182     you will not be notified of errors otherwise. The default simply calls
183 root 1.52 C<croak>.
184 root 1.8
185 root 1.40 =item on_read => $cb->($handle)
186 root 1.8
187     This sets the default read callback, which is called when data arrives
188 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
189     callback will only be called when at least one octet of data is in the
190     read buffer).
191 root 1.8
192     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
194 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
195     the beginning from it.
196 root 1.8
197     When an EOF condition is detected then AnyEvent::Handle will first try to
198     feed all the remaining data to the queued callbacks and C<on_read> before
199     calling the C<on_eof> callback. If no progress can be made, then a fatal
200     error will be raised (with C<$!> set to C<EPIPE>).
201 elmex 1.1
202 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
203     doesn't mean you I<require> some data: if there is an EOF and there
204     are outstanding read requests then an error will be flagged. With an
205     C<on_read> callback, the C<on_eof> callback will be invoked.
206    
207 root 1.159 =item on_eof => $cb->($handle)
208    
209     Set the callback to be called when an end-of-file condition is detected,
210     i.e. in the case of a socket, when the other side has closed the
211     connection cleanly, and there are no outstanding read requests in the
212     queue (if there are read requests, then an EOF counts as an unexpected
213     connection close and will be flagged as an error).
214    
215     For sockets, this just means that the other side has stopped sending data,
216     you can still try to write data, and, in fact, one can return from the EOF
217     callback and continue writing data, as only the read part has been shut
218     down.
219    
220     If an EOF condition has been detected but no C<on_eof> callback has been
221     set, then a fatal error will be raised with C<$!> set to <0>.
222    
223 root 1.40 =item on_drain => $cb->($handle)
224 elmex 1.1
225 root 1.8 This sets the callback that is called when the write buffer becomes empty
226     (or when the callback is set and the buffer is empty already).
227 elmex 1.1
228 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
229 elmex 1.2
230 root 1.69 This callback is useful when you don't want to put all of your write data
231     into the queue at once, for example, when you want to write the contents
232     of some file to the socket you might not want to read the whole file into
233     memory and push it into the queue, but instead only read more data from
234     the file when the write queue becomes empty.
235    
236 root 1.43 =item timeout => $fractional_seconds
237    
238 root 1.176 =item rtimeout => $fractional_seconds
239    
240     =item wtimeout => $fractional_seconds
241    
242     If non-zero, then these enables an "inactivity" timeout: whenever this
243     many seconds pass without a successful read or write on the underlying
244     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
245     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
246     error will be raised).
247    
248     There are three variants of the timeouts that work fully independent
249     of each other, for both read and write, just read, and just write:
250     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
251     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
252     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
253 root 1.43
254     Note that timeout processing is also active when you currently do not have
255     any outstanding read or write requests: If you plan to keep the connection
256     idle then you should disable the timout temporarily or ignore the timeout
257 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
258     restart the timeout.
259 root 1.43
260     Zero (the default) disables this timeout.
261    
262     =item on_timeout => $cb->($handle)
263    
264     Called whenever the inactivity timeout passes. If you return from this
265     callback, then the timeout will be reset as if some activity had happened,
266     so this condition is not fatal in any way.
267    
268 root 1.8 =item rbuf_max => <bytes>
269 elmex 1.2
270 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
271     when the read buffer ever (strictly) exceeds this size. This is useful to
272 root 1.88 avoid some forms of denial-of-service attacks.
273 elmex 1.2
274 root 1.8 For example, a server accepting connections from untrusted sources should
275     be configured to accept only so-and-so much data that it cannot act on
276     (for example, when expecting a line, an attacker could send an unlimited
277     amount of data without a callback ever being called as long as the line
278     isn't finished).
279 elmex 1.2
280 root 1.70 =item autocork => <boolean>
281    
282     When disabled (the default), then C<push_write> will try to immediately
283 root 1.88 write the data to the handle, if possible. This avoids having to register
284     a write watcher and wait for the next event loop iteration, but can
285     be inefficient if you write multiple small chunks (on the wire, this
286     disadvantage is usually avoided by your kernel's nagle algorithm, see
287     C<no_delay>, but this option can save costly syscalls).
288 root 1.70
289     When enabled, then writes will always be queued till the next event loop
290     iteration. This is efficient when you do many small writes per iteration,
291 root 1.88 but less efficient when you do a single write only per iteration (or when
292     the write buffer often is full). It also increases write latency.
293 root 1.70
294     =item no_delay => <boolean>
295    
296     When doing small writes on sockets, your operating system kernel might
297     wait a bit for more data before actually sending it out. This is called
298     the Nagle algorithm, and usually it is beneficial.
299    
300 root 1.88 In some situations you want as low a delay as possible, which can be
301     accomplishd by setting this option to a true value.
302 root 1.70
303 root 1.88 The default is your opertaing system's default behaviour (most likely
304     enabled), this option explicitly enables or disables it, if possible.
305 root 1.70
306 root 1.182 =item keepalive => <boolean>
307    
308     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
309     normally, TCP connections have no time-out once established, so TCP
310 root 1.186 connections, once established, can stay alive forever even when the other
311 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
312     TCP connections whent he other side becomes unreachable. While the default
313     is OS-dependent, TCP keepalives usually kick in after around two hours,
314     and, if the other side doesn't reply, take down the TCP connection some 10
315     to 15 minutes later.
316    
317     It is harmless to specify this option for file handles that do not support
318     keepalives, and enabling it on connections that are potentially long-lived
319     is usually a good idea.
320    
321     =item oobinline => <boolean>
322    
323     BSD majorly fucked up the implementation of TCP urgent data. The result
324     is that almost no OS implements TCP according to the specs, and every OS
325     implements it slightly differently.
326    
327 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
328     is enabled) gives you the most portable way of getting urgent data, by
329     putting it into the stream.
330    
331     Since BSD emulation of OOB data on top of TCP's urgent data can have
332     security implications, AnyEvent::Handle sets this flag automatically
333 root 1.184 unless explicitly specified. Note that setting this flag after
334     establishing a connection I<may> be a bit too late (data loss could
335     already have occured on BSD systems), but at least it will protect you
336     from most attacks.
337 root 1.182
338 root 1.8 =item read_size => <bytes>
339 elmex 1.2
340 root 1.88 The default read block size (the amount of bytes this module will
341     try to read during each loop iteration, which affects memory
342     requirements). Default: C<8192>.
343 root 1.8
344     =item low_water_mark => <bytes>
345    
346     Sets the amount of bytes (default: C<0>) that make up an "empty" write
347     buffer: If the write reaches this size or gets even samller it is
348     considered empty.
349 elmex 1.2
350 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
351     the write buffer before it is fully drained, but this is a rare case, as
352     the operating system kernel usually buffers data as well, so the default
353     is good in almost all cases.
354    
355 root 1.62 =item linger => <seconds>
356    
357     If non-zero (default: C<3600>), then the destructor of the
358 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
359     write data and will install a watcher that will write this data to the
360     socket. No errors will be reported (this mostly matches how the operating
361     system treats outstanding data at socket close time).
362 root 1.62
363 root 1.88 This will not work for partial TLS data that could not be encoded
364 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
365     help.
366 root 1.62
367 root 1.133 =item peername => $string
368    
369 root 1.134 A string used to identify the remote site - usually the DNS hostname
370     (I<not> IDN!) used to create the connection, rarely the IP address.
371 root 1.131
372 root 1.133 Apart from being useful in error messages, this string is also used in TLS
373 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
374     verification will be skipped when C<peername> is not specified or
375     C<undef>.
376 root 1.131
377 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
378    
379 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
380 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
381 root 1.88 established and will transparently encrypt/decrypt data afterwards.
382 root 1.19
383 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
384     appropriate error message.
385    
386 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
387 root 1.88 automatically when you try to create a TLS handle): this module doesn't
388     have a dependency on that module, so if your module requires it, you have
389     to add the dependency yourself.
390 root 1.26
391 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
392     C<accept>, and for the TLS client side of a connection, use C<connect>
393     mode.
394 root 1.19
395     You can also provide your own TLS connection object, but you have
396     to make sure that you call either C<Net::SSLeay::set_connect_state>
397     or C<Net::SSLeay::set_accept_state> on it before you pass it to
398 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
399     object.
