ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.219
Committed: Mon Jul 18 01:19:43 2011 UTC (12 years, 10 months ago) by root
Branch: MAIN
Changes since 1.218: +6 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16     warn "got error $msg\n";
17     $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27     warn "got line <$line>\n";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.159 parameters, together with a retry callback.
134    
135 root 1.198 If, for some reason, the handle is not acceptable, calling C<$retry>
136     will continue with the next connection target (in case of multi-homed
137     hosts or SRV records there can be multiple connection endpoints). At the
138     time it is called the read and write queues, eof status, tls status and
139     similar properties of the handle will have been reset.
140 root 1.159
141 root 1.198 In most cases, you should ignore the C<$retry> parameter.
142 root 1.158
143 root 1.159 =item on_connect_error => $cb->($handle, $message)
144 root 1.10
145 root 1.186 This callback is called when the connection could not be
146 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
147     message describing it (usually the same as C<"$!">).
148 root 1.8
149 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
150     fatal error instead.
151 root 1.82
152 root 1.159 =back
153 root 1.80
154 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
155 root 1.10
156 root 1.52 This is the error callback, which is called when, well, some error
157     occured, such as not being able to resolve the hostname, failure to
158 root 1.198 connect, or a read error.
159 root 1.52
160     Some errors are fatal (which is indicated by C<$fatal> being true). On
161 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
162     destroy >>) after invoking the error callback (which means you are free to
163     examine the handle object). Examples of fatal errors are an EOF condition
164 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
165 root 1.198 cases where the other side can close the connection at will, it is
166 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
167 root 1.82
168 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
169     against, but in some cases (TLS errors), this does not work well. It is
170     recommended to always output the C<$message> argument in human-readable
171     error messages (it's usually the same as C<"$!">).
172    
173 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
174 root 1.82 to simply ignore this parameter and instead abondon the handle object
175     when this callback is invoked. Examples of non-fatal errors are timeouts
176     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
177 root 1.8
178 root 1.198 On entry to the callback, the value of C<$!> contains the operating
179     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
180 root 1.133 C<EPROTO>).
181 root 1.8
182 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
183 root 1.198 you will not be notified of errors otherwise. The default just calls
184 root 1.52 C<croak>.
185 root 1.8
186 root 1.40 =item on_read => $cb->($handle)
187 root 1.8
188     This sets the default read callback, which is called when data arrives
189 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
190     callback will only be called when at least one octet of data is in the
191     read buffer).
192 root 1.8
193     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
194 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
195 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
196     the beginning from it.
197 root 1.8
198 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
199     modifies the read queue. Or do both. Or ...
200    
201 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
202 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
203     calling the C<on_eof> callback. If no progress can be made, then a fatal
204     error will be raised (with C<$!> set to C<EPIPE>).
205 elmex 1.1
206 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
207     doesn't mean you I<require> some data: if there is an EOF and there
208     are outstanding read requests then an error will be flagged. With an
209     C<on_read> callback, the C<on_eof> callback will be invoked.
210    
211 root 1.159 =item on_eof => $cb->($handle)
212    
213     Set the callback to be called when an end-of-file condition is detected,
214     i.e. in the case of a socket, when the other side has closed the
215     connection cleanly, and there are no outstanding read requests in the
216     queue (if there are read requests, then an EOF counts as an unexpected
217     connection close and will be flagged as an error).
218    
219     For sockets, this just means that the other side has stopped sending data,
220     you can still try to write data, and, in fact, one can return from the EOF
221     callback and continue writing data, as only the read part has been shut
222     down.
223    
224     If an EOF condition has been detected but no C<on_eof> callback has been
225     set, then a fatal error will be raised with C<$!> set to <0>.
226    
227 root 1.40 =item on_drain => $cb->($handle)
228 elmex 1.1
229 root 1.8 This sets the callback that is called when the write buffer becomes empty
230 root 1.198 (or immediately if the buffer is empty already).
231 elmex 1.1
232 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
233 elmex 1.2
234 root 1.69 This callback is useful when you don't want to put all of your write data
235     into the queue at once, for example, when you want to write the contents
236     of some file to the socket you might not want to read the whole file into
237     memory and push it into the queue, but instead only read more data from
238     the file when the write queue becomes empty.
239    
240 root 1.43 =item timeout => $fractional_seconds
241    
242 root 1.176 =item rtimeout => $fractional_seconds
243    
244     =item wtimeout => $fractional_seconds
245    
246     If non-zero, then these enables an "inactivity" timeout: whenever this
247     many seconds pass without a successful read or write on the underlying
248     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
249     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
250     error will be raised).
