ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.197
Committed: Tue Aug 31 00:59:55 2010 UTC (13 years, 9 months ago) by root
Branch: MAIN
Changes since 1.196: +7 -3 lines
Log Message:
Message-ID: <20100711085944.GA13997@toroid.org>

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.8 This module is a helper module to make it easier to do event-based I/O on
36 root 1.194 stream-based filehandles (sockets, pipes or other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.8 In the following, when the documentation refers to of "bytes" then this
42     means characters. As sysread and syswrite are used for all I/O, their
43     treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 elmex 1.1 =head1 METHODS
81    
82     =over 4
83    
84 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
85 elmex 1.1
86 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
87 elmex 1.1
88     =over 4
89    
90 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
91 root 1.158
92 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
93 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
94     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
95     that mode.
96 root 1.8
97 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
98    
99     Try to connect to the specified host and service (port), using
100     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
101     default C<peername>.
102    
103     You have to specify either this parameter, or C<fh>, above.
104    
105 root 1.160 It is possible to push requests on the read and write queues, and modify
106     properties of the stream, even while AnyEvent::Handle is connecting.
107    
108 root 1.159 When this parameter is specified, then the C<on_prepare>,
109     C<on_connect_error> and C<on_connect> callbacks will be called under the
110     appropriate circumstances:
111    
112     =over 4
113    
114     =item on_prepare => $cb->($handle)
115    
116     This (rarely used) callback is called before a new connection is
117     attempted, but after the file handle has been created. It could be used to
118     prepare the file handle with parameters required for the actual connect
119     (as opposed to settings that can be changed when the connection is already
120     established).
121    
122 root 1.161 The return value of this callback should be the connect timeout value in
123     seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
124     timeout is to be used).
125    
126 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
127    
128     This callback is called when a connection has been successfully established.
129    
130     The actual numeric host and port (the socket peername) are passed as
131     parameters, together with a retry callback.
132    
133     When, for some reason, the handle is not acceptable, then calling
134 root 1.186 C<$retry> will continue with the next connection target (in case of
135 root 1.159 multi-homed hosts or SRV records there can be multiple connection
136 root 1.186 endpoints). At the time it is called the read and write queues, eof
137     status, tls status and similar properties of the handle will have been
138     reset.
139 root 1.159
140     In most cases, ignoring the C<$retry> parameter is the way to go.
141 root 1.158
142 root 1.159 =item on_connect_error => $cb->($handle, $message)
143 root 1.10
144 root 1.186 This callback is called when the connection could not be
145 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
146     message describing it (usually the same as C<"$!">).
147 root 1.8
148 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
149     fatal error instead.
150 root 1.82
151 root 1.159 =back
152 root 1.80
153 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
154 root 1.10
155 root 1.52 This is the error callback, which is called when, well, some error
156     occured, such as not being able to resolve the hostname, failure to
157     connect or a read error.
158    
159     Some errors are fatal (which is indicated by C<$fatal> being true). On
160 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
161     destroy >>) after invoking the error callback (which means you are free to
162     examine the handle object). Examples of fatal errors are an EOF condition
163 root 1.159 with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
164     cases where the other side can close the connection at their will it is
165     often easiest to not report C<EPIPE> errors in this callback.
166 root 1.82
167 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
168     against, but in some cases (TLS errors), this does not work well. It is
169     recommended to always output the C<$message> argument in human-readable
170     error messages (it's usually the same as C<"$!">).
171    
172 root 1.82 Non-fatal errors can be retried by simply returning, but it is recommended
173     to simply ignore this parameter and instead abondon the handle object
174     when this callback is invoked. Examples of non-fatal errors are timeouts
175     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
176 root 1.8
177 root 1.10 On callback entrance, the value of C<$!> contains the operating system
178 root 1.133 error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
179     C<EPROTO>).
180 root 1.8
181 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
182     you will not be notified of errors otherwise. The default simply calls
183 root 1.52 C<croak>.
184 root 1.8
185 root 1.40 =item on_read => $cb->($handle)
186 root 1.8
187     This sets the default read callback, which is called when data arrives
188 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
189     callback will only be called when at least one octet of data is in the
190     read buffer).
191 root 1.8
192     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
193 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
194 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
195     the beginning from it.
196 root 1.8
197 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
198     modifies the read queue. Or do both. Or ...
199    
200 root 1.8 When an EOF condition is detected then AnyEvent::Handle will first try to
201     feed all the remaining data to the queued callbacks and C<on_read> before
202     calling the C<on_eof> callback. If no progress can be made, then a fatal
203     error will be raised (with C<$!> set to C<EPIPE>).
204 elmex 1.1
205 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
206     doesn't mean you I<require> some data: if there is an EOF and there
207     are outstanding read requests then an error will be flagged. With an
208     C<on_read> callback, the C<on_eof> callback will be invoked.
209    
210 root 1.159 =item on_eof => $cb->($handle)
211    
212     Set the callback to be called when an end-of-file condition is detected,
213     i.e. in the case of a socket, when the other side has closed the
214     connection cleanly, and there are no outstanding read requests in the
215     queue (if there are read requests, then an EOF counts as an unexpected
216     connection close and will be flagged as an error).
217    
218     For sockets, this just means that the other side has stopped sending data,
219     you can still try to write data, and, in fact, one can return from the EOF
220     callback and continue writing data, as only the read part has been shut
221     down.
222    
223     If an EOF condition has been detected but no C<on_eof> callback has been
224     set, then a fatal error will be raised with C<$!> set to <0>.
225    
226 root 1.40 =item on_drain => $cb->($handle)
227 elmex 1.1
228 root 1.8 This sets the callback that is called when the write buffer becomes empty
229     (or when the callback is set and the buffer is empty already).
230 elmex 1.1
231 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
232 elmex 1.2
233 root 1.69 This callback is useful when you don't want to put all of your write data
234     into the queue at once, for example, when you want to write the contents
235     of some file to the socket you might not want to read the whole file into
236     memory and push it into the queue, but instead only read more data from
237     the file when the write queue becomes empty.
238    
239 root 1.43 =item timeout => $fractional_seconds
240    
241 root 1.176 =item rtimeout => $fractional_seconds
242    
243     =item wtimeout => $fractional_seconds
244    
245     If non-zero, then these enables an "inactivity" timeout: whenever this
246     many seconds pass without a successful read or write on the underlying
247     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
248     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
249     error will be raised).
250    
251     There are three variants of the timeouts that work fully independent
252     of each other, for both read and write, just read, and just write:
253     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
254     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
255     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
256 root 1.43
257     Note that timeout processing is also active when you currently do not have
258     any outstanding read or write requests: If you plan to keep the connection
259     idle then you should disable the timout temporarily or ignore the timeout
260 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
261     restart the timeout.
262 root 1.43
263     Zero (the default) disables this timeout.
264    
265     =item on_timeout => $cb->($handle)
266    
267     Called whenever the inactivity timeout passes. If you return from this
268     callback, then the timeout will be reset as if some activity had happened,
269     so this condition is not fatal in any way.
270    
271 root 1.8 =item rbuf_max => <bytes>
272 elmex 1.2
273 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
274     when the read buffer ever (strictly) exceeds this size. This is useful to
275 root 1.88 avoid some forms of denial-of-service attacks.
276 elmex 1.2
277 root 1.8 For example, a server accepting connections from untrusted sources should
278     be configured to accept only so-and-so much data that it cannot act on
279     (for example, when expecting a line, an attacker could send an unlimited
280     amount of data without a callback ever being called as long as the line
281     isn't finished).
282 elmex 1.2
283 root 1.70 =item autocork => <boolean>
284    
285     When disabled (the default), then C<push_write> will try to immediately
286 root 1.88 write the data to the handle, if possible. This avoids having to register
287     a write watcher and wait for the next event loop iteration, but can
288     be inefficient if you write multiple small chunks (on the wire, this
289     disadvantage is usually avoided by your kernel's nagle algorithm, see
290     C<no_delay>, but this option can save costly syscalls).
291 root 1.70
292     When enabled, then writes will always be queued till the next event loop
293     iteration. This is efficient when you do many small writes per iteration,
294 root 1.88 but less efficient when you do a single write only per iteration (or when
295     the write buffer often is full). It also increases write latency.
296 root 1.70
297     =item no_delay => <boolean>
298    
299     When doing small writes on sockets, your operating system kernel might
300     wait a bit for more data before actually sending it out. This is called
301     the Nagle algorithm, and usually it is beneficial.
302    
303 root 1.88 In some situations you want as low a delay as possible, which can be
304     accomplishd by setting this option to a true value.
305 root 1.70
306 root 1.88 The default is your opertaing system's default behaviour (most likely
307     enabled), this option explicitly enables or disables it, if possible.