400    
401     At some future point, AnyEvent::Handle might switch to another TLS
402     implementation, then the option to use your own session object will go
403     away.
404 root 1.19
405 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
406     passing in the wrong integer will lead to certain crash. This most often
407     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
408     segmentation fault.
409    
410 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
411 root 1.26
412 root 1.131 =item tls_ctx => $anyevent_tls
413 root 1.19
414 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
415 root 1.19 (unless a connection object was specified directly). If this parameter is
416     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
417    
418 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
419     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
420     new TLS context object.
421    
422 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
423 root 1.142
424     This callback will be invoked when the TLS/SSL handshake has finished. If
425     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
426     (C<on_stoptls> will not be called in this case).
427    
428     The session in C<< $handle->{tls} >> can still be examined in this
429     callback, even when the handshake was not successful.
430    
431 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
432     callback is in effect, instead, the error message will be passed to C<on_starttls>.
433    
434     Without this callback, handshake failures lead to C<on_error> being
435     called, as normal.
436    
437     Note that you cannot call C<starttls> right again in this callback. If you
438     need to do that, start an zero-second timer instead whose callback can
439     then call C<< ->starttls >> again.
440    
441 root 1.142 =item on_stoptls => $cb->($handle)
442    
443     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
444     set, then it will be invoked after freeing the TLS session. If it is not,
445     then a TLS shutdown condition will be treated like a normal EOF condition
446     on the handle.
447    
448     The session in C<< $handle->{tls} >> can still be examined in this
449     callback.
450    
451     This callback will only be called on TLS shutdowns, not when the
452     underlying handle signals EOF.
453    
454 root 1.40 =item json => JSON or JSON::XS object
455    
456     This is the json coder object used by the C<json> read and write types.
457    
458 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
459 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
460     texts.
461 root 1.40
462     Note that you are responsible to depend on the JSON module if you want to
463     use this functionality, as AnyEvent does not have a dependency itself.
464    
465 elmex 1.1 =back
466    
467     =cut
468    
469     sub new {
470 root 1.8 my $class = shift;
471     my $self = bless { @_ }, $class;
472    
473 root 1.159 if ($self->{fh}) {
474     $self->_start;
475     return unless $self->{fh}; # could be gone by now
476    
477     } elsif ($self->{connect}) {
478     require AnyEvent::Socket;
479    
480     $self->{peername} = $self->{connect}[0]
481     unless exists $self->{peername};
482    
483     $self->{_skip_drain_rbuf} = 1;
484    
485     {
486     Scalar::Util::weaken (my $self = $self);
487    
488     $self->{_connect} =
489     AnyEvent::Socket::tcp_connect (
490     $self->{connect}[0],
491     $self->{connect}[1],
492     sub {
493     my ($fh, $host, $port, $retry) = @_;
494    
495     if ($fh) {
496     $self->{fh} = $fh;
497    
498     delete $self->{_skip_drain_rbuf};
499     $self->_start;
500    
501     $self->{on_connect}
502     and $self->{on_connect}($self, $host, $port, sub {
503 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
504 root 1.159 $self->{_skip_drain_rbuf} = 1;
505     &$retry;
506     });
507    
508     } else {
509     if ($self->{on_connect_error}) {
510     $self->{on_connect_error}($self, "$!");
511     $self->destroy;
512     } else {
513 root 1.161 $self->_error ($!, 1);
514 root 1.159 }
515     }
516     },
517     sub {
518     local $self->{fh} = $_[0];
519    
520 root 1.161 $self->{on_prepare}
521     ? $self->{on_prepare}->($self)
522     : ()
523 root 1.159 }
524     );
525     }
526    
527     } else {
528     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
529     }
530    
531     $self
532     }
533    
534     sub _start {
535     my ($self) = @_;
536 root 1.8
537 root 1.194 # too many clueless people try to use udp and similar sockets
538     # with AnyEvent::Handle, do them a favour.
539 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
540     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
541     if Socket::SOCK_STREAM != (unpack "I", $type) && defined $type;
542 root 1.194
543 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
544 elmex 1.1
545 root 1.176 $self->{_activity} =
546     $self->{_ractivity} =
547     $self->{_wactivity} = AE::now;
548    
549 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
550     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
551     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
552    
553 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
554     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
555    
556     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
557 root 1.131
558 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
559 root 1.94 if $self->{tls};
560 root 1.19
561 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
562 root 1.10
563 root 1.66 $self->start_read
564 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
565 root 1.160
566     $self->_drain_wbuf;
567 root 1.8 }
568 elmex 1.2
569 root 1.52 sub _error {
570 root 1.133 my ($self, $errno, $fatal, $message) = @_;
571 root 1.8
572 root 1.52 $! = $errno;
573 root 1.133 $message ||= "$!";
574 root 1.37
575 root 1.52 if ($self->{on_error}) {
576 root 1.133 $self->{on_error}($self, $fatal, $message);
577 root 1.151 $self->destroy if $fatal;
578 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
579 root 1.149 $self->destroy;
580 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
581 root 1.52 }
582 elmex 1.1 }
583    
584 root 1.8 =item $fh = $handle->fh
585 elmex 1.1
586 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
587 elmex 1.1
588     =cut
589    
590 root 1.38 sub fh { $_[0]{fh} }
591 elmex 1.1
592 root 1.8 =item $handle->on_error ($cb)
593 elmex 1.1
594 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
595 elmex 1.1
596 root 1.8 =cut
597    
598     sub on_error {
599     $_[0]{on_error} = $_[1];
600     }
601    
602     =item $handle->on_eof ($cb)
603    
604     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
605 elmex 1.1
606     =cut
607    
608 root 1.8 sub on_eof {
609     $_[0]{on_eof} = $_[1];
610     }
611    
612 root 1.43 =item $handle->on_timeout ($cb)
613    
614 root 1.176 =item $handle->on_rtimeout ($cb)
615    
616     =item $handle->on_wtimeout ($cb)
617    
618     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
619     callback, or disables the callback (but not the timeout) if C<$cb> =
620     C<undef>. See the C<timeout> constructor argument and method.
621 root 1.43
622     =cut
623    
624 root 1.176 # see below
625 root 1.43
626 root 1.70 =item $handle->autocork ($boolean)
627    
628     Enables or disables the current autocork behaviour (see C<autocork>
629 root 1.105 constructor argument). Changes will only take effect on the next write.
630 root 1.70
631     =cut
632    
633 root 1.105 sub autocork {
634     $_[0]{autocork} = $_[1];
635     }
636    
637 root 1.70 =item $handle->no_delay ($boolean)
638    
639     Enables or disables the C<no_delay> setting (see constructor argument of
640     the same name for details).
641    
642     =cut
643    
644     sub no_delay {
645     $_[0]{no_delay} = $_[1];
646    
647     eval {
648     local $SIG{__DIE__};
649 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
650     if $_[0]{fh};
651     };
652     }
653    
654     =item $handle->keepalive ($boolean)
655    
656     Enables or disables the C<keepalive> setting (see constructor argument of
657     the same name for details).
658    
659     =cut
660    
661     sub keepalive {
662     $_[0]{keepalive} = $_[1];
663    
664     eval {
665     local $SIG{__DIE__};
666     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
667     if $_[0]{fh};
668     };
669     }
670    
671     =item $handle->oobinline ($boolean)
672    
673     Enables or disables the C<oobinline> setting (see constructor argument of
674     the same name for details).
675    
676     =cut
677    
678     sub oobinline {
679     $_[0]{oobinline} = $_[1];
680    
681     eval {
682     local $SIG{__DIE__};
683     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
684     if $_[0]{fh};
685     };
686     }
687    
688     =item $handle->keepalive ($boolean)
689    
690     Enables or disables the C<keepalive> setting (see constructor argument of
691     the same name for details).