251    
252 root 1.218 There are three variants of the timeouts that work independently of each
253     other, for both read and write (triggered when nothing was read I<OR>
254     written), just read (triggered when nothing was read), and just write:
255 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
256     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
257     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
258 root 1.43
259 root 1.218 Note that timeout processing is active even when you do not have any
260     outstanding read or write requests: If you plan to keep the connection
261     idle then you should disable the timeout temporarily or ignore the
262     timeout in the corresponding C<on_timeout> callback, in which case
263     AnyEvent::Handle will simply restart the timeout.
264 root 1.43
265 root 1.218 Zero (the default) disables the corresponding timeout.
266 root 1.43
267     =item on_timeout => $cb->($handle)
268    
269 root 1.218 =item on_rtimeout => $cb->($handle)
270    
271     =item on_wtimeout => $cb->($handle)
272    
273 root 1.43 Called whenever the inactivity timeout passes. If you return from this
274     callback, then the timeout will be reset as if some activity had happened,
275     so this condition is not fatal in any way.
276    
277 root 1.8 =item rbuf_max => <bytes>
278 elmex 1.2
279 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
280     when the read buffer ever (strictly) exceeds this size. This is useful to
281 root 1.88 avoid some forms of denial-of-service attacks.
282 elmex 1.2
283 root 1.8 For example, a server accepting connections from untrusted sources should
284     be configured to accept only so-and-so much data that it cannot act on
285     (for example, when expecting a line, an attacker could send an unlimited
286     amount of data without a callback ever being called as long as the line
287     isn't finished).
288 elmex 1.2
289 root 1.209 =item wbuf_max => <bytes>
290    
291     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the write buffer ever (strictly) exceeds this size. This is useful to
293     avoid some forms of denial-of-service attacks.
294    
295     Although the units of this parameter is bytes, this is the I<raw> number
296     of bytes not yet accepted by the kernel. This can make a difference when
297     you e.g. use TLS, as TLS typically makes your write data larger (but it
298     can also make it smaller due to compression).
299    
300     As an example of when this limit is useful, take a chat server that sends
301     chat messages to a client. If the client does not read those in a timely
302     manner then the send buffer in the server would grow unbounded.
303    
304 root 1.70 =item autocork => <boolean>
305    
306 root 1.198 When disabled (the default), C<push_write> will try to immediately
307     write the data to the handle if possible. This avoids having to register
308 root 1.88 a write watcher and wait for the next event loop iteration, but can
309     be inefficient if you write multiple small chunks (on the wire, this
310     disadvantage is usually avoided by your kernel's nagle algorithm, see
311     C<no_delay>, but this option can save costly syscalls).
312 root 1.70
313 root 1.198 When enabled, writes will always be queued till the next event loop
314 root 1.70 iteration. This is efficient when you do many small writes per iteration,
315 root 1.88 but less efficient when you do a single write only per iteration (or when
316     the write buffer often is full). It also increases write latency.
317 root 1.70
318     =item no_delay => <boolean>
319    
320     When doing small writes on sockets, your operating system kernel might
321     wait a bit for more data before actually sending it out. This is called
322     the Nagle algorithm, and usually it is beneficial.
323    
324 root 1.88 In some situations you want as low a delay as possible, which can be
325     accomplishd by setting this option to a true value.
326 root 1.70
327 root 1.198 The default is your operating system's default behaviour (most likely
328     enabled). This option explicitly enables or disables it, if possible.
329 root 1.70
330 root 1.182 =item keepalive => <boolean>
331    
332     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
333     normally, TCP connections have no time-out once established, so TCP
334 root 1.186 connections, once established, can stay alive forever even when the other
335 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
336 root 1.198 TCP connections when the other side becomes unreachable. While the default
337 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
338     and, if the other side doesn't reply, take down the TCP connection some 10
339     to 15 minutes later.
340    
341     It is harmless to specify this option for file handles that do not support
342     keepalives, and enabling it on connections that are potentially long-lived
343     is usually a good idea.
344    
345     =item oobinline => <boolean>
346    
347     BSD majorly fucked up the implementation of TCP urgent data. The result
348     is that almost no OS implements TCP according to the specs, and every OS
349     implements it slightly differently.