308 root 1.70
309 root 1.182 =item keepalive => <boolean>
310    
311     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
312     normally, TCP connections have no time-out once established, so TCP
313 root 1.186 connections, once established, can stay alive forever even when the other
314 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
315     TCP connections whent he other side becomes unreachable. While the default
316     is OS-dependent, TCP keepalives usually kick in after around two hours,
317     and, if the other side doesn't reply, take down the TCP connection some 10
318     to 15 minutes later.
319    
320     It is harmless to specify this option for file handles that do not support
321     keepalives, and enabling it on connections that are potentially long-lived
322     is usually a good idea.
323    
324     =item oobinline => <boolean>
325    
326     BSD majorly fucked up the implementation of TCP urgent data. The result
327     is that almost no OS implements TCP according to the specs, and every OS
328     implements it slightly differently.
329    
330 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
331     is enabled) gives you the most portable way of getting urgent data, by
332     putting it into the stream.
333    
334     Since BSD emulation of OOB data on top of TCP's urgent data can have
335     security implications, AnyEvent::Handle sets this flag automatically
336 root 1.184 unless explicitly specified. Note that setting this flag after
337     establishing a connection I<may> be a bit too late (data loss could
338     already have occured on BSD systems), but at least it will protect you
339     from most attacks.
340 root 1.182
341 root 1.8 =item read_size => <bytes>
342 elmex 1.2
343 root 1.88 The default read block size (the amount of bytes this module will
344     try to read during each loop iteration, which affects memory
345     requirements). Default: C<8192>.
346 root 1.8
347     =item low_water_mark => <bytes>
348    
349     Sets the amount of bytes (default: C<0>) that make up an "empty" write
350     buffer: If the write reaches this size or gets even samller it is
351     considered empty.
352 elmex 1.2
353 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
354     the write buffer before it is fully drained, but this is a rare case, as
355     the operating system kernel usually buffers data as well, so the default
356     is good in almost all cases.
357    
358 root 1.62 =item linger => <seconds>
359    
360     If non-zero (default: C<3600>), then the destructor of the
361 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
362     write data and will install a watcher that will write this data to the
363     socket. No errors will be reported (this mostly matches how the operating
364     system treats outstanding data at socket close time).
365 root 1.62
366 root 1.88 This will not work for partial TLS data that could not be encoded
367 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
368     help.
369 root 1.62
370 root 1.133 =item peername => $string
371    
372 root 1.134 A string used to identify the remote site - usually the DNS hostname
373     (I<not> IDN!) used to create the connection, rarely the IP address.
374 root 1.131
375 root 1.133 Apart from being useful in error messages, this string is also used in TLS
376 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
377     verification will be skipped when C<peername> is not specified or
378     C<undef>.
379 root 1.131
380 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
381    
382 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
383 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
384 root 1.88 established and will transparently encrypt/decrypt data afterwards.
385 root 1.19
386 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
387     appropriate error message.
388    
389 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
390 root 1.88 automatically when you try to create a TLS handle): this module doesn't
391     have a dependency on that module, so if your module requires it, you have
392     to add the dependency yourself.
393 root 1.26
394 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
395     C<accept>, and for the TLS client side of a connection, use C<connect>
396     mode.
397 root 1.19
398     You can also provide your own TLS connection object, but you have
399     to make sure that you call either C<Net::SSLeay::set_connect_state>
400     or C<Net::SSLeay::set_accept_state> on it before you pass it to
401 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
402     object.
403    
404     At some future point, AnyEvent::Handle might switch to another TLS
405     implementation, then the option to use your own session object will go
406     away.
407 root 1.19
408 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
409     passing in the wrong integer will lead to certain crash. This most often
410     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
411     segmentation fault.
412    
413 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
414 root 1.26
415 root 1.131 =item tls_ctx => $anyevent_tls
416 root 1.19
417 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
418 root 1.19 (unless a connection object was specified directly). If this parameter is
419     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
420    
421 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
422     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
423     new TLS context object.
424    
425 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
426 root 1.142
427     This callback will be invoked when the TLS/SSL handshake has finished. If
428     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
429     (C<on_stoptls> will not be called in this case).
430    
431     The session in C<< $handle->{tls} >> can still be examined in this
432     callback, even when the handshake was not successful.
433    
434 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
435     callback is in effect, instead, the error message will be passed to C<on_starttls>.
436    
437     Without this callback, handshake failures lead to C<on_error> being
438     called, as normal.
439    
440     Note that you cannot call C<starttls> right again in this callback. If you
441     need to do that, start an zero-second timer instead whose callback can
442     then call C<< ->starttls >> again.
443    
444 root 1.142 =item on_stoptls => $cb->($handle)
445    
446     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
447     set, then it will be invoked after freeing the TLS session. If it is not,
448     then a TLS shutdown condition will be treated like a normal EOF condition
449     on the handle.
450    
451     The session in C<< $handle->{tls} >> can still be examined in this
452     callback.
453    
454     This callback will only be called on TLS shutdowns, not when the
455     underlying handle signals EOF.
456    
457 root 1.40 =item json => JSON or JSON::XS object
458    
459     This is the json coder object used by the C<json> read and write types.
460    
461 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
462 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
463     texts.
464 root 1.40
465     Note that you are responsible to depend on the JSON module if you want to
466     use this functionality, as AnyEvent does not have a dependency itself.
467    
468 elmex 1.1 =back
469    
470     =cut
471    
472     sub new {
473 root 1.8 my $class = shift;
474     my $self = bless { @_ }, $class;
475    
476 root 1.159 if ($self->{fh}) {
477     $self->_start;
478     return unless $self->{fh}; # could be gone by now
479    
480     } elsif ($self->{connect}) {
481     require AnyEvent::Socket;
482    
483     $self->{peername} = $self->{connect}[0]
484     unless exists $self->{peername};
485    
486     $self->{_skip_drain_rbuf} = 1;
487    
488     {
489     Scalar::Util::weaken (my $self = $self);
490    
491     $self->{_connect} =
492     AnyEvent::Socket::tcp_connect (
493     $self->{connect}[0],
494     $self->{connect}[1],
495     sub {
496     my ($fh, $host, $port, $retry) = @_;
497    
498     if ($fh) {
499     $self->{fh} = $fh;
500    
501     delete $self->{_skip_drain_rbuf};
502     $self->_start;
503    
504     $self->{on_connect}
505     and $self->{on_connect}($self, $host, $port, sub {
506 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
507 root 1.159 $self->{_skip_drain_rbuf} = 1;
508     &$retry;
509     });
510    
511     } else {
512     if ($self->{on_connect_error}) {
513     $self->{on_connect_error}($self, "$!");
514     $self->destroy;
515     } else {
516 root 1.161 $self->_error ($!, 1);
517 root 1.159 }
518     }
519     },
520     sub {
521     local $self->{fh} = $_[0];
522    
523 root 1.161 $self->{on_prepare}
524     ? $self->{on_prepare}->($self)
525     : ()
526 root 1.159 }
527     );
528     }
529    
530     } else {
531     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
532     }
533    
534     $self
535     }
536    
537     sub _start {
538     my ($self) = @_;
539 root 1.8
540 root 1.194 # too many clueless people try to use udp and similar sockets
541     # with AnyEvent::Handle, do them a favour.
542 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
543     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
544 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
545 root 1.194
546 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
547 elmex 1.1
548 root 1.176 $self->{_activity} =
549     $self->{_ractivity} =
550     $self->{_wactivity} = AE::now;
551    
552 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
553     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
554     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
555    
556 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
557     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
558    
559     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
560 root 1.131
561 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
562 root 1.94 if $self->{tls};
563 root 1.19
564 root 1.182 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
565 root 1.10
566 root 1.66 $self->start_read
567 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
568 root 1.160
569     $self->_drain_wbuf;
570 root 1.8 }
571 elmex 1.2
572 root 1.52 sub _error {
573 root 1.133 my ($self, $errno, $fatal, $message) = @_;
574 root 1.8
575 root 1.52 $! = $errno;
576 root 1.133 $message ||= "$!";
577 root 1.37
578 root 1.52 if ($self->{on_error}) {
579 root 1.133 $self->{on_error}($self, $fatal, $message);
580 root 1.151 $self->destroy if $fatal;
581 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
582 root 1.149 $self->destroy;
583 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
584 root 1.52 }
585 elmex 1.1 }
586    
587 root 1.8 =item $fh = $handle->fh
588 elmex 1.1
589 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
590 elmex 1.1
591     =cut
592    
593 root 1.38 sub fh { $_[0]{fh} }
594 elmex 1.1
595 root 1.8 =item $handle->on_error ($cb)
596 elmex 1.1
597 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
598 elmex 1.1
599 root 1.8 =cut
600    
601     sub on_error {
602     $_[0]{on_error} = $_[1];
603     }
604    
605     =item $handle->on_eof ($cb)
606    
607     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
608 elmex 1.1
609     =cut
610    
611 root 1.8 sub on_eof {
612     $_[0]{on_eof} = $_[1];
613     }
614    
615 root 1.43 =item $handle->on_timeout ($cb)
616    
617 root 1.176 =item $handle->on_rtimeout ($cb)
618    
619     =item $handle->on_wtimeout ($cb)
620    
621     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
622     callback, or disables the callback (but not the timeout) if C<$cb> =
623     C<undef>. See the C<timeout> constructor argument and method.
624 root 1.43
625     =cut
626    
627 root 1.176 # see below
628 root 1.43
629 root 1.70 =item $handle->autocork ($boolean)
630    
631     Enables or disables the current autocork behaviour (see C<autocork>
632 root 1.105 constructor argument). Changes will only take effect on the next write.