692    
693     =cut
694    
695     sub keepalive {
696     $_[0]{keepalive} = $_[1];
697    
698     eval {
699     local $SIG{__DIE__};
700     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
701 root 1.159 if $_[0]{fh};
702 root 1.70 };
703     }
704    
705 root 1.142 =item $handle->on_starttls ($cb)
706    
707     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
708    
709     =cut
710    
711     sub on_starttls {
712     $_[0]{on_starttls} = $_[1];
713     }
714    
715     =item $handle->on_stoptls ($cb)
716    
717     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
718    
719     =cut
720    
721 root 1.189 sub on_stoptls {
722 root 1.142 $_[0]{on_stoptls} = $_[1];
723     }
724    
725 root 1.168 =item $handle->rbuf_max ($max_octets)
726    
727     Configures the C<rbuf_max> setting (C<undef> disables it).
728    
729     =cut
730    
731     sub rbuf_max {
732     $_[0]{rbuf_max} = $_[1];
733     }
734    
735 root 1.43 #############################################################################
736    
737     =item $handle->timeout ($seconds)
738    
739 root 1.176 =item $handle->rtimeout ($seconds)
740    
741     =item $handle->wtimeout ($seconds)
742    
743 root 1.43 Configures (or disables) the inactivity timeout.
744    
745 root 1.176 =item $handle->timeout_reset
746    
747     =item $handle->rtimeout_reset
748    
749     =item $handle->wtimeout_reset
750    
751     Reset the activity timeout, as if data was received or sent.
752    
753     These methods are cheap to call.
754    
755 root 1.43 =cut
756    
757 root 1.176 for my $dir ("", "r", "w") {
758     my $timeout = "${dir}timeout";
759     my $tw = "_${dir}tw";
760     my $on_timeout = "on_${dir}timeout";
761     my $activity = "_${dir}activity";
762     my $cb;
763    
764     *$on_timeout = sub {
765     $_[0]{$on_timeout} = $_[1];
766     };
767    
768     *$timeout = sub {
769     my ($self, $new_value) = @_;
770 root 1.43
771 root 1.176 $self->{$timeout} = $new_value;
772     delete $self->{$tw}; &$cb;
773     };
774 root 1.43
775 root 1.176 *{"${dir}timeout_reset"} = sub {
776     $_[0]{$activity} = AE::now;
777     };
778 root 1.43
779 root 1.176 # main workhorse:
780     # reset the timeout watcher, as neccessary
781     # also check for time-outs
782     $cb = sub {
783     my ($self) = @_;
784    
785     if ($self->{$timeout} && $self->{fh}) {
786     my $NOW = AE::now;
787    
788     # when would the timeout trigger?
789     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
790    
791     # now or in the past already?
792     if ($after <= 0) {
793     $self->{$activity} = $NOW;
794 root 1.43
795 root 1.176 if ($self->{$on_timeout}) {
796     $self->{$on_timeout}($self);
797     } else {
798     $self->_error (Errno::ETIMEDOUT);
799     }
800 root 1.43
801 root 1.176 # callback could have changed timeout value, optimise
802     return unless $self->{$timeout};
803 root 1.43
804 root 1.176 # calculate new after
805     $after = $self->{$timeout};
806 root 1.43 }
807    
808 root 1.176 Scalar::Util::weaken $self;
809     return unless $self; # ->error could have destroyed $self
810 root 1.43
811 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
812     delete $self->{$tw};
813     $cb->($self);
814     };
815     } else {
816     delete $self->{$tw};
817 root 1.43 }
818     }
819     }
820    
821 root 1.9 #############################################################################
822    
823     =back
824    
825     =head2 WRITE QUEUE
826    
827     AnyEvent::Handle manages two queues per handle, one for writing and one
828     for reading.
829    
830     The write queue is very simple: you can add data to its end, and
831     AnyEvent::Handle will automatically try to get rid of it for you.
832    
833 elmex 1.20 When data could be written and the write buffer is shorter then the low
834 root 1.9 water mark, the C<on_drain> callback will be invoked.
835    
836     =over 4
837    
838 root 1.8 =item $handle->on_drain ($cb)
839    
840     Sets the C<on_drain> callback or clears it (see the description of
841     C<on_drain> in the constructor).
842    
843 root 1.193 This method may invoke callbacks (and therefore the handle might be
844     destroyed after it returns).
845    
846 root 1.8 =cut
847    
848     sub on_drain {
849 elmex 1.1 my ($self, $cb) = @_;
850    
851 root 1.8 $self->{on_drain} = $cb;
852    
853     $cb->($self)
854 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
855 root 1.8 }
856    
857     =item $handle->push_write ($data)
858    
859     Queues the given scalar to be written. You can push as much data as you
860     want (only limited by the available memory), as C<AnyEvent::Handle>
861     buffers it independently of the kernel.
862    
863 root 1.193 This method may invoke callbacks (and therefore the handle might be
864     destroyed after it returns).
865    
866 root 1.8 =cut
867    
868 root 1.17 sub _drain_wbuf {
869     my ($self) = @_;
870 root 1.8
871 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
872 root 1.35
873 root 1.8 Scalar::Util::weaken $self;
874 root 1.35
875 root 1.8 my $cb = sub {
876     my $len = syswrite $self->{fh}, $self->{wbuf};
877    
878 root 1.146 if (defined $len) {
879 root 1.8 substr $self->{wbuf}, 0, $len, "";
880    
881 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
882 root 1.43
883 root 1.8 $self->{on_drain}($self)
884 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
885 root 1.8 && $self->{on_drain};
886    
887 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
888 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
889 root 1.52 $self->_error ($!, 1);
890 elmex 1.1 }
891 root 1.8 };
892    
893 root 1.35 # try to write data immediately
894 root 1.70 $cb->() unless $self->{autocork};
895 root 1.8
896 root 1.35 # if still data left in wbuf, we need to poll
897 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
898 root 1.35 if length $self->{wbuf};
899 root 1.8 };
900     }
901    
902 root 1.30 our %WH;
903    
904 root 1.185 # deprecated
905 root 1.30 sub register_write_type($$) {
906     $WH{$_[0]} = $_[1];
907     }
908    
909 root 1.17 sub push_write {
910     my $self = shift;
911    
912 root 1.29 if (@_ > 1) {
913     my $type = shift;
914    
915 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
916     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
917 root 1.29 ->($self, @_);
918     }
919    
920 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
921     # and diagnose the problem earlier and better.
922    
923 root 1.93 if ($self->{tls}) {
924 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
925 root 1.160 &_dotls ($self) if $self->{fh};
926 root 1.17 } else {
927 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
928 root 1.159 $self->_drain_wbuf if $self->{fh};
929 root 1.17 }
930     }
931    
932 root 1.29 =item $handle->push_write (type => @args)
933    
934 root 1.185 Instead of formatting your data yourself, you can also let this module
935     do the job by specifying a type and type-specific arguments. You
936     can also specify the (fully qualified) name of a package, in which
937     case AnyEvent tries to load the package and then expects to find the
938     C<anyevent_read_type> function inside (see "custom write types", below).
939 root 1.29
940 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
941     drop by and tell us):
942 root 1.29
943     =over 4
944    
945     =item netstring => $string
946    
947     Formats the given value as netstring
948     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
949    
950     =cut
951    
952     register_write_type netstring => sub {
953     my ($self, $string) = @_;
954    
955 root 1.96 (length $string) . ":$string,"
956 root 1.29 };
957    
958 root 1.61 =item packstring => $format, $data
959    
960     An octet string prefixed with an encoded length. The encoding C<$format>
961     uses the same format as a Perl C<pack> format, but must specify a single
962     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
963     optional C<!>, C<< < >> or C<< > >> modifier).
964    
965     =cut
966    
967     register_write_type packstring => sub {
968     my ($self, $format, $string) = @_;
969    
970 root 1.65 pack "$format/a*", $string
971 root 1.61 };
972    
973 root 1.39 =item json => $array_or_hashref
974    
975 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
976     provide your own JSON object, this means it will be encoded to JSON text
977     in UTF-8.
978    
979     JSON objects (and arrays) are self-delimiting, so you can write JSON at
980     one end of a handle and read them at the other end without using any
981     additional framing.
982    
983 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
984     this module doesn't need delimiters after or between JSON texts to be
985     able to read them, many other languages depend on that.
986    
987     A simple RPC protocol that interoperates easily with others is to send
988     JSON arrays (or objects, although arrays are usually the better choice as
989     they mimic how function argument passing works) and a newline after each
990     JSON text:
991    
992     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
993     $handle->push_write ("\012");
994    
995     An AnyEvent::Handle receiver would simply use the C<json> read type and
996     rely on the fact that the newline will be skipped as leading whitespace:
997    
998     $handle->push_read (json => sub { my $array = $_[1]; ... });
999    
1000     Other languages could read single lines terminated by a newline and pass
1001     this line into their JSON decoder of choice.
