ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.214
Committed: Sun Jan 16 17:12:27 2011 UTC (13 years, 4 months ago) by root
Branch: MAIN
Changes since 1.213: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.198 There are three variants of the timeouts that work independently
253 root 1.176 of each other, for both read and write, just read, and just write:
254     C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
255     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
256     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
257 root 1.43
258 root 1.198 Note that timeout processing is active even when you do not have
259 root 1.43 any outstanding read or write requests: If you plan to keep the connection
260 root 1.198 idle then you should disable the timeout temporarily or ignore the timeout
261 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
262     restart the timeout.
263 root 1.43
264     Zero (the default) disables this timeout.
265    
266     =item on_timeout => $cb->($handle)
267    
268     Called whenever the inactivity timeout passes. If you return from this
269     callback, then the timeout will be reset as if some activity had happened,
270     so this condition is not fatal in any way.
271    
272 root 1.8 =item rbuf_max => <bytes>
273 elmex 1.2
274 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
275     when the read buffer ever (strictly) exceeds this size. This is useful to
276 root 1.88 avoid some forms of denial-of-service attacks.
277 elmex 1.2
278 root 1.8 For example, a server accepting connections from untrusted sources should
279     be configured to accept only so-and-so much data that it cannot act on
280     (for example, when expecting a line, an attacker could send an unlimited
281     amount of data without a callback ever being called as long as the line
282     isn't finished).
283 elmex 1.2
284 root 1.209 =item wbuf_max => <bytes>
285    
286     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
287     when the write buffer ever (strictly) exceeds this size. This is useful to
288     avoid some forms of denial-of-service attacks.
289    
290     Although the units of this parameter is bytes, this is the I<raw> number
291     of bytes not yet accepted by the kernel. This can make a difference when
292     you e.g. use TLS, as TLS typically makes your write data larger (but it
293     can also make it smaller due to compression).
294    
295     As an example of when this limit is useful, take a chat server that sends
296     chat messages to a client. If the client does not read those in a timely
297     manner then the send buffer in the server would grow unbounded.
298    
299 root 1.70 =item autocork => <boolean>
300    
301 root 1.198 When disabled (the default), C<push_write> will try to immediately
302     write the data to the handle if possible. This avoids having to register
303 root 1.88 a write watcher and wait for the next event loop iteration, but can
304     be inefficient if you write multiple small chunks (on the wire, this
305     disadvantage is usually avoided by your kernel's nagle algorithm, see
306     C<no_delay>, but this option can save costly syscalls).
307 root 1.70
308 root 1.198 When enabled, writes will always be queued till the next event loop
309 root 1.70 iteration. This is efficient when you do many small writes per iteration,
310 root 1.88 but less efficient when you do a single write only per iteration (or when
311     the write buffer often is full). It also increases write latency.
312 root 1.70
313     =item no_delay => <boolean>
314    
315     When doing small writes on sockets, your operating system kernel might
316     wait a bit for more data before actually sending it out. This is called
317     the Nagle algorithm, and usually it is beneficial.
318    
319 root 1.88 In some situations you want as low a delay as possible, which can be
320     accomplishd by setting this option to a true value.
321 root 1.70
322 root 1.198 The default is your operating system's default behaviour (most likely
323     enabled). This option explicitly enables or disables it, if possible.
324 root 1.70
325 root 1.182 =item keepalive => <boolean>
326    
327     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
328     normally, TCP connections have no time-out once established, so TCP
329 root 1.186 connections, once established, can stay alive forever even when the other
330 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
331 root 1.198 TCP connections when the other side becomes unreachable. While the default
332 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
333     and, if the other side doesn't reply, take down the TCP connection some 10
334     to 15 minutes later.
335    
336     It is harmless to specify this option for file handles that do not support
337     keepalives, and enabling it on connections that are potentially long-lived
338     is usually a good idea.
339    
340     =item oobinline => <boolean>
341    
342     BSD majorly fucked up the implementation of TCP urgent data. The result
343     is that almost no OS implements TCP according to the specs, and every OS
344     implements it slightly differently.
345    
346 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
347     is enabled) gives you the most portable way of getting urgent data, by
348     putting it into the stream.
349    
350     Since BSD emulation of OOB data on top of TCP's urgent data can have
351     security implications, AnyEvent::Handle sets this flag automatically
352 root 1.184 unless explicitly specified. Note that setting this flag after
353     establishing a connection I<may> be a bit too late (data loss could
354     already have occured on BSD systems), but at least it will protect you
355     from most attacks.
356 root 1.182
357 root 1.8 =item read_size => <bytes>
358 elmex 1.2
359 root 1.203 The initial read block size, the number of bytes this module will try to
360     read during each loop iteration. Each handle object will consume at least
361     this amount of memory for the read buffer as well, so when handling many
362     connections requirements). See also C<max_read_size>. Default: C<2048>.
363    
364     =item max_read_size => <bytes>
365    
366     The maximum read buffer size used by the dynamic adjustment
367     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
368     one go it will double C<read_size> up to the maximum given by this
369     option. Default: C<131072> or C<read_size>, whichever is higher.
370 root 1.8
371     =item low_water_mark => <bytes>
372    
373 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
374     buffer: If the buffer reaches this size or gets even samller it is
375 root 1.8 considered empty.
376 elmex 1.2
377 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
378     the write buffer before it is fully drained, but this is a rare case, as
379     the operating system kernel usually buffers data as well, so the default
380     is good in almost all cases.
381    
382 root 1.62 =item linger => <seconds>
383    
384 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
385 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
386     write data and will install a watcher that will write this data to the
387     socket. No errors will be reported (this mostly matches how the operating
388     system treats outstanding data at socket close time).
389 root 1.62
390 root 1.88 This will not work for partial TLS data that could not be encoded
391 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
392     help.
393 root 1.62
394 root 1.133 =item peername => $string
395    
396 root 1.134 A string used to identify the remote site - usually the DNS hostname
397     (I<not> IDN!) used to create the connection, rarely the IP address.
398 root 1.131
399 root 1.133 Apart from being useful in error messages, this string is also used in TLS
400 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
401 root 1.198 verification will be skipped when C<peername> is not specified or is
402 root 1.144 C<undef>.
403 root 1.131
404 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
405    
406 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
407 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
408 root 1.88 established and will transparently encrypt/decrypt data afterwards.
409 root 1.19
410 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
411     appropriate error message.
412    
413 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
414 root 1.88 automatically when you try to create a TLS handle): this module doesn't
415     have a dependency on that module, so if your module requires it, you have
416     to add the dependency yourself.
417 root 1.26
418 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
419     C<accept>, and for the TLS client side of a connection, use C<connect>
420     mode.
421 root 1.19
422     You can also provide your own TLS connection object, but you have
423     to make sure that you call either C<Net::SSLeay::set_connect_state>
424     or C<Net::SSLeay::set_accept_state> on it before you pass it to
425 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
426     object.
427    
428     At some future point, AnyEvent::Handle might switch to another TLS
429     implementation, then the option to use your own session object will go
430     away.
431 root 1.19
432 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
433     passing in the wrong integer will lead to certain crash. This most often
434     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
435     segmentation fault.
436    
437 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
438 root 1.26
439 root 1.131 =item tls_ctx => $anyevent_tls
440 root 1.19
441 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
442 root 1.207 (unless a connection object was specified directly). If this
443     parameter is missing (or C<undef>), then AnyEvent::Handle will use
444     C<AnyEvent::Handle::TLS_CTX>.
445 root 1.19
446 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
447     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
448     new TLS context object.
449    
450 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
451 root 1.142
452     This callback will be invoked when the TLS/SSL handshake has finished. If
453     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
454     (C<on_stoptls> will not be called in this case).
455    
456     The session in C<< $handle->{tls} >> can still be examined in this
457     callback, even when the handshake was not successful.
458    
459 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
460     callback is in effect, instead, the error message will be passed to C<on_starttls>.
461    
462     Without this callback, handshake failures lead to C<on_error> being
463 root 1.198 called as usual.
464 root 1.143
465 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
466 root 1.143 need to do that, start an zero-second timer instead whose callback can
467     then call C<< ->starttls >> again.
468    
469 root 1.142 =item on_stoptls => $cb->($handle)
470    
471     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
472     set, then it will be invoked after freeing the TLS session. If it is not,
473     then a TLS shutdown condition will be treated like a normal EOF condition
474     on the handle.
475    
476     The session in C<< $handle->{tls} >> can still be examined in this
477     callback.
478    
479     This callback will only be called on TLS shutdowns, not when the
480     underlying handle signals EOF.