633 root 1.70
634     =cut
635    
636 root 1.105 sub autocork {
637     $_[0]{autocork} = $_[1];
638     }
639    
640 root 1.70 =item $handle->no_delay ($boolean)
641    
642     Enables or disables the C<no_delay> setting (see constructor argument of
643     the same name for details).
644    
645     =cut
646    
647     sub no_delay {
648     $_[0]{no_delay} = $_[1];
649    
650     eval {
651     local $SIG{__DIE__};
652 root 1.182 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
653     if $_[0]{fh};
654     };
655     }
656    
657     =item $handle->keepalive ($boolean)
658    
659     Enables or disables the C<keepalive> setting (see constructor argument of
660     the same name for details).
661    
662     =cut
663    
664     sub keepalive {
665     $_[0]{keepalive} = $_[1];
666    
667     eval {
668     local $SIG{__DIE__};
669     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
670     if $_[0]{fh};
671     };
672     }
673    
674     =item $handle->oobinline ($boolean)
675    
676     Enables or disables the C<oobinline> setting (see constructor argument of
677     the same name for details).
678    
679     =cut
680    
681     sub oobinline {
682     $_[0]{oobinline} = $_[1];
683    
684     eval {
685     local $SIG{__DIE__};
686     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
687     if $_[0]{fh};
688     };
689     }
690    
691     =item $handle->keepalive ($boolean)
692    
693     Enables or disables the C<keepalive> setting (see constructor argument of
694     the same name for details).
695    
696     =cut
697    
698     sub keepalive {
699     $_[0]{keepalive} = $_[1];
700    
701     eval {
702     local $SIG{__DIE__};
703     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
704 root 1.159 if $_[0]{fh};
705 root 1.70 };
706     }
707    
708 root 1.142 =item $handle->on_starttls ($cb)
709    
710     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
711    
712     =cut
713    
714     sub on_starttls {
715     $_[0]{on_starttls} = $_[1];
716     }
717    
718     =item $handle->on_stoptls ($cb)
719    
720     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
721    
722     =cut
723    
724 root 1.189 sub on_stoptls {
725 root 1.142 $_[0]{on_stoptls} = $_[1];
726     }
727    
728 root 1.168 =item $handle->rbuf_max ($max_octets)
729    
730     Configures the C<rbuf_max> setting (C<undef> disables it).
731    
732     =cut
733    
734     sub rbuf_max {
735     $_[0]{rbuf_max} = $_[1];
736     }
737    
738 root 1.43 #############################################################################
739    
740     =item $handle->timeout ($seconds)
741    
742 root 1.176 =item $handle->rtimeout ($seconds)
743    
744     =item $handle->wtimeout ($seconds)
745    
746 root 1.43 Configures (or disables) the inactivity timeout.
747    
748 root 1.176 =item $handle->timeout_reset
749    
750     =item $handle->rtimeout_reset
751    
752     =item $handle->wtimeout_reset
753    
754     Reset the activity timeout, as if data was received or sent.
755    
756     These methods are cheap to call.
757    
758 root 1.43 =cut
759    
760 root 1.176 for my $dir ("", "r", "w") {
761     my $timeout = "${dir}timeout";
762     my $tw = "_${dir}tw";
763     my $on_timeout = "on_${dir}timeout";
764     my $activity = "_${dir}activity";
765     my $cb;
766    
767     *$on_timeout = sub {
768     $_[0]{$on_timeout} = $_[1];
769     };
770    
771     *$timeout = sub {
772     my ($self, $new_value) = @_;
773 root 1.43
774 root 1.176 $self->{$timeout} = $new_value;
775     delete $self->{$tw}; &$cb;
776     };
777 root 1.43
778 root 1.176 *{"${dir}timeout_reset"} = sub {
779     $_[0]{$activity} = AE::now;
780     };
781 root 1.43
782 root 1.176 # main workhorse:
783     # reset the timeout watcher, as neccessary
784     # also check for time-outs
785     $cb = sub {
786     my ($self) = @_;
787    
788     if ($self->{$timeout} && $self->{fh}) {
789     my $NOW = AE::now;
790    
791     # when would the timeout trigger?
792     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
793    
794     # now or in the past already?
795     if ($after <= 0) {
796     $self->{$activity} = $NOW;
797 root 1.43
798 root 1.176 if ($self->{$on_timeout}) {
799     $self->{$on_timeout}($self);
800     } else {
801     $self->_error (Errno::ETIMEDOUT);
802     }
803 root 1.43
804 root 1.176 # callback could have changed timeout value, optimise
805     return unless $self->{$timeout};
806 root 1.43
807 root 1.176 # calculate new after
808     $after = $self->{$timeout};
809 root 1.43 }
810    
811 root 1.176 Scalar::Util::weaken $self;
812     return unless $self; # ->error could have destroyed $self
813 root 1.43
814 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
815     delete $self->{$tw};
816     $cb->($self);
817     };
818     } else {
819     delete $self->{$tw};
820 root 1.43 }
821     }
822     }
823    
824 root 1.9 #############################################################################
825    
826     =back
827    
828     =head2 WRITE QUEUE
829    
830     AnyEvent::Handle manages two queues per handle, one for writing and one
831     for reading.
832    
833     The write queue is very simple: you can add data to its end, and
834     AnyEvent::Handle will automatically try to get rid of it for you.
835    
836 elmex 1.20 When data could be written and the write buffer is shorter then the low
837 root 1.9 water mark, the C<on_drain> callback will be invoked.
838    
839     =over 4
840    
841 root 1.8 =item $handle->on_drain ($cb)
842    
843     Sets the C<on_drain> callback or clears it (see the description of
844     C<on_drain> in the constructor).
845    
846 root 1.193 This method may invoke callbacks (and therefore the handle might be
847     destroyed after it returns).
848    
849 root 1.8 =cut
850    
851     sub on_drain {
852 elmex 1.1 my ($self, $cb) = @_;
853    
854 root 1.8 $self->{on_drain} = $cb;
855    
856     $cb->($self)
857 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
858 root 1.8 }
859    
860     =item $handle->push_write ($data)
861    
862     Queues the given scalar to be written. You can push as much data as you
863     want (only limited by the available memory), as C<AnyEvent::Handle>
864     buffers it independently of the kernel.
865    
866 root 1.193 This method may invoke callbacks (and therefore the handle might be
867     destroyed after it returns).
868    
869 root 1.8 =cut
870    
871 root 1.17 sub _drain_wbuf {
872     my ($self) = @_;
873 root 1.8
874 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
875 root 1.35
876 root 1.8 Scalar::Util::weaken $self;
877 root 1.35
878 root 1.8 my $cb = sub {
879     my $len = syswrite $self->{fh}, $self->{wbuf};
880    
881 root 1.146 if (defined $len) {
882 root 1.8 substr $self->{wbuf}, 0, $len, "";
883    
884 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
885 root 1.43
886 root 1.8 $self->{on_drain}($self)
887 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
888 root 1.8 && $self->{on_drain};
889    
890 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
891 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
892 root 1.52 $self->_error ($!, 1);
893 elmex 1.1 }
894 root 1.8 };
895    
896 root 1.35 # try to write data immediately
897 root 1.70 $cb->() unless $self->{autocork};
898 root 1.8
899 root 1.35 # if still data left in wbuf, we need to poll
900 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
901 root 1.35 if length $self->{wbuf};
902 root 1.8 };
903     }
904    
905 root 1.30 our %WH;
906    
907 root 1.185 # deprecated
908 root 1.30 sub register_write_type($$) {
909     $WH{$_[0]} = $_[1];
910     }
911    
912 root 1.17 sub push_write {
913     my $self = shift;
914    
915 root 1.29 if (@_ > 1) {
916     my $type = shift;
917    
918 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
919     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
920 root 1.29 ->($self, @_);
921     }
922    
923 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
924     # and diagnose the problem earlier and better.