1002    
1003 root 1.40 =cut
1004    
1005 root 1.179 sub json_coder() {
1006     eval { require JSON::XS; JSON::XS->new->utf8 }
1007     || do { require JSON; JSON->new->utf8 }
1008     }
1009    
1010 root 1.40 register_write_type json => sub {
1011     my ($self, $ref) = @_;
1012    
1013 root 1.179 my $json = $self->{json} ||= json_coder;
1014 root 1.40
1015 root 1.179 $json->encode ($ref)
1016 root 1.40 };
1017    
1018 root 1.63 =item storable => $reference
1019    
1020     Freezes the given reference using L<Storable> and writes it to the
1021     handle. Uses the C<nfreeze> format.
1022    
1023     =cut
1024    
1025     register_write_type storable => sub {
1026     my ($self, $ref) = @_;
1027    
1028     require Storable;
1029    
1030 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1031 root 1.63 };
1032    
1033 root 1.53 =back
1034    
1035 root 1.133 =item $handle->push_shutdown
1036    
1037     Sometimes you know you want to close the socket after writing your data
1038     before it was actually written. One way to do that is to replace your
1039 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1040     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1041     replaces the C<on_drain> callback with:
1042 root 1.133
1043     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1044    
1045     This simply shuts down the write side and signals an EOF condition to the
1046     the peer.
1047    
1048     You can rely on the normal read queue and C<on_eof> handling
1049     afterwards. This is the cleanest way to close a connection.
1050    
1051 root 1.193 This method may invoke callbacks (and therefore the handle might be
1052     destroyed after it returns).
1053    
1054 root 1.133 =cut
1055    
1056     sub push_shutdown {
1057 root 1.142 my ($self) = @_;
1058    
1059     delete $self->{low_water_mark};
1060     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1061 root 1.133 }
1062    
1063 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1064    
1065     Instead of one of the predefined types, you can also specify the name of
1066     a package. AnyEvent will try to load the package and then expects to find
1067     a function named C<anyevent_write_type> inside. If it isn't found, it
1068     progressively tries to load the parent package until it either finds the
1069     function (good) or runs out of packages (bad).
1070    
1071     Whenever the given C<type> is used, C<push_write> will the function with
1072     the handle object and the remaining arguments.
1073    
1074     The function is supposed to return a single octet string that will be
1075     appended to the write buffer, so you cna mentally treat this function as a
1076     "arguments to on-the-wire-format" converter.
1077 root 1.30
1078 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1079     arguments using the first one.
1080 root 1.29
1081 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1082 root 1.29
1083 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1084     # the "My" modules to be auto-loaded, or just about anywhere when the
1085     # My::Type::anyevent_write_type is defined before invoking it.
1086    
1087     package My::Type;
1088    
1089     sub anyevent_write_type {
1090     my ($handle, $delim, @args) = @_;
1091    
1092     join $delim, @args
1093     }
1094 root 1.29
1095 root 1.30 =cut
1096 root 1.29
1097 root 1.8 #############################################################################
1098    
1099 root 1.9 =back
1100    
1101     =head2 READ QUEUE
1102    
1103     AnyEvent::Handle manages two queues per handle, one for writing and one
1104     for reading.
1105    
1106     The read queue is more complex than the write queue. It can be used in two
1107     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1108     a queue.
1109    
1110     In the simple case, you just install an C<on_read> callback and whenever
1111     new data arrives, it will be called. You can then remove some data (if
1112 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
1113     leave the data there if you want to accumulate more (e.g. when only a
1114     partial message has been received so far).
1115 root 1.9
1116     In the more complex case, you want to queue multiple callbacks. In this
1117     case, AnyEvent::Handle will call the first queued callback each time new
1118 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1119     done its job (see C<push_read>, below).
1120 root 1.9
1121     This way you can, for example, push three line-reads, followed by reading
1122     a chunk of data, and AnyEvent::Handle will execute them in order.
1123    
1124     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1125     the specified number of bytes which give an XML datagram.
1126    
1127     # in the default state, expect some header bytes
1128     $handle->on_read (sub {
1129     # some data is here, now queue the length-header-read (4 octets)
1130 root 1.52 shift->unshift_read (chunk => 4, sub {
1131 root 1.9 # header arrived, decode
1132     my $len = unpack "N", $_[1];
1133    
1134     # now read the payload
1135 root 1.52 shift->unshift_read (chunk => $len, sub {
1136 root 1.9 my $xml = $_[1];
1137     # handle xml
1138     });
1139     });
1140     });
1141    
1142 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1143     and another line or "ERROR" for the first request that is sent, and 64
1144     bytes for the second request. Due to the availability of a queue, we can
1145     just pipeline sending both requests and manipulate the queue as necessary
1146     in the callbacks.
1147    
1148     When the first callback is called and sees an "OK" response, it will
1149     C<unshift> another line-read. This line-read will be queued I<before> the
1150     64-byte chunk callback.
1151 root 1.9
1152 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1153 root 1.9 $handle->push_write ("request 1\015\012");
1154    
1155     # we expect "ERROR" or "OK" as response, so push a line read
1156 root 1.52 $handle->push_read (line => sub {
1157 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1158     # so it will be read before the second request reads its 64 bytes
1159     # which are already in the queue when this callback is called
1160     # we don't do this in case we got an error
1161     if ($_[1] eq "OK") {
1162 root 1.52 $_[0]->unshift_read (line => sub {
1163 root 1.9 my $response = $_[1];
1164     ...
1165     });
1166     }
1167     });
1168    
1169 root 1.69 # request two, simply returns 64 octets
1170 root 1.9 $handle->push_write ("request 2\015\012");
1171    
1172     # simply read 64 bytes, always
1173 root 1.52 $handle->push_read (chunk => 64, sub {
1174 root 1.9 my $response = $_[1];
1175     ...
1176     });
1177    
1178     =over 4
1179    
1180 root 1.10 =cut
1181    
1182 root 1.8 sub _drain_rbuf {
1183     my ($self) = @_;
1184 elmex 1.1
1185 root 1.159 # avoid recursion
1186 root 1.167 return if $self->{_skip_drain_rbuf};
1187 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1188 root 1.59
1189     while () {
1190 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1191     # we are draining the buffer, and this can only happen with TLS.
1192 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1193     if exists $self->{_tls_rbuf};
1194 root 1.115
1195 root 1.59 my $len = length $self->{rbuf};
1196 elmex 1.1
1197 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1198 root 1.29 unless ($cb->($self)) {
1199 root 1.163 # no progress can be made
1200     # (not enough data and no data forthcoming)
1201     $self->_error (Errno::EPIPE, 1), return
1202     if $self->{_eof};
1203 root 1.10
1204 root 1.38 unshift @{ $self->{_queue} }, $cb;
1205 root 1.55 last;
1206 root 1.8 }
1207     } elsif ($self->{on_read}) {
1208 root 1.61 last unless $len;
1209    
1210 root 1.8 $self->{on_read}($self);
1211    
1212     if (
1213 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1214     && !@{ $self->{_queue} } # and the queue is still empty
1215     && $self->{on_read} # but we still have on_read
1216 root 1.8 ) {
1217 root 1.55 # no further data will arrive
1218     # so no progress can be made
1219 root 1.150 $self->_error (Errno::EPIPE, 1), return
1220 root 1.55 if $self->{_eof};
1221    
1222     last; # more data might arrive
1223 elmex 1.1 }
1224 root 1.8 } else {
1225     # read side becomes idle
1226 root 1.93 delete $self->{_rw} unless $self->{tls};
1227 root 1.55 last;
1228 root 1.8 }
1229     }
1230    
1231 root 1.80 if ($self->{_eof}) {
1232 root 1.163 $self->{on_eof}
1233     ? $self->{on_eof}($self)
1234     : $self->_error (0, 1, "Unexpected end-of-file");
1235    
1236     return;
1237 root 1.80 }
1238 root 1.55
1239 root 1.169 if (
1240     defined $self->{rbuf_max}
1241     && $self->{rbuf_max} < length $self->{rbuf}
1242     ) {
1243     $self->_error (Errno::ENOSPC, 1), return;
1244     }
1245    
1246 root 1.55 # may need to restart read watcher
1247     unless ($self->{_rw}) {
1248     $self->start_read
1249     if $self->{on_read} || @{ $self->{_queue} };
1250     }
1251 elmex 1.1 }
1252    
1253 root 1.8 =item $handle->on_read ($cb)
1254 elmex 1.1
1255 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1256     the new callback is C<undef>). See the description of C<on_read> in the
1257     constructor.