481    
482 root 1.40 =item json => JSON or JSON::XS object
483    
484     This is the json coder object used by the C<json> read and write types.
485    
486 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
487 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
488     texts.
489 root 1.40
490     Note that you are responsible to depend on the JSON module if you want to
491     use this functionality, as AnyEvent does not have a dependency itself.
492    
493 elmex 1.1 =back
494    
495     =cut
496    
497     sub new {
498 root 1.8 my $class = shift;
499     my $self = bless { @_ }, $class;
500    
501 root 1.159 if ($self->{fh}) {
502     $self->_start;
503     return unless $self->{fh}; # could be gone by now
504    
505     } elsif ($self->{connect}) {
506     require AnyEvent::Socket;
507    
508     $self->{peername} = $self->{connect}[0]
509     unless exists $self->{peername};
510    
511     $self->{_skip_drain_rbuf} = 1;
512    
513     {
514     Scalar::Util::weaken (my $self = $self);
515    
516     $self->{_connect} =
517     AnyEvent::Socket::tcp_connect (
518     $self->{connect}[0],
519     $self->{connect}[1],
520     sub {
521     my ($fh, $host, $port, $retry) = @_;
522    
523 root 1.206 delete $self->{_connect}; # no longer needed
524 root 1.205
525 root 1.159 if ($fh) {
526     $self->{fh} = $fh;
527    
528     delete $self->{_skip_drain_rbuf};
529     $self->_start;
530    
531     $self->{on_connect}
532     and $self->{on_connect}($self, $host, $port, sub {
533 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
534 root 1.159 $self->{_skip_drain_rbuf} = 1;
535     &$retry;
536     });
537    
538     } else {
539     if ($self->{on_connect_error}) {
540     $self->{on_connect_error}($self, "$!");
541     $self->destroy;
542     } else {
543 root 1.161 $self->_error ($!, 1);
544 root 1.159 }
545     }
546     },
547     sub {
548     local $self->{fh} = $_[0];
549    
550 root 1.161 $self->{on_prepare}
551 root 1.210 ? $self->{on_prepare}->($self)
552 root 1.161 : ()
553 root 1.159 }
554     );
555     }
556    
557     } else {
558     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
559     }
560    
561     $self
562     }
563    
564     sub _start {
565     my ($self) = @_;
566 root 1.8
567 root 1.194 # too many clueless people try to use udp and similar sockets
568     # with AnyEvent::Handle, do them a favour.
569 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
570     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
571 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
572 root 1.194
573 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
574 elmex 1.1
575 root 1.176 $self->{_activity} =
576     $self->{_ractivity} =
577     $self->{_wactivity} = AE::now;
578    
579 root 1.203 $self->{read_size} ||= 2048;
580     $self->{max_read_size} = $self->{read_size}
581     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
582    
583 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
584     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
585     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
586    
587 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
588     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
589    
590     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
591 root 1.131
592 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
593 root 1.94 if $self->{tls};
594 root 1.19
595 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
596 root 1.10
597 root 1.66 $self->start_read
598 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
599 root 1.160
600     $self->_drain_wbuf;
601 root 1.8 }
602 elmex 1.2
603 root 1.52 sub _error {
604 root 1.133 my ($self, $errno, $fatal, $message) = @_;
605 root 1.8
606 root 1.52 $! = $errno;
607 root 1.133 $message ||= "$!";
608 root 1.37
609 root 1.52 if ($self->{on_error}) {
610 root 1.133 $self->{on_error}($self, $fatal, $message);
611 root 1.151 $self->destroy if $fatal;
612 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
613 root 1.149 $self->destroy;
614 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
615 root 1.52 }
616 elmex 1.1 }
617    
618 root 1.8 =item $fh = $handle->fh
619 elmex 1.1
620 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
621 elmex 1.1
622     =cut
623    
624 root 1.38 sub fh { $_[0]{fh} }
625 elmex 1.1
626 root 1.8 =item $handle->on_error ($cb)
627 elmex 1.1
628 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
629 elmex 1.1
630 root 1.8 =cut
631    
632     sub on_error {
633     $_[0]{on_error} = $_[1];
634     }
635    
636     =item $handle->on_eof ($cb)
637    
638     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
639 elmex 1.1
640     =cut
641    
642 root 1.8 sub on_eof {
643     $_[0]{on_eof} = $_[1];
644     }
645    
646 root 1.43 =item $handle->on_timeout ($cb)
647    
648 root 1.176 =item $handle->on_rtimeout ($cb)
649    
650     =item $handle->on_wtimeout ($cb)
651    
652     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
653     callback, or disables the callback (but not the timeout) if C<$cb> =
654     C<undef>. See the C<timeout> constructor argument and method.
655 root 1.43
656     =cut
657    
658 root 1.176 # see below
659 root 1.43
660 root 1.70 =item $handle->autocork ($boolean)
661    
662     Enables or disables the current autocork behaviour (see C<autocork>
663 root 1.105 constructor argument). Changes will only take effect on the next write.
664 root 1.70
665     =cut
666    
667 root 1.105 sub autocork {
668     $_[0]{autocork} = $_[1];
669     }
670    
671 root 1.70 =item $handle->no_delay ($boolean)
672    
673     Enables or disables the C<no_delay> setting (see constructor argument of
674     the same name for details).
675    
676     =cut
677    
678     sub no_delay {
679     $_[0]{no_delay} = $_[1];
680    
681 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
682     if $_[0]{fh};
683 root 1.182 }
684    
685     =item $handle->keepalive ($boolean)
686    
687     Enables or disables the C<keepalive> setting (see constructor argument of
688     the same name for details).
689    
690     =cut
691    
692     sub keepalive {
693     $_[0]{keepalive} = $_[1];
694    
695     eval {
696     local $SIG{__DIE__};
697     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
698     if $_[0]{fh};
699     };
700     }
701    
702     =item $handle->oobinline ($boolean)
703    
704     Enables or disables the C<oobinline> setting (see constructor argument of
705     the same name for details).
706    
707     =cut
708    
709     sub oobinline {
710     $_[0]{oobinline} = $_[1];
711    
712     eval {
713     local $SIG{__DIE__};
714     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
715     if $_[0]{fh};
716     };
717     }
718    
719     =item $handle->keepalive ($boolean)
720    
721     Enables or disables the C<keepalive> setting (see constructor argument of
722     the same name for details).
723    
724     =cut
725    
726     sub keepalive {
727     $_[0]{keepalive} = $_[1];
728    
729     eval {
730     local $SIG{__DIE__};
731     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
732 root 1.159 if $_[0]{fh};
733 root 1.70 };
734     }
735    
736 root 1.142 =item $handle->on_starttls ($cb)
737    
738     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
739    
740     =cut
741    
742     sub on_starttls {
743     $_[0]{on_starttls} = $_[1];
744     }
745    
746     =item $handle->on_stoptls ($cb)
747    
748     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
749    
750     =cut
751    
752 root 1.189 sub on_stoptls {
753 root 1.142 $_[0]{on_stoptls} = $_[1];
754     }
755    
756 root 1.168 =item $handle->rbuf_max ($max_octets)
757    
758     Configures the C<rbuf_max> setting (C<undef> disables it).
759    
760 root 1.209 =item $handle->wbuf_max ($max_octets)
761    
762     Configures the C<wbuf_max> setting (C<undef> disables it).
763    
764 root 1.168 =cut
765    
766     sub rbuf_max {
767     $_[0]{rbuf_max} = $_[1];
768     }
769    
770 root 1.209 sub rbuf_max {
771     $_[0]{wbuf_max} = $_[1];
772     }
773    
774 root 1.43 #############################################################################
775    
776     =item $handle->timeout ($seconds)
777    
778 root 1.176 =item $handle->rtimeout ($seconds)
779    
780     =item $handle->wtimeout ($seconds)
781    
782 root 1.43 Configures (or disables) the inactivity timeout.
783    
784 root 1.176 =item $handle->timeout_reset
785    
786     =item $handle->rtimeout_reset
787    
788     =item $handle->wtimeout_reset
789    
790     Reset the activity timeout, as if data was received or sent.
791    
792     These methods are cheap to call.
793    
794 root 1.43 =cut
795    
796 root 1.176 for my $dir ("", "r", "w") {
797     my $timeout = "${dir}timeout";
798     my $tw = "_${dir}tw";
799     my $on_timeout = "on_${dir}timeout";
800     my $activity = "_${dir}activity";
801     my $cb;
802    
803     *$on_timeout = sub {
804     $_[0]{$on_timeout} = $_[1];
805     };
806    
807     *$timeout = sub {
808     my ($self, $new_value) = @_;
809 root 1.43
810 root 1.201 $new_value >= 0
811     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
812    
813 root 1.176 $self->{$timeout} = $new_value;
814     delete $self->{$tw}; &$cb;
815     };
816 root 1.43
817 root 1.176 *{"${dir}timeout_reset"} = sub {
818     $_[0]{$activity} = AE::now;
819     };
820 root 1.43
821 root 1.176 # main workhorse:
822     # reset the timeout watcher, as neccessary
823     # also check for time-outs
824     $cb = sub {
825     my ($self) = @_;
826    
827     if ($self->{$timeout} && $self->{fh}) {
828     my $NOW = AE::now;
829    
830     # when would the timeout trigger?