925    
926 root 1.93 if ($self->{tls}) {
927 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
928 root 1.160 &_dotls ($self) if $self->{fh};
929 root 1.17 } else {
930 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
931 root 1.159 $self->_drain_wbuf if $self->{fh};
932 root 1.17 }
933     }
934    
935 root 1.29 =item $handle->push_write (type => @args)
936    
937 root 1.185 Instead of formatting your data yourself, you can also let this module
938     do the job by specifying a type and type-specific arguments. You
939     can also specify the (fully qualified) name of a package, in which
940     case AnyEvent tries to load the package and then expects to find the
941 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
942 root 1.29
943 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
944     drop by and tell us):
945 root 1.29
946     =over 4
947    
948     =item netstring => $string
949    
950     Formats the given value as netstring
951     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
952    
953     =cut
954    
955     register_write_type netstring => sub {
956     my ($self, $string) = @_;
957    
958 root 1.96 (length $string) . ":$string,"
959 root 1.29 };
960    
961 root 1.61 =item packstring => $format, $data
962    
963     An octet string prefixed with an encoded length. The encoding C<$format>
964     uses the same format as a Perl C<pack> format, but must specify a single
965     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
966     optional C<!>, C<< < >> or C<< > >> modifier).
967    
968     =cut
969    
970     register_write_type packstring => sub {
971     my ($self, $format, $string) = @_;
972    
973 root 1.65 pack "$format/a*", $string
974 root 1.61 };
975    
976 root 1.39 =item json => $array_or_hashref
977    
978 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
979     provide your own JSON object, this means it will be encoded to JSON text
980     in UTF-8.
981    
982     JSON objects (and arrays) are self-delimiting, so you can write JSON at
983     one end of a handle and read them at the other end without using any
984     additional framing.
985    
986 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
987     this module doesn't need delimiters after or between JSON texts to be
988     able to read them, many other languages depend on that.
989    
990     A simple RPC protocol that interoperates easily with others is to send
991     JSON arrays (or objects, although arrays are usually the better choice as
992     they mimic how function argument passing works) and a newline after each
993     JSON text:
994    
995     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
996     $handle->push_write ("\012");
997    
998     An AnyEvent::Handle receiver would simply use the C<json> read type and
999     rely on the fact that the newline will be skipped as leading whitespace:
1000    
1001     $handle->push_read (json => sub { my $array = $_[1]; ... });
1002    
1003     Other languages could read single lines terminated by a newline and pass
1004     this line into their JSON decoder of choice.
1005    
1006 root 1.40 =cut
1007    
1008 root 1.179 sub json_coder() {
1009     eval { require JSON::XS; JSON::XS->new->utf8 }
1010     || do { require JSON; JSON->new->utf8 }
1011     }
1012    
1013 root 1.40 register_write_type json => sub {
1014     my ($self, $ref) = @_;
1015    
1016 root 1.179 my $json = $self->{json} ||= json_coder;
1017 root 1.40
1018 root 1.179 $json->encode ($ref)
1019 root 1.40 };
1020    
1021 root 1.63 =item storable => $reference
1022    
1023     Freezes the given reference using L<Storable> and writes it to the
1024     handle. Uses the C<nfreeze> format.
1025    
1026     =cut
1027    
1028     register_write_type storable => sub {
1029     my ($self, $ref) = @_;
1030    
1031     require Storable;
1032    
1033 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1034 root 1.63 };
1035    
1036 root 1.53 =back
1037    
1038 root 1.133 =item $handle->push_shutdown
1039    
1040     Sometimes you know you want to close the socket after writing your data
1041     before it was actually written. One way to do that is to replace your
1042 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1043     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1044     replaces the C<on_drain> callback with:
1045 root 1.133
1046     sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1047    
1048     This simply shuts down the write side and signals an EOF condition to the
1049     the peer.
1050    
1051     You can rely on the normal read queue and C<on_eof> handling
1052     afterwards. This is the cleanest way to close a connection.
1053    
1054 root 1.193 This method may invoke callbacks (and therefore the handle might be
1055     destroyed after it returns).
1056    
1057 root 1.133 =cut
1058    
1059     sub push_shutdown {
1060 root 1.142 my ($self) = @_;
1061    
1062     delete $self->{low_water_mark};
1063     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1064 root 1.133 }
1065    
1066 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1067    
1068     Instead of one of the predefined types, you can also specify the name of
1069     a package. AnyEvent will try to load the package and then expects to find
1070     a function named C<anyevent_write_type> inside. If it isn't found, it
1071     progressively tries to load the parent package until it either finds the
1072     function (good) or runs out of packages (bad).
1073    
1074     Whenever the given C<type> is used, C<push_write> will the function with
1075     the handle object and the remaining arguments.
1076    
1077     The function is supposed to return a single octet string that will be
1078     appended to the write buffer, so you cna mentally treat this function as a
1079     "arguments to on-the-wire-format" converter.
1080 root 1.30
1081 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1082     arguments using the first one.
1083 root 1.29
1084 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1085 root 1.29
1086 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1087     # the "My" modules to be auto-loaded, or just about anywhere when the
1088     # My::Type::anyevent_write_type is defined before invoking it.
1089    
1090     package My::Type;
1091    
1092     sub anyevent_write_type {
1093     my ($handle, $delim, @args) = @_;
1094    
1095     join $delim, @args
1096     }
1097 root 1.29
1098 root 1.30 =cut
1099 root 1.29
1100 root 1.8 #############################################################################
1101    
1102 root 1.9 =back
1103    
1104     =head2 READ QUEUE
1105    
1106     AnyEvent::Handle manages two queues per handle, one for writing and one
1107     for reading.
1108    
1109     The read queue is more complex than the write queue. It can be used in two
1110     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1111     a queue.
1112    
1113     In the simple case, you just install an C<on_read> callback and whenever
1114     new data arrives, it will be called. You can then remove some data (if
1115 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1116 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1117 root 1.197 partial message has been received so far), or change the read queue with
1118     e.g. C<push_read>.
1119 root 1.9
1120     In the more complex case, you want to queue multiple callbacks. In this
1121     case, AnyEvent::Handle will call the first queued callback each time new
1122 root 1.61 data arrives (also the first time it is queued) and removes it when it has
1123     done its job (see C<push_read>, below).
1124 root 1.9
1125     This way you can, for example, push three line-reads, followed by reading
1126     a chunk of data, and AnyEvent::Handle will execute them in order.
1127    
1128     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1129     the specified number of bytes which give an XML datagram.
1130    
1131     # in the default state, expect some header bytes
1132     $handle->on_read (sub {
1133     # some data is here, now queue the length-header-read (4 octets)
1134 root 1.52 shift->unshift_read (chunk => 4, sub {
1135 root 1.9 # header arrived, decode
1136     my $len = unpack "N", $_[1];
1137    
1138     # now read the payload
1139 root 1.52 shift->unshift_read (chunk => $len, sub {
1140 root 1.9 my $xml = $_[1];
1141     # handle xml
1142     });
1143     });
1144     });
1145    
1146 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1147     and another line or "ERROR" for the first request that is sent, and 64
1148     bytes for the second request. Due to the availability of a queue, we can
1149     just pipeline sending both requests and manipulate the queue as necessary
1150     in the callbacks.
1151    
1152     When the first callback is called and sees an "OK" response, it will
1153     C<unshift> another line-read. This line-read will be queued I<before> the
1154     64-byte chunk callback.
1155 root 1.9
1156 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1157 root 1.9 $handle->push_write ("request 1\015\012");
1158    
1159     # we expect "ERROR" or "OK" as response, so push a line read
1160 root 1.52 $handle->push_read (line => sub {
1161 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1162     # so it will be read before the second request reads its 64 bytes
1163     # which are already in the queue when this callback is called
1164     # we don't do this in case we got an error
1165     if ($_[1] eq "OK") {
1166 root 1.52 $_[0]->unshift_read (line => sub {
1167 root 1.9 my $response = $_[1];
1168     ...
1169     });
1170     }
1171     });
1172    
1173 root 1.69 # request two, simply returns 64 octets
1174 root 1.9 $handle->push_write ("request 2\015\012");
1175    
1176     # simply read 64 bytes, always
1177 root 1.52 $handle->push_read (chunk => 64, sub {
1178 root 1.9 my $response = $_[1];
1179     ...
1180     });
1181    
1182     =over 4
1183    
1184 root 1.10 =cut
1185    
1186 root 1.8 sub _drain_rbuf {
1187     my ($self) = @_;
1188 elmex 1.1
1189 root 1.159 # avoid recursion
1190 root 1.167 return if $self->{_skip_drain_rbuf};
1191 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1192 root 1.59
1193     while () {
1194 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1195     # we are draining the buffer, and this can only happen with TLS.