1258 elmex 1.1
1259 root 1.193 This method may invoke callbacks (and therefore the handle might be
1260     destroyed after it returns).
1261    
1262 root 1.8 =cut
1263    
1264     sub on_read {
1265     my ($self, $cb) = @_;
1266 elmex 1.1
1267 root 1.8 $self->{on_read} = $cb;
1268 root 1.159 $self->_drain_rbuf if $cb;
1269 elmex 1.1 }
1270    
1271 root 1.8 =item $handle->rbuf
1272    
1273     Returns the read buffer (as a modifiable lvalue).
1274 elmex 1.1
1275 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1276     member, if you want. However, the only operation allowed on the
1277     read buffer (apart from looking at it) is removing data from its
1278     beginning. Otherwise modifying or appending to it is not allowed and will
1279     lead to hard-to-track-down bugs.
1280 elmex 1.1
1281 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1282     C<push_read> or C<unshift_read> methods are used. The other read methods
1283     automatically manage the read buffer.
1284 elmex 1.1
1285     =cut
1286    
1287 elmex 1.2 sub rbuf : lvalue {
1288 root 1.8 $_[0]{rbuf}
1289 elmex 1.2 }
1290 elmex 1.1
1291 root 1.8 =item $handle->push_read ($cb)
1292    
1293     =item $handle->unshift_read ($cb)
1294    
1295     Append the given callback to the end of the queue (C<push_read>) or
1296     prepend it (C<unshift_read>).
1297    
1298     The callback is called each time some additional read data arrives.
1299 elmex 1.1
1300 elmex 1.20 It must check whether enough data is in the read buffer already.
1301 elmex 1.1
1302 root 1.8 If not enough data is available, it must return the empty list or a false
1303     value, in which case it will be called repeatedly until enough data is
1304     available (or an error condition is detected).
1305    
1306     If enough data was available, then the callback must remove all data it is
1307     interested in (which can be none at all) and return a true value. After returning
1308     true, it will be removed from the queue.
1309 elmex 1.1
1310 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1311     destroyed after it returns).
1312    
1313 elmex 1.1 =cut
1314    
1315 root 1.30 our %RH;
1316    
1317     sub register_read_type($$) {
1318     $RH{$_[0]} = $_[1];
1319     }
1320    
1321 root 1.8 sub push_read {
1322 root 1.28 my $self = shift;
1323     my $cb = pop;
1324    
1325     if (@_) {
1326     my $type = shift;
1327    
1328 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1329     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1330 root 1.28 ->($self, $cb, @_);
1331     }
1332 elmex 1.1
1333 root 1.38 push @{ $self->{_queue} }, $cb;
1334 root 1.159 $self->_drain_rbuf;
1335 elmex 1.1 }
1336    
1337 root 1.8 sub unshift_read {
1338 root 1.28 my $self = shift;
1339     my $cb = pop;
1340    
1341     if (@_) {
1342     my $type = shift;
1343    
1344     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1345     ->($self, $cb, @_);
1346     }
1347    
1348 root 1.38 unshift @{ $self->{_queue} }, $cb;
1349 root 1.159 $self->_drain_rbuf;
1350 root 1.8 }
1351 elmex 1.1
1352 root 1.28 =item $handle->push_read (type => @args, $cb)
1353 elmex 1.1
1354 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1355 elmex 1.1
1356 root 1.28 Instead of providing a callback that parses the data itself you can chose
1357     between a number of predefined parsing formats, for chunks of data, lines
1358 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1359     which case AnyEvent tries to load the package and then expects to find the
1360     C<anyevent_read_type> function inside (see "custom read types", below).
1361 elmex 1.1
1362 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1363     drop by and tell us):
1364 root 1.28
1365     =over 4
1366    
1367 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1368 root 1.28
1369     Invoke the callback only once C<$octets> bytes have been read. Pass the
1370     data read to the callback. The callback will never be called with less
1371     data.
1372    
1373     Example: read 2 bytes.
1374    
1375     $handle->push_read (chunk => 2, sub {
1376     warn "yay ", unpack "H*", $_[1];
1377     });
1378 elmex 1.1
1379     =cut
1380    
1381 root 1.28 register_read_type chunk => sub {
1382     my ($self, $cb, $len) = @_;
1383 elmex 1.1
1384 root 1.8 sub {
1385     $len <= length $_[0]{rbuf} or return;
1386 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1387 root 1.8 1
1388     }
1389 root 1.28 };
1390 root 1.8
1391 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1392 elmex 1.1
1393 root 1.8 The callback will be called only once a full line (including the end of
1394     line marker, C<$eol>) has been read. This line (excluding the end of line
1395     marker) will be passed to the callback as second argument (C<$line>), and
1396     the end of line marker as the third argument (C<$eol>).
1397 elmex 1.1
1398 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1399     will be interpreted as a fixed record end marker, or it can be a regex
1400     object (e.g. created by C<qr>), in which case it is interpreted as a
1401     regular expression.
1402 elmex 1.1
1403 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1404     undef), then C<qr|\015?\012|> is used (which is good for most internet
1405     protocols).
1406 elmex 1.1
1407 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1408     not marked by the end of line marker.
1409 elmex 1.1
1410 root 1.8 =cut
1411 elmex 1.1
1412 root 1.28 register_read_type line => sub {
1413     my ($self, $cb, $eol) = @_;
1414 elmex 1.1
1415 root 1.76 if (@_ < 3) {
1416     # this is more than twice as fast as the generic code below
1417     sub {
1418     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1419 elmex 1.1
1420 root 1.76 $cb->($_[0], $1, $2);
1421     1
1422     }
1423     } else {
1424     $eol = quotemeta $eol unless ref $eol;
1425     $eol = qr|^(.*?)($eol)|s;
1426    
1427     sub {
1428     $_[0]{rbuf} =~ s/$eol// or return;
1429 elmex 1.1
1430 root 1.76 $cb->($_[0], $1, $2);
1431     1
1432     }
1433 root 1.8 }
1434 root 1.28 };
1435 elmex 1.1
1436 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1437 root 1.36
1438     Makes a regex match against the regex object C<$accept> and returns
1439     everything up to and including the match.
1440    
1441     Example: read a single line terminated by '\n'.
1442    
1443     $handle->push_read (regex => qr<\n>, sub { ... });
1444    
1445     If C<$reject> is given and not undef, then it determines when the data is
1446     to be rejected: it is matched against the data when the C<$accept> regex
1447     does not match and generates an C<EBADMSG> error when it matches. This is
1448     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1449     receive buffer overflow).
1450    
1451     Example: expect a single decimal number followed by whitespace, reject
1452     anything else (not the use of an anchor).
1453    
1454     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1455    
1456     If C<$skip> is given and not C<undef>, then it will be matched against
1457     the receive buffer when neither C<$accept> nor C<$reject> match,
1458     and everything preceding and including the match will be accepted
1459     unconditionally. This is useful to skip large amounts of data that you
1460     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1461     have to start matching from the beginning. This is purely an optimisation
1462     and is usually worth only when you expect more than a few kilobytes.
1463    
1464     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1465     expect the header to be very large (it isn't in practise, but...), we use
1466     a skip regex to skip initial portions. The skip regex is tricky in that
1467     it only accepts something not ending in either \015 or \012, as these are
1468     required for the accept regex.