831     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
832    
833     # now or in the past already?
834     if ($after <= 0) {
835     $self->{$activity} = $NOW;
836 root 1.43
837 root 1.176 if ($self->{$on_timeout}) {
838     $self->{$on_timeout}($self);
839     } else {
840     $self->_error (Errno::ETIMEDOUT);
841     }
842 root 1.43
843 root 1.176 # callback could have changed timeout value, optimise
844     return unless $self->{$timeout};
845 root 1.43
846 root 1.176 # calculate new after
847     $after = $self->{$timeout};
848 root 1.43 }
849    
850 root 1.176 Scalar::Util::weaken $self;
851     return unless $self; # ->error could have destroyed $self
852 root 1.43
853 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
854     delete $self->{$tw};
855     $cb->($self);
856     };
857     } else {
858     delete $self->{$tw};
859 root 1.43 }
860     }
861     }
862    
863 root 1.9 #############################################################################
864    
865     =back
866    
867     =head2 WRITE QUEUE
868    
869     AnyEvent::Handle manages two queues per handle, one for writing and one
870     for reading.
871    
872     The write queue is very simple: you can add data to its end, and
873     AnyEvent::Handle will automatically try to get rid of it for you.
874    
875 elmex 1.20 When data could be written and the write buffer is shorter then the low
876 root 1.9 water mark, the C<on_drain> callback will be invoked.
877    
878     =over 4
879    
880 root 1.8 =item $handle->on_drain ($cb)
881    
882     Sets the C<on_drain> callback or clears it (see the description of
883     C<on_drain> in the constructor).
884    
885 root 1.193 This method may invoke callbacks (and therefore the handle might be
886     destroyed after it returns).
887    
888 root 1.8 =cut
889    
890     sub on_drain {
891 elmex 1.1 my ($self, $cb) = @_;
892    
893 root 1.8 $self->{on_drain} = $cb;
894    
895     $cb->($self)
896 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
897 root 1.8 }
898    
899     =item $handle->push_write ($data)
900    
901 root 1.209 Queues the given scalar to be written. You can push as much data as
902     you want (only limited by the available memory and C<wbuf_max>), as
903     C<AnyEvent::Handle> buffers it independently of the kernel.
904 root 1.8
905 root 1.193 This method may invoke callbacks (and therefore the handle might be
906     destroyed after it returns).
907    
908 root 1.8 =cut
909    
910 root 1.17 sub _drain_wbuf {
911     my ($self) = @_;
912 root 1.8
913 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
914 root 1.35
915 root 1.8 Scalar::Util::weaken $self;
916 root 1.35
917 root 1.8 my $cb = sub {
918     my $len = syswrite $self->{fh}, $self->{wbuf};
919    
920 root 1.146 if (defined $len) {
921 root 1.8 substr $self->{wbuf}, 0, $len, "";
922    
923 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
924 root 1.43
925 root 1.8 $self->{on_drain}($self)
926 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
927 root 1.8 && $self->{on_drain};
928    
929 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
930 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
931 root 1.52 $self->_error ($!, 1);
932 elmex 1.1 }
933 root 1.8 };
934    
935 root 1.35 # try to write data immediately
936 root 1.70 $cb->() unless $self->{autocork};
937 root 1.8
938 root 1.35 # if still data left in wbuf, we need to poll
939 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
940 root 1.35 if length $self->{wbuf};
941 root 1.209
942     if (
943     defined $self->{wbuf_max}
944     && $self->{wbuf_max} < length $self->{wbuf}
945     ) {
946     $self->_error (Errno::ENOSPC, 1), return;
947     }
948 root 1.8 };
949     }
950    
951 root 1.30 our %WH;
952    
953 root 1.185 # deprecated
954 root 1.30 sub register_write_type($$) {
955     $WH{$_[0]} = $_[1];
956     }
957    
958 root 1.17 sub push_write {
959     my $self = shift;
960    
961 root 1.29 if (@_ > 1) {
962     my $type = shift;
963    
964 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
965     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
966 root 1.29 ->($self, @_);
967     }
968    
969 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
970     # and diagnose the problem earlier and better.
971    
972 root 1.93 if ($self->{tls}) {
973 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
974 root 1.160 &_dotls ($self) if $self->{fh};
975 root 1.17 } else {
976 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
977 root 1.159 $self->_drain_wbuf if $self->{fh};
978 root 1.17 }
979     }
980    
981 root 1.29 =item $handle->push_write (type => @args)
982    
983 root 1.185 Instead of formatting your data yourself, you can also let this module
984     do the job by specifying a type and type-specific arguments. You
985     can also specify the (fully qualified) name of a package, in which
986     case AnyEvent tries to load the package and then expects to find the
987 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
988 root 1.29
989 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
990     drop by and tell us):
991 root 1.29
992     =over 4
993    
994     =item netstring => $string
995    
996     Formats the given value as netstring
997     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
998    
999     =cut
1000    
1001     register_write_type netstring => sub {
1002     my ($self, $string) = @_;
1003    
1004 root 1.96 (length $string) . ":$string,"
1005 root 1.29 };
1006    
1007 root 1.61 =item packstring => $format, $data
1008    
1009     An octet string prefixed with an encoded length. The encoding C<$format>
1010     uses the same format as a Perl C<pack> format, but must specify a single
1011     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1012     optional C<!>, C<< < >> or C<< > >> modifier).
1013    
1014     =cut
1015    
1016     register_write_type packstring => sub {
1017     my ($self, $format, $string) = @_;
1018    
1019 root 1.65 pack "$format/a*", $string
1020 root 1.61 };
1021    
1022 root 1.39 =item json => $array_or_hashref
1023    
1024 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1025     provide your own JSON object, this means it will be encoded to JSON text
1026     in UTF-8.
1027    
1028     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1029     one end of a handle and read them at the other end without using any
1030     additional framing.
1031    
1032 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1033     this module doesn't need delimiters after or between JSON texts to be
1034     able to read them, many other languages depend on that.
1035    
1036     A simple RPC protocol that interoperates easily with others is to send
1037     JSON arrays (or objects, although arrays are usually the better choice as
1038     they mimic how function argument passing works) and a newline after each
1039     JSON text:
1040    
1041     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1042     $handle->push_write ("\012");
1043    
1044     An AnyEvent::Handle receiver would simply use the C<json> read type and
1045     rely on the fact that the newline will be skipped as leading whitespace:
1046    
1047     $handle->push_read (json => sub { my $array = $_[1]; ... });
1048    
1049     Other languages could read single lines terminated by a newline and pass
1050     this line into their JSON decoder of choice.
1051    
1052 root 1.40 =cut
1053    
1054 root 1.179 sub json_coder() {
1055     eval { require JSON::XS; JSON::XS->new->utf8 }
1056     || do { require JSON; JSON->new->utf8 }
1057     }
1058    
1059 root 1.40 register_write_type json => sub {
1060     my ($self, $ref) = @_;
1061    
1062 root 1.179 my $json = $self->{json} ||= json_coder;
1063 root 1.40
1064 root 1.179 $json->encode ($ref)
1065 root 1.40 };
1066    
1067 root 1.63 =item storable => $reference
1068    
1069     Freezes the given reference using L<Storable> and writes it to the
1070     handle. Uses the C<nfreeze> format.
1071    
1072     =cut
1073    
1074     register_write_type storable => sub {
1075     my ($self, $ref) = @_;
1076    
1077     require Storable;
1078    
1079 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1080 root 1.63 };
1081    
1082 root 1.53 =back
1083    
1084 root 1.133 =item $handle->push_shutdown
1085    
1086     Sometimes you know you want to close the socket after writing your data
1087     before it was actually written. One way to do that is to replace your
1088 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1089     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1090     replaces the C<on_drain> callback with:
1091 root 1.133
1092 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1093 root 1.133
1094     This simply shuts down the write side and signals an EOF condition to the
1095     the peer.
1096    
1097     You can rely on the normal read queue and C<on_eof> handling
1098     afterwards. This is the cleanest way to close a connection.