1196 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1197     if exists $self->{_tls_rbuf};
1198 root 1.115
1199 root 1.59 my $len = length $self->{rbuf};
1200 elmex 1.1
1201 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1202 root 1.29 unless ($cb->($self)) {
1203 root 1.163 # no progress can be made
1204     # (not enough data and no data forthcoming)
1205     $self->_error (Errno::EPIPE, 1), return
1206     if $self->{_eof};
1207 root 1.10
1208 root 1.38 unshift @{ $self->{_queue} }, $cb;
1209 root 1.55 last;
1210 root 1.8 }
1211     } elsif ($self->{on_read}) {
1212 root 1.61 last unless $len;
1213    
1214 root 1.8 $self->{on_read}($self);
1215    
1216     if (
1217 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1218     && !@{ $self->{_queue} } # and the queue is still empty
1219     && $self->{on_read} # but we still have on_read
1220 root 1.8 ) {
1221 root 1.55 # no further data will arrive
1222     # so no progress can be made
1223 root 1.150 $self->_error (Errno::EPIPE, 1), return
1224 root 1.55 if $self->{_eof};
1225    
1226     last; # more data might arrive
1227 elmex 1.1 }
1228 root 1.8 } else {
1229     # read side becomes idle
1230 root 1.93 delete $self->{_rw} unless $self->{tls};
1231 root 1.55 last;
1232 root 1.8 }
1233     }
1234    
1235 root 1.80 if ($self->{_eof}) {
1236 root 1.163 $self->{on_eof}
1237     ? $self->{on_eof}($self)
1238     : $self->_error (0, 1, "Unexpected end-of-file");
1239    
1240     return;
1241 root 1.80 }
1242 root 1.55
1243 root 1.169 if (
1244     defined $self->{rbuf_max}
1245     && $self->{rbuf_max} < length $self->{rbuf}
1246     ) {
1247     $self->_error (Errno::ENOSPC, 1), return;
1248     }
1249    
1250 root 1.55 # may need to restart read watcher
1251     unless ($self->{_rw}) {
1252     $self->start_read
1253     if $self->{on_read} || @{ $self->{_queue} };
1254     }
1255 elmex 1.1 }
1256    
1257 root 1.8 =item $handle->on_read ($cb)
1258 elmex 1.1
1259 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1260     the new callback is C<undef>). See the description of C<on_read> in the
1261     constructor.
1262 elmex 1.1
1263 root 1.193 This method may invoke callbacks (and therefore the handle might be
1264     destroyed after it returns).
1265    
1266 root 1.8 =cut
1267    
1268     sub on_read {
1269     my ($self, $cb) = @_;
1270 elmex 1.1
1271 root 1.8 $self->{on_read} = $cb;
1272 root 1.159 $self->_drain_rbuf if $cb;
1273 elmex 1.1 }
1274    
1275 root 1.8 =item $handle->rbuf
1276    
1277     Returns the read buffer (as a modifiable lvalue).
1278 elmex 1.1
1279 root 1.117 You can access the read buffer directly as the C<< ->{rbuf} >>
1280     member, if you want. However, the only operation allowed on the
1281     read buffer (apart from looking at it) is removing data from its
1282     beginning. Otherwise modifying or appending to it is not allowed and will
1283     lead to hard-to-track-down bugs.
1284 elmex 1.1
1285 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
1286     C<push_read> or C<unshift_read> methods are used. The other read methods
1287     automatically manage the read buffer.
1288 elmex 1.1
1289     =cut
1290    
1291 elmex 1.2 sub rbuf : lvalue {
1292 root 1.8 $_[0]{rbuf}
1293 elmex 1.2 }
1294 elmex 1.1
1295 root 1.8 =item $handle->push_read ($cb)
1296    
1297     =item $handle->unshift_read ($cb)
1298    
1299     Append the given callback to the end of the queue (C<push_read>) or
1300     prepend it (C<unshift_read>).
1301    
1302     The callback is called each time some additional read data arrives.
1303 elmex 1.1
1304 elmex 1.20 It must check whether enough data is in the read buffer already.
1305 elmex 1.1
1306 root 1.8 If not enough data is available, it must return the empty list or a false
1307     value, in which case it will be called repeatedly until enough data is
1308     available (or an error condition is detected).
1309    
1310     If enough data was available, then the callback must remove all data it is
1311     interested in (which can be none at all) and return a true value. After returning
1312     true, it will be removed from the queue.
1313 elmex 1.1
1314 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1315     destroyed after it returns).
1316    
1317 elmex 1.1 =cut
1318    
1319 root 1.30 our %RH;
1320    
1321     sub register_read_type($$) {
1322     $RH{$_[0]} = $_[1];
1323     }
1324    
1325 root 1.8 sub push_read {
1326 root 1.28 my $self = shift;
1327     my $cb = pop;
1328    
1329     if (@_) {
1330     my $type = shift;
1331    
1332 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1333     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1334 root 1.28 ->($self, $cb, @_);
1335     }
1336 elmex 1.1
1337 root 1.38 push @{ $self->{_queue} }, $cb;
1338 root 1.159 $self->_drain_rbuf;
1339 elmex 1.1 }
1340    
1341 root 1.8 sub unshift_read {
1342 root 1.28 my $self = shift;
1343     my $cb = pop;
1344    
1345     if (@_) {
1346     my $type = shift;
1347    
1348     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
1349     ->($self, $cb, @_);
1350     }
1351    
1352 root 1.38 unshift @{ $self->{_queue} }, $cb;
1353 root 1.159 $self->_drain_rbuf;
1354 root 1.8 }
1355 elmex 1.1
1356 root 1.28 =item $handle->push_read (type => @args, $cb)
1357 elmex 1.1
1358 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1359 elmex 1.1
1360 root 1.28 Instead of providing a callback that parses the data itself you can chose
1361     between a number of predefined parsing formats, for chunks of data, lines
1362 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1363     which case AnyEvent tries to load the package and then expects to find the
1364     C<anyevent_read_type> function inside (see "custom read types", below).
1365 elmex 1.1
1366 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1367     drop by and tell us):
1368 root 1.28
1369     =over 4
1370    
1371 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1372 root 1.28
1373     Invoke the callback only once C<$octets> bytes have been read. Pass the
1374     data read to the callback. The callback will never be called with less
1375     data.
1376    
1377     Example: read 2 bytes.
1378    
1379     $handle->push_read (chunk => 2, sub {
1380     warn "yay ", unpack "H*", $_[1];
1381     });
1382 elmex 1.1
1383     =cut
1384    
1385 root 1.28 register_read_type chunk => sub {
1386     my ($self, $cb, $len) = @_;
1387 elmex 1.1
1388 root 1.8 sub {
1389     $len <= length $_[0]{rbuf} or return;
1390 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1391 root 1.8 1
1392     }
1393 root 1.28 };
1394 root 1.8
1395 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1396 elmex 1.1
1397 root 1.8 The callback will be called only once a full line (including the end of
1398     line marker, C<$eol>) has been read. This line (excluding the end of line
1399     marker) will be passed to the callback as second argument (C<$line>), and
1400     the end of line marker as the third argument (C<$eol>).
1401 elmex 1.1
1402 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1403     will be interpreted as a fixed record end marker, or it can be a regex
1404     object (e.g. created by C<qr>), in which case it is interpreted as a
1405     regular expression.
1406 elmex 1.1
1407 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1408     undef), then C<qr|\015?\012|> is used (which is good for most internet
1409     protocols).
1410 elmex 1.1
1411 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1412     not marked by the end of line marker.
1413 elmex 1.1
1414 root 1.8 =cut
1415 elmex 1.1
1416 root 1.28 register_read_type line => sub {
1417     my ($self, $cb, $eol) = @_;
1418 elmex 1.1
1419 root 1.76 if (@_ < 3) {
1420     # this is more than twice as fast as the generic code below
1421     sub {
1422     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1423 elmex 1.1
1424 root 1.76 $cb->($_[0], $1, $2);
1425     1
1426     }
1427     } else {
1428     $eol = quotemeta $eol unless ref $eol;
1429     $eol = qr|^(.*?)($eol)|s;
1430    
1431     sub {
1432     $_[0]{rbuf} =~ s/$eol// or return;
1433 elmex 1.1
1434 root 1.76 $cb->($_[0], $1, $2);
1435     1
1436     }
1437 root 1.8 }
1438 root 1.28 };
1439 elmex 1.1
1440 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1441 root 1.36
1442     Makes a regex match against the regex object C<$accept> and returns
1443     everything up to and including the match.