1469    
1470     $handle->push_read (regex =>
1471     qr<\015\012\015\012>,
1472     undef, # no reject
1473     qr<^.*[^\015\012]>,
1474     sub { ... });
1475    
1476     =cut
1477    
1478     register_read_type regex => sub {
1479     my ($self, $cb, $accept, $reject, $skip) = @_;
1480    
1481     my $data;
1482     my $rbuf = \$self->{rbuf};
1483    
1484     sub {
1485     # accept
1486     if ($$rbuf =~ $accept) {
1487     $data .= substr $$rbuf, 0, $+[0], "";
1488     $cb->($self, $data);
1489     return 1;
1490     }
1491    
1492     # reject
1493     if ($reject && $$rbuf =~ $reject) {
1494 root 1.150 $self->_error (Errno::EBADMSG);
1495 root 1.36 }
1496    
1497     # skip
1498     if ($skip && $$rbuf =~ $skip) {
1499     $data .= substr $$rbuf, 0, $+[0], "";
1500     }
1501    
1502     ()
1503     }
1504     };
1505    
1506 root 1.61 =item netstring => $cb->($handle, $string)
1507    
1508     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1509    
1510     Throws an error with C<$!> set to EBADMSG on format violations.
1511    
1512     =cut
1513    
1514     register_read_type netstring => sub {
1515     my ($self, $cb) = @_;
1516    
1517     sub {
1518     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1519     if ($_[0]{rbuf} =~ /[^0-9]/) {
1520 root 1.150 $self->_error (Errno::EBADMSG);
1521 root 1.61 }
1522     return;
1523     }
1524    
1525     my $len = $1;
1526    
1527     $self->unshift_read (chunk => $len, sub {
1528     my $string = $_[1];
1529     $_[0]->unshift_read (chunk => 1, sub {
1530     if ($_[1] eq ",") {
1531     $cb->($_[0], $string);
1532     } else {
1533 root 1.150 $self->_error (Errno::EBADMSG);
1534 root 1.61 }
1535     });
1536     });
1537    
1538     1
1539     }
1540     };
1541    
1542     =item packstring => $format, $cb->($handle, $string)
1543    
1544     An octet string prefixed with an encoded length. The encoding C<$format>
1545     uses the same format as a Perl C<pack> format, but must specify a single
1546     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1547     optional C<!>, C<< < >> or C<< > >> modifier).
1548    
1549 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1550     EPP uses a prefix of C<N> (4 octtes).
1551 root 1.61
1552     Example: read a block of data prefixed by its length in BER-encoded
1553     format (very efficient).
1554    
1555     $handle->push_read (packstring => "w", sub {
1556     my ($handle, $data) = @_;
1557     });
1558    
1559     =cut
1560    
1561     register_read_type packstring => sub {
1562     my ($self, $cb, $format) = @_;
1563    
1564     sub {
1565     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1566 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1567 root 1.61 or return;
1568    
1569 root 1.77 $format = length pack $format, $len;
1570 root 1.61
1571 root 1.77 # bypass unshift if we already have the remaining chunk
1572     if ($format + $len <= length $_[0]{rbuf}) {
1573     my $data = substr $_[0]{rbuf}, $format, $len;
1574     substr $_[0]{rbuf}, 0, $format + $len, "";
1575     $cb->($_[0], $data);
1576     } else {
1577     # remove prefix
1578     substr $_[0]{rbuf}, 0, $format, "";
1579    
1580     # read remaining chunk
1581     $_[0]->unshift_read (chunk => $len, $cb);
1582     }
1583 root 1.61
1584     1
1585     }
1586     };
1587    
1588 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1589    
1590 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1591     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1592 root 1.40
1593     If a C<json> object was passed to the constructor, then that will be used
1594     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1595    
1596     This read type uses the incremental parser available with JSON version
1597     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1598     dependency on your own: this module will load the JSON module, but
1599     AnyEvent does not depend on it itself.
1600    
1601     Since JSON texts are fully self-delimiting, the C<json> read and write
1602 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1603     the C<json> write type description, above, for an actual example.
1604 root 1.40
1605     =cut
1606    
1607     register_read_type json => sub {
1608 root 1.63 my ($self, $cb) = @_;
1609 root 1.40
1610 root 1.179 my $json = $self->{json} ||= json_coder;
1611 root 1.40
1612     my $data;
1613     my $rbuf = \$self->{rbuf};
1614    
1615     sub {
1616 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1617 root 1.110
1618 root 1.113 if ($ref) {
1619     $self->{rbuf} = $json->incr_text;
1620     $json->incr_text = "";
1621     $cb->($self, $ref);
1622 root 1.110
1623     1
1624 root 1.113 } elsif ($@) {
1625 root 1.111 # error case
1626 root 1.110 $json->incr_skip;
1627 root 1.40
1628     $self->{rbuf} = $json->incr_text;
1629     $json->incr_text = "";
1630    
1631 root 1.150 $self->_error (Errno::EBADMSG);
1632 root 1.114
1633 root 1.113 ()
1634     } else {
1635     $self->{rbuf} = "";
1636 root 1.114
1637 root 1.113 ()
1638     }
1639 root 1.40 }
1640     };
1641    
1642 root 1.63 =item storable => $cb->($handle, $ref)
1643    
1644     Deserialises a L<Storable> frozen representation as written by the
1645     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1646     data).
1647    
1648     Raises C<EBADMSG> error if the data could not be decoded.
1649    
1650     =cut
1651    
1652     register_read_type storable => sub {
1653     my ($self, $cb) = @_;
1654    
1655     require Storable;
1656    
1657     sub {
1658     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1659 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1660 root 1.63 or return;
1661    
1662 root 1.77 my $format = length pack "w", $len;
1663 root 1.63
1664 root 1.77 # bypass unshift if we already have the remaining chunk
1665     if ($format + $len <= length $_[0]{rbuf}) {
1666     my $data = substr $_[0]{rbuf}, $format, $len;
1667     substr $_[0]{rbuf}, 0, $format + $len, "";
1668     $cb->($_[0], Storable::thaw ($data));
1669     } else {
1670     # remove prefix
1671     substr $_[0]{rbuf}, 0, $format, "";
1672    
1673     # read remaining chunk
1674     $_[0]->unshift_read (chunk => $len, sub {
1675     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1676     $cb->($_[0], $ref);
1677     } else {
1678 root 1.150 $self->_error (Errno::EBADMSG);
1679 root 1.77 }
1680     });
1681     }
1682    
1683     1
1684 root 1.63 }
1685     };
1686    
1687 root 1.28 =back
1688    
1689 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1690 root 1.30
1691 root 1.185 Instead of one of the predefined types, you can also specify the name
1692     of a package. AnyEvent will try to load the package and then expects to
1693     find a function named C<anyevent_read_type> inside. If it isn't found, it
1694     progressively tries to load the parent package until it either finds the
1695     function (good) or runs out of packages (bad).
1696    
1697     Whenever this type is used, C<push_read> will invoke the function with the
1698     handle object, the original callback and the remaining arguments.
1699    
1700     The function is supposed to return a callback (usually a closure) that
1701     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1702     mentally treat the function as a "configurable read type to read callback"
1703     converter.
1704    
1705     It should invoke the original callback when it is done reading (remember
1706     to pass C<$handle> as first argument as all other callbacks do that,
1707     although there is no strict requirement on this).
1708 root 1.30
1709 root 1.185 For examples, see the source of this module (F<perldoc -m
1710     AnyEvent::Handle>, search for C<register_read_type>)).
1711 root 1.30
1712 root 1.10 =item $handle->stop_read
1713    
1714     =item $handle->start_read
1715    
1716 root 1.18 In rare cases you actually do not want to read anything from the
1717 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1718 root 1.22 any queued callbacks will be executed then. To start reading again, call
1719 root 1.10 C<start_read>.
1720    
1721 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1722     you change the C<on_read> callback or push/unshift a read callback, and it
1723     will automatically C<stop_read> for you when neither C<on_read> is set nor
1724     there are any read requests in the queue.
1725    
1726 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1727     half-duplex connections).