1099    
1100 root 1.193 This method may invoke callbacks (and therefore the handle might be
1101     destroyed after it returns).
1102    
1103 root 1.133 =cut
1104    
1105     sub push_shutdown {
1106 root 1.142 my ($self) = @_;
1107    
1108     delete $self->{low_water_mark};
1109     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1110 root 1.133 }
1111    
1112 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1113    
1114     Instead of one of the predefined types, you can also specify the name of
1115     a package. AnyEvent will try to load the package and then expects to find
1116     a function named C<anyevent_write_type> inside. If it isn't found, it
1117     progressively tries to load the parent package until it either finds the
1118     function (good) or runs out of packages (bad).
1119    
1120     Whenever the given C<type> is used, C<push_write> will the function with
1121     the handle object and the remaining arguments.
1122    
1123     The function is supposed to return a single octet string that will be
1124     appended to the write buffer, so you cna mentally treat this function as a
1125     "arguments to on-the-wire-format" converter.
1126 root 1.30
1127 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1128     arguments using the first one.
1129 root 1.29
1130 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1131 root 1.29
1132 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1133     # the "My" modules to be auto-loaded, or just about anywhere when the
1134     # My::Type::anyevent_write_type is defined before invoking it.
1135    
1136     package My::Type;
1137    
1138     sub anyevent_write_type {
1139     my ($handle, $delim, @args) = @_;
1140    
1141     join $delim, @args
1142     }
1143 root 1.29
1144 root 1.30 =cut
1145 root 1.29
1146 root 1.8 #############################################################################
1147    
1148 root 1.9 =back
1149    
1150     =head2 READ QUEUE
1151    
1152     AnyEvent::Handle manages two queues per handle, one for writing and one
1153     for reading.
1154    
1155     The read queue is more complex than the write queue. It can be used in two
1156     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1157     a queue.
1158    
1159     In the simple case, you just install an C<on_read> callback and whenever
1160     new data arrives, it will be called. You can then remove some data (if
1161 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1162 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1163 root 1.197 partial message has been received so far), or change the read queue with
1164     e.g. C<push_read>.
1165 root 1.9
1166     In the more complex case, you want to queue multiple callbacks. In this
1167     case, AnyEvent::Handle will call the first queued callback each time new
1168 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1169 root 1.61 done its job (see C<push_read>, below).
1170 root 1.9
1171     This way you can, for example, push three line-reads, followed by reading
1172     a chunk of data, and AnyEvent::Handle will execute them in order.
1173    
1174     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1175     the specified number of bytes which give an XML datagram.
1176    
1177     # in the default state, expect some header bytes
1178     $handle->on_read (sub {
1179     # some data is here, now queue the length-header-read (4 octets)
1180 root 1.52 shift->unshift_read (chunk => 4, sub {
1181 root 1.9 # header arrived, decode
1182     my $len = unpack "N", $_[1];
1183    
1184     # now read the payload
1185 root 1.52 shift->unshift_read (chunk => $len, sub {
1186 root 1.9 my $xml = $_[1];
1187     # handle xml
1188     });
1189     });
1190     });
1191    
1192 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1193     and another line or "ERROR" for the first request that is sent, and 64
1194     bytes for the second request. Due to the availability of a queue, we can
1195     just pipeline sending both requests and manipulate the queue as necessary
1196     in the callbacks.
1197    
1198     When the first callback is called and sees an "OK" response, it will
1199     C<unshift> another line-read. This line-read will be queued I<before> the
1200     64-byte chunk callback.
1201 root 1.9
1202 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1203 root 1.9 $handle->push_write ("request 1\015\012");
1204    
1205     # we expect "ERROR" or "OK" as response, so push a line read
1206 root 1.52 $handle->push_read (line => sub {
1207 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1208     # so it will be read before the second request reads its 64 bytes
1209     # which are already in the queue when this callback is called
1210     # we don't do this in case we got an error
1211     if ($_[1] eq "OK") {
1212 root 1.52 $_[0]->unshift_read (line => sub {
1213 root 1.9 my $response = $_[1];
1214     ...
1215     });
1216     }
1217     });
1218    
1219 root 1.69 # request two, simply returns 64 octets
1220 root 1.9 $handle->push_write ("request 2\015\012");
1221    
1222     # simply read 64 bytes, always
1223 root 1.52 $handle->push_read (chunk => 64, sub {
1224 root 1.9 my $response = $_[1];
1225     ...
1226     });
1227    
1228     =over 4
1229    
1230 root 1.10 =cut
1231    
1232 root 1.8 sub _drain_rbuf {
1233     my ($self) = @_;
1234 elmex 1.1
1235 root 1.159 # avoid recursion
1236 root 1.167 return if $self->{_skip_drain_rbuf};
1237 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1238 root 1.59
1239     while () {
1240 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1241     # we are draining the buffer, and this can only happen with TLS.
1242 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1243     if exists $self->{_tls_rbuf};
1244 root 1.115
1245 root 1.59 my $len = length $self->{rbuf};
1246 elmex 1.1
1247 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1248 root 1.29 unless ($cb->($self)) {
1249 root 1.163 # no progress can be made
1250     # (not enough data and no data forthcoming)
1251     $self->_error (Errno::EPIPE, 1), return
1252     if $self->{_eof};
1253 root 1.10
1254 root 1.38 unshift @{ $self->{_queue} }, $cb;
1255 root 1.55 last;
1256 root 1.8 }
1257     } elsif ($self->{on_read}) {
1258 root 1.61 last unless $len;
1259    
1260 root 1.8 $self->{on_read}($self);
1261    
1262     if (
1263 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1264     && !@{ $self->{_queue} } # and the queue is still empty
1265     && $self->{on_read} # but we still have on_read
1266 root 1.8 ) {
1267 root 1.55 # no further data will arrive
1268     # so no progress can be made
1269 root 1.150 $self->_error (Errno::EPIPE, 1), return
1270 root 1.55 if $self->{_eof};
1271    
1272     last; # more data might arrive
1273 elmex 1.1 }
1274 root 1.8 } else {
1275     # read side becomes idle
1276 root 1.93 delete $self->{_rw} unless $self->{tls};
1277 root 1.55 last;
1278 root 1.8 }
1279     }
1280    
1281 root 1.80 if ($self->{_eof}) {
1282 root 1.163 $self->{on_eof}
1283     ? $self->{on_eof}($self)
1284     : $self->_error (0, 1, "Unexpected end-of-file");
1285    
1286     return;
1287 root 1.80 }
1288 root 1.55
1289 root 1.169 if (
1290     defined $self->{rbuf_max}
1291     && $self->{rbuf_max} < length $self->{rbuf}
1292     ) {
1293     $self->_error (Errno::ENOSPC, 1), return;
1294     }
1295    
1296 root 1.55 # may need to restart read watcher
1297     unless ($self->{_rw}) {
1298     $self->start_read
1299     if $self->{on_read} || @{ $self->{_queue} };
1300     }
1301 elmex 1.1 }
1302    
1303 root 1.8 =item $handle->on_read ($cb)
1304 elmex 1.1
1305 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1306     the new callback is C<undef>). See the description of C<on_read> in the
1307     constructor.
1308 elmex 1.1
1309 root 1.193 This method may invoke callbacks (and therefore the handle might be
1310     destroyed after it returns).
1311    
1312 root 1.8 =cut
1313    
1314     sub on_read {
1315     my ($self, $cb) = @_;
1316 elmex 1.1
1317 root 1.8 $self->{on_read} = $cb;
1318 root 1.159 $self->_drain_rbuf if $cb;
1319 elmex 1.1 }
1320    
1321 root 1.8 =item $handle->rbuf
1322    
1323 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1324     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1325     much faster, and no less clean).
1326    
1327     The only operation allowed on the read buffer (apart from looking at it)
1328     is removing data from its beginning. Otherwise modifying or appending to
1329     it is not allowed and will lead to hard-to-track-down bugs.
1330    
1331     NOTE: The read buffer should only be used or modified in the C<on_read>
1332     callback or when C<push_read> or C<unshift_read> are used with a single
1333     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1334     will manage the read buffer on their own.
1335 elmex 1.1
1336     =cut
1337    
1338 elmex 1.2 sub rbuf : lvalue {
1339 root 1.8 $_[0]{rbuf}
1340 elmex 1.2 }
1341 elmex 1.1
1342 root 1.8 =item $handle->push_read ($cb)
1343    
1344     =item $handle->unshift_read ($cb)
1345    
1346     Append the given callback to the end of the queue (C<push_read>) or
1347     prepend it (C<unshift_read>).