350    
351 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
352     is enabled) gives you the most portable way of getting urgent data, by
353     putting it into the stream.
354    
355     Since BSD emulation of OOB data on top of TCP's urgent data can have
356     security implications, AnyEvent::Handle sets this flag automatically
357 root 1.184 unless explicitly specified. Note that setting this flag after
358     establishing a connection I<may> be a bit too late (data loss could
359     already have occured on BSD systems), but at least it will protect you
360     from most attacks.
361 root 1.182
362 root 1.8 =item read_size => <bytes>
363 elmex 1.2
364 root 1.203 The initial read block size, the number of bytes this module will try to
365     read during each loop iteration. Each handle object will consume at least
366     this amount of memory for the read buffer as well, so when handling many
367     connections requirements). See also C<max_read_size>. Default: C<2048>.
368    
369     =item max_read_size => <bytes>
370    
371     The maximum read buffer size used by the dynamic adjustment
372     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
373     one go it will double C<read_size> up to the maximum given by this
374     option. Default: C<131072> or C<read_size>, whichever is higher.
375 root 1.8
376     =item low_water_mark => <bytes>
377    
378 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
379     buffer: If the buffer reaches this size or gets even samller it is
380 root 1.8 considered empty.
381 elmex 1.2
382 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
383     the write buffer before it is fully drained, but this is a rare case, as
384     the operating system kernel usually buffers data as well, so the default
385     is good in almost all cases.
386    
387 root 1.62 =item linger => <seconds>
388    
389 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
390 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
391     write data and will install a watcher that will write this data to the
392     socket. No errors will be reported (this mostly matches how the operating
393     system treats outstanding data at socket close time).
394 root 1.62
395 root 1.88 This will not work for partial TLS data that could not be encoded
396 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
397     help.
398 root 1.62
399 root 1.133 =item peername => $string
400    
401 root 1.134 A string used to identify the remote site - usually the DNS hostname
402     (I<not> IDN!) used to create the connection, rarely the IP address.
403 root 1.131
404 root 1.133 Apart from being useful in error messages, this string is also used in TLS
405 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
406 root 1.198 verification will be skipped when C<peername> is not specified or is
407 root 1.144 C<undef>.
408 root 1.131
409 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
410    
411 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
412 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
413 root 1.88 established and will transparently encrypt/decrypt data afterwards.
414 root 1.19
415 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
416     appropriate error message.
417    
418 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
419 root 1.88 automatically when you try to create a TLS handle): this module doesn't
420     have a dependency on that module, so if your module requires it, you have
421     to add the dependency yourself.
422 root 1.26
423 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
424     C<accept>, and for the TLS client side of a connection, use C<connect>
425     mode.
426 root 1.19
427     You can also provide your own TLS connection object, but you have
428     to make sure that you call either C<Net::SSLeay::set_connect_state>
429     or C<Net::SSLeay::set_accept_state> on it before you pass it to
430 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
431     object.
432    
433     At some future point, AnyEvent::Handle might switch to another TLS
434     implementation, then the option to use your own session object will go
435     away.
436 root 1.19
437 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
438     passing in the wrong integer will lead to certain crash. This most often
439     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
440     segmentation fault.
441    
442 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
443 root 1.26
444 root 1.131 =item tls_ctx => $anyevent_tls
445 root 1.19
446 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
447 root 1.207 (unless a connection object was specified directly). If this
448     parameter is missing (or C<undef>), then AnyEvent::Handle will use
449     C<AnyEvent::Handle::TLS_CTX>.
450 root 1.19
451 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
452     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
453     new TLS context object.
454    
455 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
456 root 1.142
457     This callback will be invoked when the TLS/SSL handshake has finished. If
458     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
459     (C<on_stoptls> will not be called in this case).
460    
461     The session in C<< $handle->{tls} >> can still be examined in this
462     callback, even when the handshake was not successful.
463    
464 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
465     callback is in effect, instead, the error message will be passed to C<on_starttls>.
466    
467     Without this callback, handshake failures lead to C<on_error> being
468 root 1.198 called as usual.
469 root 1.143
470 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
471 root 1.143 need to do that, start an zero-second timer instead whose callback can
472     then call C<< ->starttls >> again.
473    
474 root 1.142 =item on_stoptls => $cb->($handle)
475    
476     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
477     set, then it will be invoked after freeing the TLS session. If it is not,
478     then a TLS shutdown condition will be treated like a normal EOF condition
479     on the handle.