1728    
1729 root 1.10 =cut
1730    
1731     sub stop_read {
1732     my ($self) = @_;
1733 elmex 1.1
1734 root 1.93 delete $self->{_rw} unless $self->{tls};
1735 root 1.8 }
1736 elmex 1.1
1737 root 1.10 sub start_read {
1738     my ($self) = @_;
1739    
1740 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1741 root 1.10 Scalar::Util::weaken $self;
1742    
1743 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1744 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1745 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1746 root 1.10
1747     if ($len > 0) {
1748 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1749 root 1.43
1750 root 1.93 if ($self->{tls}) {
1751     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1752 root 1.97
1753 root 1.93 &_dotls ($self);
1754     } else {
1755 root 1.159 $self->_drain_rbuf;
1756 root 1.93 }
1757 root 1.10
1758     } elsif (defined $len) {
1759 root 1.38 delete $self->{_rw};
1760     $self->{_eof} = 1;
1761 root 1.159 $self->_drain_rbuf;
1762 root 1.10
1763 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1764 root 1.52 return $self->_error ($!, 1);
1765 root 1.10 }
1766 root 1.175 };
1767 root 1.10 }
1768 elmex 1.1 }
1769    
1770 root 1.133 our $ERROR_SYSCALL;
1771     our $ERROR_WANT_READ;
1772    
1773     sub _tls_error {
1774     my ($self, $err) = @_;
1775    
1776     return $self->_error ($!, 1)
1777     if $err == Net::SSLeay::ERROR_SYSCALL ();
1778    
1779 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1780    
1781     # reduce error string to look less scary
1782     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1783    
1784 root 1.143 if ($self->{_on_starttls}) {
1785     (delete $self->{_on_starttls})->($self, undef, $err);
1786     &_freetls;
1787     } else {
1788     &_freetls;
1789 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1790 root 1.143 }
1791 root 1.133 }
1792    
1793 root 1.97 # poll the write BIO and send the data if applicable
1794 root 1.133 # also decode read data if possible
1795     # this is basiclaly our TLS state machine
1796     # more efficient implementations are possible with openssl,
1797     # but not with the buggy and incomplete Net::SSLeay.
1798 root 1.19 sub _dotls {
1799     my ($self) = @_;
1800    
1801 root 1.97 my $tmp;
1802 root 1.56
1803 root 1.38 if (length $self->{_tls_wbuf}) {
1804 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1805     substr $self->{_tls_wbuf}, 0, $tmp, "";
1806 root 1.22 }
1807 root 1.133
1808     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1809     return $self->_tls_error ($tmp)
1810     if $tmp != $ERROR_WANT_READ
1811 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1812 root 1.19 }
1813    
1814 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1815     unless (length $tmp) {
1816 root 1.143 $self->{_on_starttls}
1817     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1818 root 1.92 &_freetls;
1819 root 1.143
1820 root 1.142 if ($self->{on_stoptls}) {
1821     $self->{on_stoptls}($self);
1822     return;
1823     } else {
1824     # let's treat SSL-eof as we treat normal EOF
1825     delete $self->{_rw};
1826     $self->{_eof} = 1;
1827     }
1828 root 1.56 }
1829 root 1.91
1830 root 1.116 $self->{_tls_rbuf} .= $tmp;
1831 root 1.159 $self->_drain_rbuf;
1832 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1833 root 1.23 }
1834    
1835 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1836 root 1.133 return $self->_tls_error ($tmp)
1837     if $tmp != $ERROR_WANT_READ
1838 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1839 root 1.91
1840 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1841     $self->{wbuf} .= $tmp;
1842 root 1.91 $self->_drain_wbuf;
1843 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1844 root 1.91 }
1845 root 1.142
1846     $self->{_on_starttls}
1847     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1848 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1849 root 1.19 }
1850    
1851 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1852    
1853     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1854     object is created, you can also do that at a later time by calling
1855     C<starttls>.
1856    
1857 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1858     write data and then call C<< ->starttls >> then TLS negotiation will start
1859     immediately, after which the queued write data is then sent.
1860    
1861 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1862     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1863    
1864 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1865     when AnyEvent::Handle has to create its own TLS connection object, or
1866     a hash reference with C<< key => value >> pairs that will be used to
1867     construct a new context.
1868    
1869     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1870     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1871     changed to your liking. Note that the handshake might have already started
1872     when this function returns.
1873 root 1.38
1874 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1875     handshakes on the same stream. Best do not attempt to use the stream after
1876     stopping TLS.
1877 root 1.92
1878 root 1.193 This method may invoke callbacks (and therefore the handle might be
1879     destroyed after it returns).
1880    
1881 root 1.25 =cut
1882    
1883 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1884    
1885 root 1.19 sub starttls {
1886 root 1.160 my ($self, $tls, $ctx) = @_;
1887    
1888     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1889     if $self->{tls};
1890    
1891     $self->{tls} = $tls;
1892     $self->{tls_ctx} = $ctx if @_ > 2;
1893    
1894     return unless $self->{fh};
1895 root 1.19
1896 root 1.94 require Net::SSLeay;
1897    
1898 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1899     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1900 root 1.133
1901 root 1.180 $tls = delete $self->{tls};
1902 root 1.160 $ctx = $self->{tls_ctx};
1903 root 1.131
1904 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1905    
1906 root 1.131 if ("HASH" eq ref $ctx) {
1907     require AnyEvent::TLS;
1908    
1909 root 1.137 if ($ctx->{cache}) {
1910     my $key = $ctx+0;
1911     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1912     } else {
1913     $ctx = new AnyEvent::TLS %$ctx;
1914     }
1915 root 1.131 }
1916 root 1.92
1917 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1918 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1919 root 1.19
1920 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1921     # but the openssl maintainers basically said: "trust us, it just works".
1922     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1923     # and mismaintained ssleay-module doesn't even offer them).
1924 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1925 root 1.87 #
1926     # in short: this is a mess.
1927     #
1928 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1929 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1930 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1931     # have identity issues in that area.
1932 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1933     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1934     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1935 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1936 root 1.21
1937 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1938     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1939 root 1.19
1940 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1941    
1942 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1943 root 1.19
1944 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1945 root 1.143 if $self->{on_starttls};
1946 root 1.142
1947 root 1.93 &_dotls; # need to trigger the initial handshake
1948     $self->start_read; # make sure we actually do read
1949 root 1.19 }
1950    
1951 root 1.25 =item $handle->stoptls
1952    
1953 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1954     sending a close notify to the other side, but since OpenSSL doesn't
1955 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1956 root 1.160 the stream afterwards.
1957 root 1.25
1958 root 1.193 This method may invoke callbacks (and therefore the handle might be
1959     destroyed after it returns).
1960    
1961 root 1.25 =cut
1962    
1963     sub stoptls {
1964     my ($self) = @_;
1965    
1966 root 1.192 if ($self->{tls} && $self->{fh}) {
1967 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1968 root 1.92
1969     &_dotls;
1970    
1971 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1972     # # we, we... have to use openssl :/#d#
1973     # &_freetls;#d#
1974 root 1.92 }
1975     }
1976    
1977     sub _freetls {
1978     my ($self) = @_;
1979    
1980     return unless $self->{tls};
1981 root 1.38
1982 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1983 root 1.171 if $self->{tls} > 0;
1984 root 1.92
1985 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1986 root 1.25 }
1987    
1988 root 1.19 sub DESTROY {
1989 root 1.120 my ($self) = @_;
1990 root 1.19
1991 root 1.92 &_freetls;
1992 root 1.62
1993     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1994    
1995 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
1996 root 1.62 my $fh = delete $self->{fh};
1997     my $wbuf = delete $self->{wbuf};
1998    
1999     my @linger;
2000    
2001 root 1.175 push @linger, AE::io $fh, 1, sub {
2002 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2003    
2004     if ($len > 0) {
2005     substr $wbuf, 0, $len, "";
2006     } else {
2007     @linger = (); # end
2008     }
2009 root 1.175 };
2010     push @linger, AE::timer $linger, 0, sub {
2011 root 1.62 @linger = ();
2012 root 1.175 };
2013 root 1.62 }
2014 root 1.19 }
2015    
2016 root 1.99 =item $handle->destroy
2017    
2018 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2019 root 1.141 no further callbacks will be invoked and as many resources as possible
2020 root 1.165 will be freed. Any method you will call on the handle object after
2021     destroying it in this way will be silently ignored (and it will return the
2022     empty list).
2023 root 1.99
2024 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2025     object and it will simply shut down. This works in fatal error and EOF
2026     callbacks, as well as code outside. It does I<NOT> work in a read or write
2027     callback, so when you want to destroy the AnyEvent::Handle object from
2028     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2029     that case.