1348    
1349     The callback is called each time some additional read data arrives.
1350 elmex 1.1
1351 elmex 1.20 It must check whether enough data is in the read buffer already.
1352 elmex 1.1
1353 root 1.8 If not enough data is available, it must return the empty list or a false
1354     value, in which case it will be called repeatedly until enough data is
1355     available (or an error condition is detected).
1356    
1357     If enough data was available, then the callback must remove all data it is
1358     interested in (which can be none at all) and return a true value. After returning
1359     true, it will be removed from the queue.
1360 elmex 1.1
1361 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1362     destroyed after it returns).
1363    
1364 elmex 1.1 =cut
1365    
1366 root 1.30 our %RH;
1367    
1368     sub register_read_type($$) {
1369     $RH{$_[0]} = $_[1];
1370     }
1371    
1372 root 1.8 sub push_read {
1373 root 1.28 my $self = shift;
1374     my $cb = pop;
1375    
1376     if (@_) {
1377     my $type = shift;
1378    
1379 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1380     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1381 root 1.28 ->($self, $cb, @_);
1382     }
1383 elmex 1.1
1384 root 1.38 push @{ $self->{_queue} }, $cb;
1385 root 1.159 $self->_drain_rbuf;
1386 elmex 1.1 }
1387    
1388 root 1.8 sub unshift_read {
1389 root 1.28 my $self = shift;
1390     my $cb = pop;
1391    
1392     if (@_) {
1393     my $type = shift;
1394    
1395 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1396     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1397 root 1.28 ->($self, $cb, @_);
1398     }
1399    
1400 root 1.38 unshift @{ $self->{_queue} }, $cb;
1401 root 1.159 $self->_drain_rbuf;
1402 root 1.8 }
1403 elmex 1.1
1404 root 1.28 =item $handle->push_read (type => @args, $cb)
1405 elmex 1.1
1406 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1407 elmex 1.1
1408 root 1.28 Instead of providing a callback that parses the data itself you can chose
1409     between a number of predefined parsing formats, for chunks of data, lines
1410 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1411     which case AnyEvent tries to load the package and then expects to find the
1412     C<anyevent_read_type> function inside (see "custom read types", below).
1413 elmex 1.1
1414 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1415     drop by and tell us):
1416 root 1.28
1417     =over 4
1418    
1419 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1420 root 1.28
1421     Invoke the callback only once C<$octets> bytes have been read. Pass the
1422     data read to the callback. The callback will never be called with less
1423     data.
1424    
1425     Example: read 2 bytes.
1426    
1427     $handle->push_read (chunk => 2, sub {
1428     warn "yay ", unpack "H*", $_[1];
1429     });
1430 elmex 1.1
1431     =cut
1432    
1433 root 1.28 register_read_type chunk => sub {
1434     my ($self, $cb, $len) = @_;
1435 elmex 1.1
1436 root 1.8 sub {
1437     $len <= length $_[0]{rbuf} or return;
1438 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1439 root 1.8 1
1440     }
1441 root 1.28 };
1442 root 1.8
1443 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1444 elmex 1.1
1445 root 1.8 The callback will be called only once a full line (including the end of
1446     line marker, C<$eol>) has been read. This line (excluding the end of line
1447     marker) will be passed to the callback as second argument (C<$line>), and
1448     the end of line marker as the third argument (C<$eol>).
1449 elmex 1.1
1450 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1451     will be interpreted as a fixed record end marker, or it can be a regex
1452     object (e.g. created by C<qr>), in which case it is interpreted as a
1453     regular expression.
1454 elmex 1.1
1455 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1456     undef), then C<qr|\015?\012|> is used (which is good for most internet
1457     protocols).
1458 elmex 1.1
1459 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1460     not marked by the end of line marker.
1461 elmex 1.1
1462 root 1.8 =cut
1463 elmex 1.1
1464 root 1.28 register_read_type line => sub {
1465     my ($self, $cb, $eol) = @_;
1466 elmex 1.1
1467 root 1.76 if (@_ < 3) {
1468     # this is more than twice as fast as the generic code below
1469     sub {
1470     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1471 elmex 1.1
1472 root 1.76 $cb->($_[0], $1, $2);
1473     1
1474     }
1475     } else {
1476     $eol = quotemeta $eol unless ref $eol;
1477     $eol = qr|^(.*?)($eol)|s;
1478    
1479     sub {
1480     $_[0]{rbuf} =~ s/$eol// or return;
1481 elmex 1.1
1482 root 1.76 $cb->($_[0], $1, $2);
1483     1
1484     }
1485 root 1.8 }
1486 root 1.28 };
1487 elmex 1.1
1488 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1489 root 1.36
1490     Makes a regex match against the regex object C<$accept> and returns
1491     everything up to and including the match.
1492    
1493     Example: read a single line terminated by '\n'.
1494    
1495     $handle->push_read (regex => qr<\n>, sub { ... });
1496    
1497     If C<$reject> is given and not undef, then it determines when the data is
1498     to be rejected: it is matched against the data when the C<$accept> regex
1499     does not match and generates an C<EBADMSG> error when it matches. This is
1500     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1501     receive buffer overflow).
1502    
1503     Example: expect a single decimal number followed by whitespace, reject
1504     anything else (not the use of an anchor).
1505    
1506     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1507    
1508     If C<$skip> is given and not C<undef>, then it will be matched against
1509     the receive buffer when neither C<$accept> nor C<$reject> match,
1510     and everything preceding and including the match will be accepted
1511     unconditionally. This is useful to skip large amounts of data that you
1512     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1513     have to start matching from the beginning. This is purely an optimisation
1514 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1515 root 1.36
1516     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1517 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1518 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1519     it only accepts something not ending in either \015 or \012, as these are
1520     required for the accept regex.
1521    
1522     $handle->push_read (regex =>
1523     qr<\015\012\015\012>,
1524     undef, # no reject
1525     qr<^.*[^\015\012]>,
1526     sub { ... });
1527    
1528     =cut
1529    
1530     register_read_type regex => sub {
1531     my ($self, $cb, $accept, $reject, $skip) = @_;
1532    
1533     my $data;
1534     my $rbuf = \$self->{rbuf};
1535    
1536     sub {
1537     # accept
1538     if ($$rbuf =~ $accept) {
1539     $data .= substr $$rbuf, 0, $+[0], "";
1540     $cb->($self, $data);
1541     return 1;
1542     }
1543    
1544     # reject
1545     if ($reject && $$rbuf =~ $reject) {
1546 root 1.150 $self->_error (Errno::EBADMSG);
1547 root 1.36 }
1548    
1549     # skip
1550     if ($skip && $$rbuf =~ $skip) {
1551     $data .= substr $$rbuf, 0, $+[0], "";
1552     }
1553    
1554     ()
1555     }
1556     };
1557    
1558 root 1.61 =item netstring => $cb->($handle, $string)
1559    
1560     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1561    
1562     Throws an error with C<$!> set to EBADMSG on format violations.
1563    
1564     =cut
1565    
1566     register_read_type netstring => sub {
1567     my ($self, $cb) = @_;
1568    
1569     sub {
1570     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1571     if ($_[0]{rbuf} =~ /[^0-9]/) {
1572 root 1.150 $self->_error (Errno::EBADMSG);
1573 root 1.61 }
1574     return;
1575     }
1576    
1577     my $len = $1;
1578    
1579     $self->unshift_read (chunk => $len, sub {
1580     my $string = $_[1];
1581     $_[0]->unshift_read (chunk => 1, sub {
1582     if ($_[1] eq ",") {
1583     $cb->($_[0], $string);
1584     } else {
1585 root 1.150 $self->_error (Errno::EBADMSG);
1586 root 1.61 }
1587     });
1588     });
1589    
1590     1
1591     }
1592     };
1593    
1594     =item packstring => $format, $cb->($handle, $string)
1595    
1596     An octet string prefixed with an encoded length. The encoding C<$format>
1597     uses the same format as a Perl C<pack> format, but must specify a single
1598     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1599     optional C<!>, C<< < >> or C<< > >> modifier).
1600    
1601 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1602     EPP uses a prefix of C<N> (4 octtes).
1603 root 1.61
1604     Example: read a block of data prefixed by its length in BER-encoded
1605     format (very efficient).