480    
481     The session in C<< $handle->{tls} >> can still be examined in this
482     callback.
483    
484     This callback will only be called on TLS shutdowns, not when the
485     underlying handle signals EOF.
486    
487 root 1.40 =item json => JSON or JSON::XS object
488    
489     This is the json coder object used by the C<json> read and write types.
490    
491 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
492 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
493     texts.
494 root 1.40
495     Note that you are responsible to depend on the JSON module if you want to
496     use this functionality, as AnyEvent does not have a dependency itself.
497    
498 elmex 1.1 =back
499    
500     =cut
501    
502     sub new {
503 root 1.8 my $class = shift;
504     my $self = bless { @_ }, $class;
505    
506 root 1.159 if ($self->{fh}) {
507     $self->_start;
508     return unless $self->{fh}; # could be gone by now
509    
510     } elsif ($self->{connect}) {
511     require AnyEvent::Socket;
512    
513     $self->{peername} = $self->{connect}[0]
514     unless exists $self->{peername};
515    
516     $self->{_skip_drain_rbuf} = 1;
517    
518     {
519     Scalar::Util::weaken (my $self = $self);
520    
521     $self->{_connect} =
522     AnyEvent::Socket::tcp_connect (
523     $self->{connect}[0],
524     $self->{connect}[1],
525     sub {
526     my ($fh, $host, $port, $retry) = @_;
527    
528 root 1.206 delete $self->{_connect}; # no longer needed
529 root 1.205
530 root 1.159 if ($fh) {
531     $self->{fh} = $fh;
532    
533     delete $self->{_skip_drain_rbuf};
534     $self->_start;
535    
536     $self->{on_connect}
537     and $self->{on_connect}($self, $host, $port, sub {
538 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
539 root 1.159 $self->{_skip_drain_rbuf} = 1;
540     &$retry;
541     });
542    
543     } else {
544     if ($self->{on_connect_error}) {
545     $self->{on_connect_error}($self, "$!");
546 root 1.217 $self->destroy if $self;
547 root 1.159 } else {
548 root 1.161 $self->_error ($!, 1);
549 root 1.159 }
550     }
551     },
552     sub {
553     local $self->{fh} = $_[0];
554    
555 root 1.161 $self->{on_prepare}
556 root 1.210 ? $self->{on_prepare}->($self)
557 root 1.161 : ()
558 root 1.159 }
559     );
560     }
561    
562     } else {
563     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
564     }
565    
566     $self
567     }
568    
569     sub _start {
570     my ($self) = @_;
571 root 1.8
572 root 1.194 # too many clueless people try to use udp and similar sockets
573     # with AnyEvent::Handle, do them a favour.
574 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
575     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
576 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
577 root 1.194
578 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
579 elmex 1.1
580 root 1.176 $self->{_activity} =
581     $self->{_ractivity} =
582     $self->{_wactivity} = AE::now;
583    
584 root 1.203 $self->{read_size} ||= 2048;
585     $self->{max_read_size} = $self->{read_size}
586     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
587    
588 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
589     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
590     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
591    
592 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
593     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
594    
595     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
596 root 1.131
597 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
598 root 1.94 if $self->{tls};
599 root 1.19
600 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
601 root 1.10
602 root 1.66 $self->start_read
603 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
604 root 1.160
605     $self->_drain_wbuf;
606 root 1.8 }
607 elmex 1.2
608 root 1.52 sub _error {
609 root 1.133 my ($self, $errno, $fatal, $message) = @_;
610 root 1.8
611 root 1.52 $! = $errno;
612 root 1.133 $message ||= "$!";
613 root 1.37
614 root 1.52 if ($self->{on_error}) {
615 root 1.133 $self->{on_error}($self, $fatal, $message);
616 root 1.151 $self->destroy if $fatal;
617 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
618 root 1.149 $self->destroy;
619 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
620 root 1.52 }
621 elmex 1.1 }
622    
623 root 1.8 =item $fh = $handle->fh
624 elmex 1.1
625 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
626 elmex 1.1
627     =cut
628    
629 root 1.38 sub fh { $_[0]{fh} }
630 elmex 1.1
631 root 1.8 =item $handle->on_error ($cb)
632 elmex 1.1
633 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
634 elmex 1.1
635 root 1.8 =cut
636    
637     sub on_error {
638     $_[0]{on_error} = $_[1];
639     }
640    
641     =item $handle->on_eof ($cb)
642    
643     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
644 elmex 1.1
645     =cut
646    
647 root 1.8 sub on_eof {
648     $_[0]{on_eof} = $_[1];
649     }
650    
651 root 1.43 =item $handle->on_timeout ($cb)
652    
653 root 1.176 =item $handle->on_rtimeout ($cb)
654    
655     =item $handle->on_wtimeout ($cb)