2030    
2031 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2032     will be removed as well, so if those are the only reference holders (as
2033     is common), then one doesn't need to do anything special to break any
2034     reference cycles.
2035    
2036 root 1.99 The handle might still linger in the background and write out remaining
2037     data, as specified by the C<linger> option, however.
2038    
2039     =cut
2040    
2041     sub destroy {
2042     my ($self) = @_;
2043    
2044     $self->DESTROY;
2045     %$self = ();
2046 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2047     }
2048    
2049 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2050     #nop
2051 root 1.99 }
2052    
2053 root 1.192 =item $handle->destroyed
2054    
2055     Returns false as long as the handle hasn't been destroyed by a call to C<<
2056     ->destroy >>, true otherwise.
2057    
2058     Can be useful to decide whether the handle is still valid after some
2059     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2060     C<< ->starttls >> and other methods can call user callbacks, which in turn
2061     can destroy the handle, so work can be avoided by checking sometimes:
2062    
2063     $hdl->starttls ("accept");
2064     return if $hdl->destroyed;
2065     $hdl->push_write (...
2066    
2067     Note that the call to C<push_write> will silently be ignored if the handle
2068     has been destroyed, so often you can just ignore the possibility of the
2069     handle being destroyed.
2070    
2071     =cut
2072    
2073     sub destroyed { 0 }
2074     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2075    
2076 root 1.19 =item AnyEvent::Handle::TLS_CTX
2077    
2078 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2079     for TLS mode.
2080 root 1.19
2081 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2082 root 1.19
2083     =cut
2084    
2085     our $TLS_CTX;
2086    
2087     sub TLS_CTX() {
2088 root 1.131 $TLS_CTX ||= do {
2089     require AnyEvent::TLS;
2090 root 1.19
2091 root 1.131 new AnyEvent::TLS
2092 root 1.19 }
2093     }
2094    
2095 elmex 1.1 =back
2096    
2097 root 1.95
2098     =head1 NONFREQUENTLY ASKED QUESTIONS
2099    
2100     =over 4
2101    
2102 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2103     still get further invocations!
2104    
2105     That's because AnyEvent::Handle keeps a reference to itself when handling
2106     read or write callbacks.
2107    
2108     It is only safe to "forget" the reference inside EOF or error callbacks,
2109     from within all other callbacks, you need to explicitly call the C<<
2110     ->destroy >> method.
2111    
2112     =item I get different callback invocations in TLS mode/Why can't I pause
2113     reading?
2114    
2115     Unlike, say, TCP, TLS connections do not consist of two independent
2116     communication channels, one for each direction. Or put differently. The
2117     read and write directions are not independent of each other: you cannot
2118     write data unless you are also prepared to read, and vice versa.
2119    
2120     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2121     callback invocations when you are not expecting any read data - the reason
2122     is that AnyEvent::Handle always reads in TLS mode.
2123    
2124     During the connection, you have to make sure that you always have a
2125     non-empty read-queue, or an C<on_read> watcher. At the end of the
2126     connection (or when you no longer want to use it) you can call the
2127     C<destroy> method.
2128    
2129 root 1.95 =item How do I read data until the other side closes the connection?
2130    
2131 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2132     to achieve this is by setting an C<on_read> callback that does nothing,
2133     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2134     will be in C<$_[0]{rbuf}>:
2135 root 1.95
2136     $handle->on_read (sub { });
2137     $handle->on_eof (undef);
2138     $handle->on_error (sub {
2139     my $data = delete $_[0]{rbuf};
2140     });
2141    
2142     The reason to use C<on_error> is that TCP connections, due to latencies
2143     and packets loss, might get closed quite violently with an error, when in
2144     fact, all data has been received.
2145    
2146 root 1.101 It is usually better to use acknowledgements when transferring data,
2147 root 1.95 to make sure the other side hasn't just died and you got the data
2148     intact. This is also one reason why so many internet protocols have an
2149     explicit QUIT command.
2150    
2151 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2152     all data has been written?
2153 root 1.95
2154     After writing your last bits of data, set the C<on_drain> callback
2155     and destroy the handle in there - with the default setting of
2156     C<low_water_mark> this will be called precisely when all data has been
2157     written to the socket:
2158    
2159     $handle->push_write (...);
2160     $handle->on_drain (sub {
2161     warn "all data submitted to the kernel\n";
2162     undef $handle;
2163     });
2164    
2165 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2166     consider using C<< ->push_shutdown >> instead.
2167    
2168     =item I want to contact a TLS/SSL server, I don't care about security.
2169    
2170     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2171     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2172     parameter:
2173    
2174 root 1.144 tcp_connect $host, $port, sub {
2175     my ($fh) = @_;
2176 root 1.143
2177 root 1.144 my $handle = new AnyEvent::Handle
2178     fh => $fh,
2179     tls => "connect",
2180     on_error => sub { ... };
2181    
2182     $handle->push_write (...);
2183     };
2184 root 1.143
2185     =item I want to contact a TLS/SSL server, I do care about security.
2186    
2187 root 1.144 Then you should additionally enable certificate verification, including
2188     peername verification, if the protocol you use supports it (see
2189     L<AnyEvent::TLS>, C<verify_peername>).
2190    
2191     E.g. for HTTPS:
2192    
2193     tcp_connect $host, $port, sub {
2194     my ($fh) = @_;
2195    
2196     my $handle = new AnyEvent::Handle
2197     fh => $fh,
2198     peername => $host,
2199     tls => "connect",
2200     tls_ctx => { verify => 1, verify_peername => "https" },
2201     ...
2202    
2203     Note that you must specify the hostname you connected to (or whatever
2204     "peername" the protocol needs) as the C<peername> argument, otherwise no
2205     peername verification will be done.
2206    
2207     The above will use the system-dependent default set of trusted CA
2208     certificates. If you want to check against a specific CA, add the
2209     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2210    
2211     tls_ctx => {
2212     verify => 1,
2213     verify_peername => "https",
2214     ca_file => "my-ca-cert.pem",
2215     },
2216    
2217     =item I want to create a TLS/SSL server, how do I do that?
2218    
2219     Well, you first need to get a server certificate and key. You have
2220     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2221     self-signed certificate (cheap. check the search engine of your choice,
2222     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2223     nice program for that purpose).
2224    
2225     Then create a file with your private key (in PEM format, see
2226     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2227     file should then look like this:
2228    
2229     -----BEGIN RSA PRIVATE KEY-----
2230     ...header data
2231     ... lots of base64'y-stuff
2232     -----END RSA PRIVATE KEY-----
2233    
2234     -----BEGIN CERTIFICATE-----
2235     ... lots of base64'y-stuff
2236     -----END CERTIFICATE-----
2237    
2238     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2239     specify this file as C<cert_file>:
2240    
2241     tcp_server undef, $port, sub {
2242     my ($fh) = @_;
2243    
2244     my $handle = new AnyEvent::Handle
2245     fh => $fh,
2246     tls => "accept",
2247     tls_ctx => { cert_file => "my-server-keycert.pem" },
2248     ...
2249 root 1.143
2250 root 1.144 When you have intermediate CA certificates that your clients might not
2251     know about, just append them to the C<cert_file>.
2252 root 1.143
2253 root 1.95 =back
2254    
2255    
2256 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2257    
2258     In many cases, you might want to subclass AnyEvent::Handle.
2259    
2260     To make this easier, a given version of AnyEvent::Handle uses these
2261     conventions:
2262    
2263     =over 4
2264    
2265     =item * all constructor arguments become object members.
2266    
2267     At least initially, when you pass a C<tls>-argument to the constructor it
2268 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2269 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2270    
2271     =item * other object member names are prefixed with an C<_>.
2272    
2273     All object members not explicitly documented (internal use) are prefixed
2274     with an underscore character, so the remaining non-C<_>-namespace is free
2275     for use for subclasses.
2276    
2277     =item * all members not documented here and not prefixed with an underscore
2278     are free to use in subclasses.
2279    
2280     Of course, new versions of AnyEvent::Handle may introduce more "public"
2281     member variables, but thats just life, at least it is documented.
2282    
2283     =back
2284    
2285 elmex 1.1 =head1 AUTHOR
2286    
2287 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2288 elmex 1.1
2289     =cut
2290    
2291     1; # End of AnyEvent::Handle