1606    
1607     $handle->push_read (packstring => "w", sub {
1608     my ($handle, $data) = @_;
1609     });
1610    
1611     =cut
1612    
1613     register_read_type packstring => sub {
1614     my ($self, $cb, $format) = @_;
1615    
1616     sub {
1617     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1618 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1619 root 1.61 or return;
1620    
1621 root 1.77 $format = length pack $format, $len;
1622 root 1.61
1623 root 1.77 # bypass unshift if we already have the remaining chunk
1624     if ($format + $len <= length $_[0]{rbuf}) {
1625     my $data = substr $_[0]{rbuf}, $format, $len;
1626     substr $_[0]{rbuf}, 0, $format + $len, "";
1627     $cb->($_[0], $data);
1628     } else {
1629     # remove prefix
1630     substr $_[0]{rbuf}, 0, $format, "";
1631    
1632     # read remaining chunk
1633     $_[0]->unshift_read (chunk => $len, $cb);
1634     }
1635 root 1.61
1636     1
1637     }
1638     };
1639    
1640 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1641    
1642 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1643     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1644 root 1.40
1645     If a C<json> object was passed to the constructor, then that will be used
1646     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1647    
1648     This read type uses the incremental parser available with JSON version
1649     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1650     dependency on your own: this module will load the JSON module, but
1651     AnyEvent does not depend on it itself.
1652    
1653     Since JSON texts are fully self-delimiting, the C<json> read and write
1654 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1655     the C<json> write type description, above, for an actual example.
1656 root 1.40
1657     =cut
1658    
1659     register_read_type json => sub {
1660 root 1.63 my ($self, $cb) = @_;
1661 root 1.40
1662 root 1.179 my $json = $self->{json} ||= json_coder;
1663 root 1.40
1664     my $data;
1665     my $rbuf = \$self->{rbuf};
1666    
1667     sub {
1668 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1669 root 1.110
1670 root 1.113 if ($ref) {
1671     $self->{rbuf} = $json->incr_text;
1672     $json->incr_text = "";
1673     $cb->($self, $ref);
1674 root 1.110
1675     1
1676 root 1.113 } elsif ($@) {
1677 root 1.111 # error case
1678 root 1.110 $json->incr_skip;
1679 root 1.40
1680     $self->{rbuf} = $json->incr_text;
1681     $json->incr_text = "";
1682    
1683 root 1.150 $self->_error (Errno::EBADMSG);
1684 root 1.114
1685 root 1.113 ()
1686     } else {
1687     $self->{rbuf} = "";
1688 root 1.114
1689 root 1.113 ()
1690     }
1691 root 1.40 }
1692     };
1693    
1694 root 1.63 =item storable => $cb->($handle, $ref)
1695    
1696     Deserialises a L<Storable> frozen representation as written by the
1697     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1698     data).
1699    
1700     Raises C<EBADMSG> error if the data could not be decoded.
1701    
1702     =cut
1703    
1704     register_read_type storable => sub {
1705     my ($self, $cb) = @_;
1706    
1707     require Storable;
1708    
1709     sub {
1710     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1711 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1712 root 1.63 or return;
1713    
1714 root 1.77 my $format = length pack "w", $len;
1715 root 1.63
1716 root 1.77 # bypass unshift if we already have the remaining chunk
1717     if ($format + $len <= length $_[0]{rbuf}) {
1718     my $data = substr $_[0]{rbuf}, $format, $len;
1719     substr $_[0]{rbuf}, 0, $format + $len, "";
1720     $cb->($_[0], Storable::thaw ($data));
1721     } else {
1722     # remove prefix
1723     substr $_[0]{rbuf}, 0, $format, "";
1724    
1725     # read remaining chunk
1726     $_[0]->unshift_read (chunk => $len, sub {
1727     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1728     $cb->($_[0], $ref);
1729     } else {
1730 root 1.150 $self->_error (Errno::EBADMSG);
1731 root 1.77 }
1732     });
1733     }
1734    
1735     1
1736 root 1.63 }
1737     };
1738    
1739 root 1.28 =back
1740    
1741 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1742 root 1.30
1743 root 1.185 Instead of one of the predefined types, you can also specify the name
1744     of a package. AnyEvent will try to load the package and then expects to
1745     find a function named C<anyevent_read_type> inside. If it isn't found, it
1746     progressively tries to load the parent package until it either finds the
1747     function (good) or runs out of packages (bad).
1748    
1749     Whenever this type is used, C<push_read> will invoke the function with the
1750     handle object, the original callback and the remaining arguments.
1751    
1752     The function is supposed to return a callback (usually a closure) that
1753     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1754     mentally treat the function as a "configurable read type to read callback"
1755     converter.
1756    
1757     It should invoke the original callback when it is done reading (remember
1758     to pass C<$handle> as first argument as all other callbacks do that,
1759     although there is no strict requirement on this).
1760 root 1.30
1761 root 1.185 For examples, see the source of this module (F<perldoc -m
1762     AnyEvent::Handle>, search for C<register_read_type>)).
1763 root 1.30
1764 root 1.10 =item $handle->stop_read
1765    
1766     =item $handle->start_read
1767    
1768 root 1.18 In rare cases you actually do not want to read anything from the
1769 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1770 root 1.22 any queued callbacks will be executed then. To start reading again, call
1771 root 1.10 C<start_read>.
1772    
1773 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1774     you change the C<on_read> callback or push/unshift a read callback, and it
1775     will automatically C<stop_read> for you when neither C<on_read> is set nor
1776     there are any read requests in the queue.
1777    
1778 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1779     as TLS does not support half-duplex connections. In current versions they
1780     work as expected, as this behaviour is required to avoid certain resource
1781     attacks, where the program would be forced to read (and buffer) arbitrary
1782     amounts of data before being able to send some data. The drawback is that
1783     some readings of the the SSL/TLS specifications basically require this
1784     attack to be working, as SSL/TLS implementations might stall sending data
1785     during a rehandshake.
1786    
1787     As a guideline, during the initial handshake, you should not stop reading,
1788     and as a client, it might cause problems, depending on your applciation.
1789 root 1.93
1790 root 1.10 =cut
1791    
1792     sub stop_read {
1793     my ($self) = @_;
1794 elmex 1.1
1795 root 1.213 delete $self->{_rw};
1796 root 1.8 }
1797 elmex 1.1
1798 root 1.10 sub start_read {
1799     my ($self) = @_;
1800    
1801 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1802 root 1.10 Scalar::Util::weaken $self;
1803    
1804 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1805 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1806 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1807 root 1.10
1808     if ($len > 0) {
1809 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1810 root 1.43
1811 root 1.93 if ($self->{tls}) {
1812     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1813 root 1.97
1814 root 1.93 &_dotls ($self);
1815     } else {
1816 root 1.159 $self->_drain_rbuf;
1817 root 1.93 }
1818 root 1.10
1819 root 1.203 if ($len == $self->{read_size}) {
1820     $self->{read_size} *= 2;
1821     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1822     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1823     }
1824    
1825 root 1.10 } elsif (defined $len) {
1826 root 1.38 delete $self->{_rw};
1827     $self->{_eof} = 1;
1828 root 1.159 $self->_drain_rbuf;
1829 root 1.10
1830 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1831 root 1.52 return $self->_error ($!, 1);
1832 root 1.10 }
1833 root 1.175 };
1834 root 1.10 }
1835 elmex 1.1 }
1836    
1837 root 1.133 our $ERROR_SYSCALL;
1838     our $ERROR_WANT_READ;
1839    
1840     sub _tls_error {
1841     my ($self, $err) = @_;
1842    
1843     return $self->_error ($!, 1)
1844     if $err == Net::SSLeay::ERROR_SYSCALL ();
1845    
1846 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1847    
1848     # reduce error string to look less scary
1849     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1850    
1851 root 1.143 if ($self->{_on_starttls}) {
1852     (delete $self->{_on_starttls})->($self, undef, $err);
1853     &_freetls;
1854     } else {
1855     &_freetls;
1856 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1857 root 1.143 }
1858 root 1.133 }
1859    
1860 root 1.97 # poll the write BIO and send the data if applicable
1861 root 1.133 # also decode read data if possible
1862     # this is basiclaly our TLS state machine
1863     # more efficient implementations are possible with openssl,
1864     # but not with the buggy and incomplete Net::SSLeay.