1444    
1445     Example: read a single line terminated by '\n'.
1446    
1447     $handle->push_read (regex => qr<\n>, sub { ... });
1448    
1449     If C<$reject> is given and not undef, then it determines when the data is
1450     to be rejected: it is matched against the data when the C<$accept> regex
1451     does not match and generates an C<EBADMSG> error when it matches. This is
1452     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1453     receive buffer overflow).
1454    
1455     Example: expect a single decimal number followed by whitespace, reject
1456     anything else (not the use of an anchor).
1457    
1458     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1459    
1460     If C<$skip> is given and not C<undef>, then it will be matched against
1461     the receive buffer when neither C<$accept> nor C<$reject> match,
1462     and everything preceding and including the match will be accepted
1463     unconditionally. This is useful to skip large amounts of data that you
1464     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1465     have to start matching from the beginning. This is purely an optimisation
1466     and is usually worth only when you expect more than a few kilobytes.
1467    
1468     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1469     expect the header to be very large (it isn't in practise, but...), we use
1470     a skip regex to skip initial portions. The skip regex is tricky in that
1471     it only accepts something not ending in either \015 or \012, as these are
1472     required for the accept regex.
1473    
1474     $handle->push_read (regex =>
1475     qr<\015\012\015\012>,
1476     undef, # no reject
1477     qr<^.*[^\015\012]>,
1478     sub { ... });
1479    
1480     =cut
1481    
1482     register_read_type regex => sub {
1483     my ($self, $cb, $accept, $reject, $skip) = @_;
1484    
1485     my $data;
1486     my $rbuf = \$self->{rbuf};
1487    
1488     sub {
1489     # accept
1490     if ($$rbuf =~ $accept) {
1491     $data .= substr $$rbuf, 0, $+[0], "";
1492     $cb->($self, $data);
1493     return 1;
1494     }
1495    
1496     # reject
1497     if ($reject && $$rbuf =~ $reject) {
1498 root 1.150 $self->_error (Errno::EBADMSG);
1499 root 1.36 }
1500    
1501     # skip
1502     if ($skip && $$rbuf =~ $skip) {
1503     $data .= substr $$rbuf, 0, $+[0], "";
1504     }
1505    
1506     ()
1507     }
1508     };
1509    
1510 root 1.61 =item netstring => $cb->($handle, $string)
1511    
1512     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1513    
1514     Throws an error with C<$!> set to EBADMSG on format violations.
1515    
1516     =cut
1517    
1518     register_read_type netstring => sub {
1519     my ($self, $cb) = @_;
1520    
1521     sub {
1522     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1523     if ($_[0]{rbuf} =~ /[^0-9]/) {
1524 root 1.150 $self->_error (Errno::EBADMSG);
1525 root 1.61 }
1526     return;
1527     }
1528    
1529     my $len = $1;
1530    
1531     $self->unshift_read (chunk => $len, sub {
1532     my $string = $_[1];
1533     $_[0]->unshift_read (chunk => 1, sub {
1534     if ($_[1] eq ",") {
1535     $cb->($_[0], $string);
1536     } else {
1537 root 1.150 $self->_error (Errno::EBADMSG);
1538 root 1.61 }
1539     });
1540     });
1541    
1542     1
1543     }
1544     };
1545    
1546     =item packstring => $format, $cb->($handle, $string)
1547    
1548     An octet string prefixed with an encoded length. The encoding C<$format>
1549     uses the same format as a Perl C<pack> format, but must specify a single
1550     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1551     optional C<!>, C<< < >> or C<< > >> modifier).
1552    
1553 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1554     EPP uses a prefix of C<N> (4 octtes).
1555 root 1.61
1556     Example: read a block of data prefixed by its length in BER-encoded
1557     format (very efficient).
1558    
1559     $handle->push_read (packstring => "w", sub {
1560     my ($handle, $data) = @_;
1561     });
1562    
1563     =cut
1564    
1565     register_read_type packstring => sub {
1566     my ($self, $cb, $format) = @_;
1567    
1568     sub {
1569     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1570 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1571 root 1.61 or return;
1572    
1573 root 1.77 $format = length pack $format, $len;
1574 root 1.61
1575 root 1.77 # bypass unshift if we already have the remaining chunk
1576     if ($format + $len <= length $_[0]{rbuf}) {
1577     my $data = substr $_[0]{rbuf}, $format, $len;
1578     substr $_[0]{rbuf}, 0, $format + $len, "";
1579     $cb->($_[0], $data);
1580     } else {
1581     # remove prefix
1582     substr $_[0]{rbuf}, 0, $format, "";
1583    
1584     # read remaining chunk
1585     $_[0]->unshift_read (chunk => $len, $cb);
1586     }
1587 root 1.61
1588     1
1589     }
1590     };
1591    
1592 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1593    
1594 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1595     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1596 root 1.40
1597     If a C<json> object was passed to the constructor, then that will be used
1598     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1599    
1600     This read type uses the incremental parser available with JSON version
1601     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1602     dependency on your own: this module will load the JSON module, but
1603     AnyEvent does not depend on it itself.
1604    
1605     Since JSON texts are fully self-delimiting, the C<json> read and write
1606 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1607     the C<json> write type description, above, for an actual example.
1608 root 1.40
1609     =cut
1610    
1611     register_read_type json => sub {
1612 root 1.63 my ($self, $cb) = @_;
1613 root 1.40
1614 root 1.179 my $json = $self->{json} ||= json_coder;
1615 root 1.40
1616     my $data;
1617     my $rbuf = \$self->{rbuf};
1618    
1619     sub {
1620 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1621 root 1.110
1622 root 1.113 if ($ref) {
1623     $self->{rbuf} = $json->incr_text;
1624     $json->incr_text = "";
1625     $cb->($self, $ref);
1626 root 1.110
1627     1
1628 root 1.113 } elsif ($@) {
1629 root 1.111 # error case
1630 root 1.110 $json->incr_skip;
1631 root 1.40
1632     $self->{rbuf} = $json->incr_text;
1633     $json->incr_text = "";
1634    
1635 root 1.150 $self->_error (Errno::EBADMSG);
1636 root 1.114
1637 root 1.113 ()
1638     } else {
1639     $self->{rbuf} = "";
1640 root 1.114
1641 root 1.113 ()
1642     }
1643 root 1.40 }
1644     };
1645    
1646 root 1.63 =item storable => $cb->($handle, $ref)
1647    
1648     Deserialises a L<Storable> frozen representation as written by the
1649     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1650     data).
1651    
1652     Raises C<EBADMSG> error if the data could not be decoded.
1653    
1654     =cut
1655    
1656     register_read_type storable => sub {
1657     my ($self, $cb) = @_;
1658    
1659     require Storable;
1660    
1661     sub {
1662     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1663 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1664 root 1.63 or return;
1665    
1666 root 1.77 my $format = length pack "w", $len;
1667 root 1.63
1668 root 1.77 # bypass unshift if we already have the remaining chunk
1669     if ($format + $len <= length $_[0]{rbuf}) {
1670     my $data = substr $_[0]{rbuf}, $format, $len;
1671     substr $_[0]{rbuf}, 0, $format + $len, "";
1672     $cb->($_[0], Storable::thaw ($data));
1673     } else {
1674     # remove prefix
1675     substr $_[0]{rbuf}, 0, $format, "";
1676    
1677     # read remaining chunk
1678     $_[0]->unshift_read (chunk => $len, sub {
1679     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1680     $cb->($_[0], $ref);
1681     } else {
1682 root 1.150 $self->_error (Errno::EBADMSG);
1683 root 1.77 }
1684     });
1685     }
1686    
1687     1
1688 root 1.63 }
1689     };
1690    
1691 root 1.28 =back
1692    
1693 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1694 root 1.30
1695 root 1.185 Instead of one of the predefined types, you can also specify the name
1696     of a package. AnyEvent will try to load the package and then expects to
1697     find a function named C<anyevent_read_type> inside. If it isn't found, it
1698     progressively tries to load the parent package until it either finds the
1699     function (good) or runs out of packages (bad).
1700    
1701     Whenever this type is used, C<push_read> will invoke the function with the
1702     handle object, the original callback and the remaining arguments.
1703    
1704     The function is supposed to return a callback (usually a closure) that
1705     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1706     mentally treat the function as a "configurable read type to read callback"
1707     converter.
1708    
1709     It should invoke the original callback when it is done reading (remember
1710     to pass C<$handle> as first argument as all other callbacks do that,
1711     although there is no strict requirement on this).
1712 root 1.30
1713 root 1.185 For examples, see the source of this module (F<perldoc -m
1714     AnyEvent::Handle>, search for C<register_read_type>)).
1715 root 1.30
1716 root 1.10 =item $handle->stop_read
1717    
1718     =item $handle->start_read
1719    
1720 root 1.18 In rare cases you actually do not want to read anything from the
1721 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1722 root 1.22 any queued callbacks will be executed then. To start reading again, call
1723 root 1.10 C<start_read>.