1865 root 1.19 sub _dotls {
1866     my ($self) = @_;
1867    
1868 root 1.97 my $tmp;
1869 root 1.56
1870 root 1.38 if (length $self->{_tls_wbuf}) {
1871 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1872     substr $self->{_tls_wbuf}, 0, $tmp, "";
1873 root 1.22 }
1874 root 1.133
1875     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1876     return $self->_tls_error ($tmp)
1877     if $tmp != $ERROR_WANT_READ
1878 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1879 root 1.19 }
1880    
1881 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1882     unless (length $tmp) {
1883 root 1.143 $self->{_on_starttls}
1884     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1885 root 1.92 &_freetls;
1886 root 1.143
1887 root 1.142 if ($self->{on_stoptls}) {
1888     $self->{on_stoptls}($self);
1889     return;
1890     } else {
1891     # let's treat SSL-eof as we treat normal EOF
1892     delete $self->{_rw};
1893     $self->{_eof} = 1;
1894     }
1895 root 1.56 }
1896 root 1.91
1897 root 1.116 $self->{_tls_rbuf} .= $tmp;
1898 root 1.159 $self->_drain_rbuf;
1899 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1900 root 1.23 }
1901    
1902 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1903 root 1.133 return $self->_tls_error ($tmp)
1904     if $tmp != $ERROR_WANT_READ
1905 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1906 root 1.91
1907 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1908     $self->{wbuf} .= $tmp;
1909 root 1.91 $self->_drain_wbuf;
1910 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1911 root 1.91 }
1912 root 1.142
1913     $self->{_on_starttls}
1914     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1915 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1916 root 1.19 }
1917    
1918 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1919    
1920     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1921     object is created, you can also do that at a later time by calling
1922     C<starttls>.
1923    
1924 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1925     write data and then call C<< ->starttls >> then TLS negotiation will start
1926     immediately, after which the queued write data is then sent.
1927    
1928 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1929     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1930    
1931 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1932     when AnyEvent::Handle has to create its own TLS connection object, or
1933     a hash reference with C<< key => value >> pairs that will be used to
1934     construct a new context.
1935    
1936     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1937     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1938     changed to your liking. Note that the handshake might have already started
1939     when this function returns.
1940 root 1.38
1941 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1942 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1943     stream after stopping TLS.
1944 root 1.92
1945 root 1.193 This method may invoke callbacks (and therefore the handle might be
1946     destroyed after it returns).
1947    
1948 root 1.25 =cut
1949    
1950 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1951    
1952 root 1.19 sub starttls {
1953 root 1.160 my ($self, $tls, $ctx) = @_;
1954    
1955     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1956     if $self->{tls};
1957    
1958     $self->{tls} = $tls;
1959     $self->{tls_ctx} = $ctx if @_ > 2;
1960    
1961     return unless $self->{fh};
1962 root 1.19
1963 root 1.94 require Net::SSLeay;
1964    
1965 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1966     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1967 root 1.133
1968 root 1.180 $tls = delete $self->{tls};
1969 root 1.160 $ctx = $self->{tls_ctx};
1970 root 1.131
1971 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1972    
1973 root 1.131 if ("HASH" eq ref $ctx) {
1974     require AnyEvent::TLS;
1975    
1976 root 1.137 if ($ctx->{cache}) {
1977     my $key = $ctx+0;
1978     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1979     } else {
1980     $ctx = new AnyEvent::TLS %$ctx;
1981     }
1982 root 1.131 }
1983 root 1.92
1984 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1985 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1986 root 1.19
1987 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1988     # but the openssl maintainers basically said: "trust us, it just works".
1989     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1990     # and mismaintained ssleay-module doesn't even offer them).
1991 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1992 root 1.87 #
1993     # in short: this is a mess.
1994     #
1995 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1996 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1997 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1998     # have identity issues in that area.
1999 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2000     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2001     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2002 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2003 root 1.21
2004 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2005     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2006 root 1.19
2007 root 1.172 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
2008    
2009 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2010 root 1.19
2011 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2012 root 1.143 if $self->{on_starttls};
2013 root 1.142
2014 root 1.93 &_dotls; # need to trigger the initial handshake
2015     $self->start_read; # make sure we actually do read
2016 root 1.19 }
2017    
2018 root 1.25 =item $handle->stoptls
2019    
2020 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2021     sending a close notify to the other side, but since OpenSSL doesn't
2022 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2023 root 1.160 the stream afterwards.
2024 root 1.25
2025 root 1.193 This method may invoke callbacks (and therefore the handle might be
2026     destroyed after it returns).
2027    
2028 root 1.25 =cut
2029    
2030     sub stoptls {
2031     my ($self) = @_;
2032    
2033 root 1.192 if ($self->{tls} && $self->{fh}) {
2034 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2035 root 1.92
2036     &_dotls;
2037    
2038 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2039     # # we, we... have to use openssl :/#d#
2040     # &_freetls;#d#
2041 root 1.92 }
2042     }
2043    
2044     sub _freetls {
2045     my ($self) = @_;
2046    
2047     return unless $self->{tls};
2048 root 1.38
2049 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2050 root 1.171 if $self->{tls} > 0;
2051 root 1.92
2052 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2053 root 1.25 }
2054    
2055 root 1.19 sub DESTROY {
2056 root 1.120 my ($self) = @_;
2057 root 1.19
2058 root 1.92 &_freetls;
2059 root 1.62
2060     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2061    
2062 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2063 root 1.62 my $fh = delete $self->{fh};
2064     my $wbuf = delete $self->{wbuf};
2065    
2066     my @linger;
2067    
2068 root 1.175 push @linger, AE::io $fh, 1, sub {
2069 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2070    
2071     if ($len > 0) {
2072     substr $wbuf, 0, $len, "";
2073 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2074 root 1.62 @linger = (); # end
2075     }
2076 root 1.175 };
2077     push @linger, AE::timer $linger, 0, sub {
2078 root 1.62 @linger = ();
2079 root 1.175 };
2080 root 1.62 }
2081 root 1.19 }
2082    
2083 root 1.99 =item $handle->destroy
2084    
2085 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2086 root 1.141 no further callbacks will be invoked and as many resources as possible
2087 root 1.165 will be freed. Any method you will call on the handle object after
2088     destroying it in this way will be silently ignored (and it will return the
2089     empty list).
2090 root 1.99
2091 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2092     object and it will simply shut down. This works in fatal error and EOF
2093     callbacks, as well as code outside. It does I<NOT> work in a read or write
2094     callback, so when you want to destroy the AnyEvent::Handle object from
2095     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2096     that case.
2097    
2098 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2099     will be removed as well, so if those are the only reference holders (as
2100     is common), then one doesn't need to do anything special to break any
2101     reference cycles.
2102    
2103 root 1.99 The handle might still linger in the background and write out remaining
2104     data, as specified by the C<linger> option, however.
2105    
2106     =cut
2107    
2108     sub destroy {
2109     my ($self) = @_;
2110    
2111     $self->DESTROY;
2112     %$self = ();
2113 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2114     }
2115    
2116 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2117     #nop
2118 root 1.99 }
2119    
2120 root 1.192 =item $handle->destroyed
2121    
2122     Returns false as long as the handle hasn't been destroyed by a call to C<<
2123     ->destroy >>, true otherwise.
2124    
2125     Can be useful to decide whether the handle is still valid after some
2126     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2127     C<< ->starttls >> and other methods can call user callbacks, which in turn
2128     can destroy the handle, so work can be avoided by checking sometimes:
2129    
2130     $hdl->starttls ("accept");
2131     return if $hdl->destroyed;
2132     $hdl->push_write (...
2133    
2134     Note that the call to C<push_write> will silently be ignored if the handle
2135     has been destroyed, so often you can just ignore the possibility of the
2136     handle being destroyed.
2137    
2138     =cut
2139    
2140     sub destroyed { 0 }
2141     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2142    
2143 root 1.19 =item AnyEvent::Handle::TLS_CTX
2144    
2145 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2146     for TLS mode.
2147 root 1.19
2148 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2149 root 1.19
2150     =cut
2151    
2152     our $TLS_CTX;
2153    
2154     sub TLS_CTX() {
2155 root 1.131 $TLS_CTX ||= do {
2156     require AnyEvent::TLS;
2157 root 1.19
2158 root 1.131 new AnyEvent::TLS
2159 root 1.19 }
2160     }
2161    
2162 elmex 1.1 =back
2163    
2164 root 1.95
2165     =head1 NONFREQUENTLY ASKED QUESTIONS
2166    
2167     =over 4
2168    
2169 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2170     still get further invocations!
2171    
2172     That's because AnyEvent::Handle keeps a reference to itself when handling
2173     read or write callbacks.
2174    
2175     It is only safe to "forget" the reference inside EOF or error callbacks,
2176     from within all other callbacks, you need to explicitly call the C<<
2177     ->destroy >> method.
2178    
2179 root 1.208 =item Why is my C<on_eof> callback never called?
2180    
2181     Probably because your C<on_error> callback is being called instead: When
2182     you have outstanding requests in your read queue, then an EOF is
2183     considered an error as you clearly expected some data.
2184    
2185     To avoid this, make sure you have an empty read queue whenever your handle
2186     is supposed to be "idle" (i.e. connection closes are O.K.). You cna set
2187     an C<on_read> handler that simply pushes the first read requests in the
2188     queue.
2189    
2190     See also the next question, which explains this in a bit more detail.
2191    
2192     =item How can I serve requests in a loop?
2193    
2194     Most protocols consist of some setup phase (authentication for example)
2195     followed by a request handling phase, where the server waits for requests
2196     and handles them, in a loop.
2197    
2198     There are two important variants: The first (traditional, better) variant
2199     handles requests until the server gets some QUIT command, causing it to
2200     close the connection first (highly desirable for a busy TCP server). A
2201     client dropping the connection is an error, which means this variant can
2202     detect an unexpected detection close.
2203    
2204     To handle this case, always make sure you have a on-empty read queue, by
2205     pushing the "read request start" handler on it:
2206    
2207     # we assume a request starts with a single line
2208     my @start_request; @start_request = (line => sub {
2209     my ($hdl, $line) = @_;
2210    
2211     ... handle request
2212    
2213     # push next request read, possibly from a nested callback
2214     $hdl->push_read (@start_request);
2215     });
2216    
2217     # auth done, now go into request handling loop
2218     # now push the first @start_request
2219     $hdl->push_read (@start_request);
2220    
2221     By always having an outstanding C<push_read>, the handle always expects
2222     some data and raises the C<EPIPE> error when the connction is dropped
2223     unexpectedly.
2224    
2225     The second variant is a protocol where the client can drop the connection
2226     at any time. For TCP, this means that the server machine may run out of
2227     sockets easier, and in general, it means you cnanot distinguish a protocl
2228     failure/client crash from a normal connection close. Nevertheless, these
2229     kinds of protocols are common (and sometimes even the best solution to the
2230     problem).
2231    
2232     Having an outstanding read request at all times is possible if you ignore
2233     C<EPIPE> errors, but this doesn't help with when the client drops the
2234     connection during a request, which would still be an error.
2235    
2236     A better solution is to push the initial request read in an C<on_read>
2237     callback. This avoids an error, as when the server doesn't expect data
2238     (i.e. is idly waiting for the next request, an EOF will not raise an
2239     error, but simply result in an C<on_eof> callback. It is also a bit slower
2240     and simpler:
2241    
2242     # auth done, now go into request handling loop
2243     $hdl->on_read (sub {
2244     my ($hdl) = @_;
2245    
2246     # called each time we receive data but the read queue is empty
2247     # simply start read the request
2248    
2249     $hdl->push_read (line => sub {
2250     my ($hdl, $line) = @_;
2251    
2252     ... handle request
2253    
2254     # do nothing special when the request has been handled, just
2255     # let the request queue go empty.
2256     });
2257     });
2258    
2259 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2260     reading?
2261    
2262     Unlike, say, TCP, TLS connections do not consist of two independent
2263 root 1.198 communication channels, one for each direction. Or put differently, the
2264 root 1.101 read and write directions are not independent of each other: you cannot
2265     write data unless you are also prepared to read, and vice versa.
2266    
2267 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2268 root 1.101 callback invocations when you are not expecting any read data - the reason
2269     is that AnyEvent::Handle always reads in TLS mode.
2270    
2271     During the connection, you have to make sure that you always have a
2272     non-empty read-queue, or an C<on_read> watcher. At the end of the
2273     connection (or when you no longer want to use it) you can call the
2274     C<destroy> method.
2275    
2276 root 1.95 =item How do I read data until the other side closes the connection?
2277    
2278 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2279     to achieve this is by setting an C<on_read> callback that does nothing,
2280     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2281     will be in C<$_[0]{rbuf}>:
2282 root 1.95
2283     $handle->on_read (sub { });
2284     $handle->on_eof (undef);
2285     $handle->on_error (sub {
2286     my $data = delete $_[0]{rbuf};
2287     });
2288    
2289     The reason to use C<on_error> is that TCP connections, due to latencies
2290     and packets loss, might get closed quite violently with an error, when in
2291 root 1.198 fact all data has been received.
2292 root 1.95
2293 root 1.101 It is usually better to use acknowledgements when transferring data,
2294 root 1.95 to make sure the other side hasn't just died and you got the data
2295     intact. This is also one reason why so many internet protocols have an
2296     explicit QUIT command.
2297    
2298 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2299     all data has been written?
2300 root 1.95
2301     After writing your last bits of data, set the C<on_drain> callback
2302     and destroy the handle in there - with the default setting of
2303     C<low_water_mark> this will be called precisely when all data has been
2304     written to the socket:
2305    
2306     $handle->push_write (...);
2307     $handle->on_drain (sub {
2308     warn "all data submitted to the kernel\n";
2309     undef $handle;
2310     });
2311    
2312 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2313     consider using C<< ->push_shutdown >> instead.
2314    
2315     =item I want to contact a TLS/SSL server, I don't care about security.
2316    
2317     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2318 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2319 root 1.143 parameter:
2320    
2321 root 1.144 tcp_connect $host, $port, sub {
2322     my ($fh) = @_;
2323 root 1.143
2324 root 1.144 my $handle = new AnyEvent::Handle
2325     fh => $fh,
2326     tls => "connect",
2327     on_error => sub { ... };
2328    
2329     $handle->push_write (...);
2330     };
2331 root 1.143
2332     =item I want to contact a TLS/SSL server, I do care about security.
2333    
2334 root 1.144 Then you should additionally enable certificate verification, including
2335     peername verification, if the protocol you use supports it (see
2336     L<AnyEvent::TLS>, C<verify_peername>).
2337    
2338     E.g. for HTTPS:
2339    
2340     tcp_connect $host, $port, sub {
2341     my ($fh) = @_;
2342    
2343     my $handle = new AnyEvent::Handle
2344     fh => $fh,
2345     peername => $host,
2346     tls => "connect",
2347     tls_ctx => { verify => 1, verify_peername => "https" },
2348     ...
2349    
2350     Note that you must specify the hostname you connected to (or whatever
2351     "peername" the protocol needs) as the C<peername> argument, otherwise no
2352     peername verification will be done.
2353    
2354     The above will use the system-dependent default set of trusted CA
2355     certificates. If you want to check against a specific CA, add the
2356     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2357    
2358     tls_ctx => {
2359     verify => 1,
2360     verify_peername => "https",
2361     ca_file => "my-ca-cert.pem",
2362     },
2363    
2364     =item I want to create a TLS/SSL server, how do I do that?
2365    
2366     Well, you first need to get a server certificate and key. You have
2367     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2368     self-signed certificate (cheap. check the search engine of your choice,
2369     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2370     nice program for that purpose).
2371    
2372     Then create a file with your private key (in PEM format, see
2373     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2374     file should then look like this:
2375    
2376     -----BEGIN RSA PRIVATE KEY-----
2377     ...header data
2378     ... lots of base64'y-stuff
2379     -----END RSA PRIVATE KEY-----
2380    
2381     -----BEGIN CERTIFICATE-----
2382     ... lots of base64'y-stuff
2383     -----END CERTIFICATE-----
2384    
2385     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2386     specify this file as C<cert_file>:
2387    
2388     tcp_server undef, $port, sub {
2389     my ($fh) = @_;
2390    
2391     my $handle = new AnyEvent::Handle
2392     fh => $fh,
2393     tls => "accept",
2394     tls_ctx => { cert_file => "my-server-keycert.pem" },
2395     ...
2396 root 1.143
2397 root 1.144 When you have intermediate CA certificates that your clients might not
2398     know about, just append them to the C<cert_file>.
2399 root 1.143
2400 root 1.95 =back
2401    
2402    
2403 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2404    
2405     In many cases, you might want to subclass AnyEvent::Handle.
2406    
2407     To make this easier, a given version of AnyEvent::Handle uses these
2408     conventions:
2409    
2410     =over 4
2411    
2412     =item * all constructor arguments become object members.
2413    
2414     At least initially, when you pass a C<tls>-argument to the constructor it
2415 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2416 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2417    
2418     =item * other object member names are prefixed with an C<_>.
2419    
2420     All object members not explicitly documented (internal use) are prefixed
2421     with an underscore character, so the remaining non-C<_>-namespace is free
2422     for use for subclasses.
2423    
2424     =item * all members not documented here and not prefixed with an underscore
2425     are free to use in subclasses.
2426    
2427     Of course, new versions of AnyEvent::Handle may introduce more "public"
2428 root 1.198 member variables, but that's just life. At least it is documented.
2429 root 1.38
2430     =back
2431    
2432 elmex 1.1 =head1 AUTHOR
2433    
2434 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2435 elmex 1.1
2436     =cut
2437    
2438     1; # End of AnyEvent::Handle