1724    
1725 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1726     you change the C<on_read> callback or push/unshift a read callback, and it
1727     will automatically C<stop_read> for you when neither C<on_read> is set nor
1728     there are any read requests in the queue.
1729    
1730 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1731     half-duplex connections).
1732    
1733 root 1.10 =cut
1734    
1735     sub stop_read {
1736     my ($self) = @_;
1737 elmex 1.1
1738 root 1.93 delete $self->{_rw} unless $self->{tls};
1739 root 1.8 }
1740 elmex 1.1
1741 root 1.10 sub start_read {
1742     my ($self) = @_;
1743    
1744 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1745 root 1.10 Scalar::Util::weaken $self;
1746    
1747 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1748 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1749 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1750 root 1.10
1751     if ($len > 0) {
1752 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1753 root 1.43
1754 root 1.93 if ($self->{tls}) {
1755     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1756 root 1.97
1757 root 1.93 &_dotls ($self);
1758     } else {
1759 root 1.159 $self->_drain_rbuf;
1760 root 1.93 }
1761 root 1.10
1762     } elsif (defined $len) {
1763 root 1.38 delete $self->{_rw};
1764     $self->{_eof} = 1;
1765 root 1.159 $self->_drain_rbuf;
1766 root 1.10
1767 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1768 root 1.52 return $self->_error ($!, 1);
1769 root 1.10 }
1770 root 1.175 };
1771 root 1.10 }
1772 elmex 1.1 }
1773    
1774 root 1.133 our $ERROR_SYSCALL;
1775     our $ERROR_WANT_READ;
1776    
1777     sub _tls_error {
1778     my ($self, $err) = @_;
1779    
1780     return $self->_error ($!, 1)
1781     if $err == Net::SSLeay::ERROR_SYSCALL ();
1782    
1783 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1784    
1785     # reduce error string to look less scary
1786     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1787    
1788 root 1.143 if ($self->{_on_starttls}) {
1789     (delete $self->{_on_starttls})->($self, undef, $err);
1790     &_freetls;
1791     } else {
1792     &_freetls;
1793 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1794 root 1.143 }
1795 root 1.133 }
1796    
1797 root 1.97 # poll the write BIO and send the data if applicable
1798 root 1.133 # also decode read data if possible
1799     # this is basiclaly our TLS state machine
1800     # more efficient implementations are possible with openssl,
1801     # but not with the buggy and incomplete Net::SSLeay.
1802 root 1.19 sub _dotls {
1803     my ($self) = @_;
1804    
1805 root 1.97 my $tmp;
1806 root 1.56
1807 root 1.38 if (length $self->{_tls_wbuf}) {
1808 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1809     substr $self->{_tls_wbuf}, 0, $tmp, "";
1810 root 1.22 }
1811 root 1.133
1812     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1813     return $self->_tls_error ($tmp)
1814     if $tmp != $ERROR_WANT_READ
1815 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1816 root 1.19 }
1817    
1818 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1819     unless (length $tmp) {
1820 root 1.143 $self->{_on_starttls}
1821     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1822 root 1.92 &_freetls;
1823 root 1.143
1824 root 1.142 if ($self->{on_stoptls}) {
1825     $self->{on_stoptls}($self);
1826     return;
1827     } else {
1828     # let's treat SSL-eof as we treat normal EOF
1829     delete $self->{_rw};
1830     $self->{_eof} = 1;
1831     }
1832 root 1.56 }
1833 root 1.91
1834 root 1.116 $self->{_tls_rbuf} .= $tmp;
1835 root 1.159 $self->_drain_rbuf;
1836 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1837 root 1.23 }
1838    
1839 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1840 root 1.133 return $self->_tls_error ($tmp)
1841     if $tmp != $ERROR_WANT_READ
1842 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1843 root 1.91
1844 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1845     $self->{wbuf} .= $tmp;
1846 root 1.91 $self->_drain_wbuf;
1847 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1848 root 1.91 }
1849 root 1.142
1850     $self->{_on_starttls}
1851     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1852 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1853 root 1.19 }
1854    
1855 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1856    
1857     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1858     object is created, you can also do that at a later time by calling
1859     C<starttls>.
1860    
1861 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1862     write data and then call C<< ->starttls >> then TLS negotiation will start
1863     immediately, after which the queued write data is then sent.
1864    
1865 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1866     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1867    
1868 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1869     when AnyEvent::Handle has to create its own TLS connection object, or
1870     a hash reference with C<< key => value >> pairs that will be used to
1871     construct a new context.
1872    
1873     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1874     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1875     changed to your liking. Note that the handshake might have already started
1876     when this function returns.
1877 root 1.38
1878 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1879     handshakes on the same stream. Best do not attempt to use the stream after
1880     stopping TLS.
1881 root 1.92
1882 root 1.193 This method may invoke callbacks (and therefore the handle might be
1883     destroyed after it returns).
1884    
1885 root 1.25 =cut
1886    
1887 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1888    
1889 root 1.19 sub starttls {
1890 root 1.160 my ($self, $tls, $ctx) = @_;
1891    
1892     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1893     if $self->{tls};
1894    
1895     $self->{tls} = $tls;
1896     $self->{tls_ctx} = $ctx if @_ > 2;
1897    
1898     return unless $self->{fh};
1899 root 1.19
1900 root 1.94 require Net::SSLeay;
1901    
1902 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1903     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1904 root 1.133
1905 root 1.180 $tls = delete $self->{tls};
1906 root 1.160 $ctx = $self->{tls_ctx};
1907 root 1.131
1908 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1909    
1910 root 1.131 if ("HASH" eq ref $ctx) {
1911     require AnyEvent::TLS;
1912    
1913 root 1.137 if ($ctx->{cache}) {
1914     my $key = $ctx+0;
1915     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1916     } else {
1917     $ctx = new AnyEvent::TLS %$ctx;
1918     }
1919 root 1.131 }
1920 root 1.92
1921 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1922 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1923 root 1.19
1924 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1925     # but the openssl maintainers basically said: "trust us, it just works".
1926     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1927     # and mismaintained ssleay-module doesn't even offer them).
1928 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1929 root 1.87 #
1930     # in short: this is a mess.
1931     #
1932 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1933 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1934 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1935     # have identity issues in that area.
1936 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
1937     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1938     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1939 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1940 root 1.21
1941 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1942     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1943 root 1.19
1944 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1945    
1946 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1947 root 1.19
1948 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1949 root 1.143 if $self->{on_starttls};
1950 root 1.142
1951 root 1.93 &_dotls; # need to trigger the initial handshake
1952     $self->start_read; # make sure we actually do read
1953 root 1.19 }
1954    
1955 root 1.25 =item $handle->stoptls
1956    
1957 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1958     sending a close notify to the other side, but since OpenSSL doesn't
1959 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
1960 root 1.160 the stream afterwards.
1961 root 1.25
1962 root 1.193 This method may invoke callbacks (and therefore the handle might be
1963     destroyed after it returns).
1964    
1965 root 1.25 =cut
1966    
1967     sub stoptls {
1968     my ($self) = @_;
1969    
1970 root 1.192 if ($self->{tls} && $self->{fh}) {
1971 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1972 root 1.92
1973     &_dotls;
1974    
1975 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
1976     # # we, we... have to use openssl :/#d#
1977     # &_freetls;#d#
1978 root 1.92 }
1979     }
1980    
1981     sub _freetls {
1982     my ($self) = @_;
1983    
1984     return unless $self->{tls};
1985 root 1.38
1986 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
1987 root 1.171 if $self->{tls} > 0;
1988 root 1.92
1989 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1990 root 1.25 }
1991    
1992 root 1.19 sub DESTROY {
1993 root 1.120 my ($self) = @_;
1994 root 1.19
1995 root 1.92 &_freetls;
1996 root 1.62
1997     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1998    
1999 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2000 root 1.62 my $fh = delete $self->{fh};
2001     my $wbuf = delete $self->{wbuf};
2002    
2003     my @linger;
2004    
2005 root 1.175 push @linger, AE::io $fh, 1, sub {
2006 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2007    
2008     if ($len > 0) {
2009     substr $wbuf, 0, $len, "";
2010     } else {
2011     @linger = (); # end
2012     }
2013 root 1.175 };
2014     push @linger, AE::timer $linger, 0, sub {
2015 root 1.62 @linger = ();
2016 root 1.175 };
2017 root 1.62 }
2018 root 1.19 }
2019    
2020 root 1.99 =item $handle->destroy
2021    
2022 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2023 root 1.141 no further callbacks will be invoked and as many resources as possible
2024 root 1.165 will be freed. Any method you will call on the handle object after
2025     destroying it in this way will be silently ignored (and it will return the
2026     empty list).
2027 root 1.99
2028 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2029     object and it will simply shut down. This works in fatal error and EOF
2030     callbacks, as well as code outside. It does I<NOT> work in a read or write
2031     callback, so when you want to destroy the AnyEvent::Handle object from
2032     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2033     that case.
2034    
2035 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2036     will be removed as well, so if those are the only reference holders (as
2037     is common), then one doesn't need to do anything special to break any
2038     reference cycles.
2039    
2040 root 1.99 The handle might still linger in the background and write out remaining
2041     data, as specified by the C<linger> option, however.
2042    
2043     =cut
2044    
2045     sub destroy {
2046     my ($self) = @_;
2047    
2048     $self->DESTROY;
2049     %$self = ();
2050 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2051     }
2052    
2053 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2054     #nop
2055 root 1.99 }
2056    
2057 root 1.192 =item $handle->destroyed
2058    
2059     Returns false as long as the handle hasn't been destroyed by a call to C<<
2060     ->destroy >>, true otherwise.
2061    
2062     Can be useful to decide whether the handle is still valid after some
2063     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2064     C<< ->starttls >> and other methods can call user callbacks, which in turn
2065     can destroy the handle, so work can be avoided by checking sometimes:
2066    
2067     $hdl->starttls ("accept");
2068     return if $hdl->destroyed;
2069     $hdl->push_write (...
2070    
2071     Note that the call to C<push_write> will silently be ignored if the handle
2072     has been destroyed, so often you can just ignore the possibility of the
2073     handle being destroyed.
2074    
2075     =cut
2076    
2077     sub destroyed { 0 }
2078     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2079    
2080 root 1.19 =item AnyEvent::Handle::TLS_CTX
2081    
2082 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2083     for TLS mode.
2084 root 1.19
2085 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2086 root 1.19
2087     =cut
2088    
2089     our $TLS_CTX;
2090    
2091     sub TLS_CTX() {
2092 root 1.131 $TLS_CTX ||= do {
2093     require AnyEvent::TLS;
2094 root 1.19
2095 root 1.131 new AnyEvent::TLS
2096 root 1.19 }
2097     }
2098    
2099 elmex 1.1 =back
2100    
2101 root 1.95
2102     =head1 NONFREQUENTLY ASKED QUESTIONS
2103    
2104     =over 4
2105    
2106 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2107     still get further invocations!
2108    
2109     That's because AnyEvent::Handle keeps a reference to itself when handling
2110     read or write callbacks.
2111    
2112     It is only safe to "forget" the reference inside EOF or error callbacks,
2113     from within all other callbacks, you need to explicitly call the C<<
2114     ->destroy >> method.
2115    
2116     =item I get different callback invocations in TLS mode/Why can't I pause
2117     reading?
2118    
2119     Unlike, say, TCP, TLS connections do not consist of two independent
2120     communication channels, one for each direction. Or put differently. The
2121     read and write directions are not independent of each other: you cannot
2122     write data unless you are also prepared to read, and vice versa.
2123    
2124     This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2125     callback invocations when you are not expecting any read data - the reason
2126     is that AnyEvent::Handle always reads in TLS mode.
2127    
2128     During the connection, you have to make sure that you always have a
2129     non-empty read-queue, or an C<on_read> watcher. At the end of the
2130     connection (or when you no longer want to use it) you can call the
2131     C<destroy> method.
2132    
2133 root 1.95 =item How do I read data until the other side closes the connection?
2134    
2135 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2136     to achieve this is by setting an C<on_read> callback that does nothing,
2137     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2138     will be in C<$_[0]{rbuf}>:
2139 root 1.95
2140     $handle->on_read (sub { });
2141     $handle->on_eof (undef);
2142     $handle->on_error (sub {
2143     my $data = delete $_[0]{rbuf};
2144     });
2145    
2146     The reason to use C<on_error> is that TCP connections, due to latencies
2147     and packets loss, might get closed quite violently with an error, when in
2148     fact, all data has been received.
2149    
2150 root 1.101 It is usually better to use acknowledgements when transferring data,
2151 root 1.95 to make sure the other side hasn't just died and you got the data
2152     intact. This is also one reason why so many internet protocols have an
2153     explicit QUIT command.
2154    
2155 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2156     all data has been written?
2157 root 1.95
2158     After writing your last bits of data, set the C<on_drain> callback
2159     and destroy the handle in there - with the default setting of
2160     C<low_water_mark> this will be called precisely when all data has been
2161     written to the socket:
2162    
2163     $handle->push_write (...);
2164     $handle->on_drain (sub {
2165     warn "all data submitted to the kernel\n";
2166     undef $handle;
2167     });
2168    
2169 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2170     consider using C<< ->push_shutdown >> instead.
2171    
2172     =item I want to contact a TLS/SSL server, I don't care about security.
2173    
2174     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2175     simply connect to it and then create the AnyEvent::Handle with the C<tls>
2176     parameter:
2177    
2178 root 1.144 tcp_connect $host, $port, sub {
2179     my ($fh) = @_;
2180 root 1.143
2181 root 1.144 my $handle = new AnyEvent::Handle
2182     fh => $fh,
2183     tls => "connect",
2184     on_error => sub { ... };
2185    
2186     $handle->push_write (...);
2187     };
2188 root 1.143
2189     =item I want to contact a TLS/SSL server, I do care about security.
2190    
2191 root 1.144 Then you should additionally enable certificate verification, including
2192     peername verification, if the protocol you use supports it (see
2193     L<AnyEvent::TLS>, C<verify_peername>).
2194    
2195     E.g. for HTTPS:
2196    
2197     tcp_connect $host, $port, sub {
2198     my ($fh) = @_;
2199    
2200     my $handle = new AnyEvent::Handle
2201     fh => $fh,
2202     peername => $host,
2203     tls => "connect",
2204     tls_ctx => { verify => 1, verify_peername => "https" },
2205     ...
2206    
2207     Note that you must specify the hostname you connected to (or whatever
2208     "peername" the protocol needs) as the C<peername> argument, otherwise no
2209     peername verification will be done.
2210    
2211     The above will use the system-dependent default set of trusted CA
2212     certificates. If you want to check against a specific CA, add the
2213     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2214    
2215     tls_ctx => {
2216     verify => 1,
2217     verify_peername => "https",
2218     ca_file => "my-ca-cert.pem",
2219     },
2220    
2221     =item I want to create a TLS/SSL server, how do I do that?
2222    
2223     Well, you first need to get a server certificate and key. You have
2224     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2225     self-signed certificate (cheap. check the search engine of your choice,
2226     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2227     nice program for that purpose).
2228    
2229     Then create a file with your private key (in PEM format, see
2230     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2231     file should then look like this:
2232    
2233     -----BEGIN RSA PRIVATE KEY-----
2234     ...header data
2235     ... lots of base64'y-stuff
2236     -----END RSA PRIVATE KEY-----
2237    
2238     -----BEGIN CERTIFICATE-----
2239     ... lots of base64'y-stuff
2240     -----END CERTIFICATE-----
2241    
2242     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2243     specify this file as C<cert_file>:
2244    
2245     tcp_server undef, $port, sub {
2246     my ($fh) = @_;
2247    
2248     my $handle = new AnyEvent::Handle
2249     fh => $fh,
2250     tls => "accept",
2251     tls_ctx => { cert_file => "my-server-keycert.pem" },
2252     ...
2253 root 1.143
2254 root 1.144 When you have intermediate CA certificates that your clients might not
2255     know about, just append them to the C<cert_file>.
2256 root 1.143
2257 root 1.95 =back
2258    
2259    
2260 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2261    
2262     In many cases, you might want to subclass AnyEvent::Handle.
2263    
2264     To make this easier, a given version of AnyEvent::Handle uses these
2265     conventions:
2266    
2267     =over 4
2268    
2269     =item * all constructor arguments become object members.
2270    
2271     At least initially, when you pass a C<tls>-argument to the constructor it
2272 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2273 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2274    
2275     =item * other object member names are prefixed with an C<_>.
2276    
2277     All object members not explicitly documented (internal use) are prefixed
2278     with an underscore character, so the remaining non-C<_>-namespace is free
2279     for use for subclasses.
2280    
2281     =item * all members not documented here and not prefixed with an underscore
2282     are free to use in subclasses.
2283    
2284     Of course, new versions of AnyEvent::Handle may introduce more "public"
2285     member variables, but thats just life, at least it is documented.
2286    
2287     =back
2288    
2289 elmex 1.1 =head1 AUTHOR
2290    
2291 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2292 elmex 1.1
2293     =cut
2294    
2295     1; # End of AnyEvent::Handle