656    
657     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
658     callback, or disables the callback (but not the timeout) if C<$cb> =
659     C<undef>. See the C<timeout> constructor argument and method.
660 root 1.43
661     =cut
662    
663 root 1.176 # see below
664 root 1.43
665 root 1.70 =item $handle->autocork ($boolean)
666    
667     Enables or disables the current autocork behaviour (see C<autocork>
668 root 1.105 constructor argument). Changes will only take effect on the next write.
669 root 1.70
670     =cut
671    
672 root 1.105 sub autocork {
673     $_[0]{autocork} = $_[1];
674     }
675    
676 root 1.70 =item $handle->no_delay ($boolean)
677    
678     Enables or disables the C<no_delay> setting (see constructor argument of
679     the same name for details).
680    
681     =cut
682    
683     sub no_delay {
684     $_[0]{no_delay} = $_[1];
685    
686 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
687     if $_[0]{fh};
688 root 1.182 }
689    
690     =item $handle->keepalive ($boolean)
691    
692     Enables or disables the C<keepalive> setting (see constructor argument of
693     the same name for details).
694    
695     =cut
696    
697     sub keepalive {
698     $_[0]{keepalive} = $_[1];
699    
700     eval {
701     local $SIG{__DIE__};
702     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
703     if $_[0]{fh};
704     };
705     }
706    
707     =item $handle->oobinline ($boolean)
708    
709     Enables or disables the C<oobinline> setting (see constructor argument of
710     the same name for details).
711    
712     =cut
713    
714     sub oobinline {
715     $_[0]{oobinline} = $_[1];
716    
717     eval {
718     local $SIG{__DIE__};
719     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
720     if $_[0]{fh};
721     };
722     }
723    
724     =item $handle->keepalive ($boolean)
725    
726     Enables or disables the C<keepalive> setting (see constructor argument of
727     the same name for details).
728    
729     =cut
730    
731     sub keepalive {
732     $_[0]{keepalive} = $_[1];
733    
734     eval {
735     local $SIG{__DIE__};
736     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
737 root 1.159 if $_[0]{fh};
738 root 1.70 };
739     }
740    
741 root 1.142 =item $handle->on_starttls ($cb)
742    
743     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
744    
745     =cut
746    
747     sub on_starttls {
748     $_[0]{on_starttls} = $_[1];
749     }
750    
751     =item $handle->on_stoptls ($cb)
752    
753     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
754    
755     =cut
756    
757 root 1.189 sub on_stoptls {
758 root 1.142 $_[0]{on_stoptls} = $_[1];
759     }
760    
761 root 1.168 =item $handle->rbuf_max ($max_octets)
762    
763     Configures the C<rbuf_max> setting (C<undef> disables it).
764    
765 root 1.209 =item $handle->wbuf_max ($max_octets)
766    
767     Configures the C<wbuf_max> setting (C<undef> disables it).
768    
769 root 1.168 =cut
770    
771     sub rbuf_max {
772     $_[0]{rbuf_max} = $_[1];
773     }
774    
775 root 1.215 sub wbuf_max {
776 root 1.209 $_[0]{wbuf_max} = $_[1];
777     }
778    
779 root 1.43 #############################################################################
780    
781     =item $handle->timeout ($seconds)
782    
783 root 1.176 =item $handle->rtimeout ($seconds)
784    
785     =item $handle->wtimeout ($seconds)
786    
787 root 1.43 Configures (or disables) the inactivity timeout.
788    
789 root 1.218 The timeout will be checked instantly, so this method might destroy the
790     handle before it returns.
791    
792 root 1.176 =item $handle->timeout_reset
793    
794     =item $handle->rtimeout_reset
795    
796     =item $handle->wtimeout_reset
797    
798     Reset the activity timeout, as if data was received or sent.
799    
800     These methods are cheap to call.
801    
802 root 1.43 =cut
803    
804 root 1.176 for my $dir ("", "r", "w") {
805     my $timeout = "${dir}timeout";
806     my $tw = "_${dir}tw";
807     my $on_timeout = "on_${dir}timeout";
808     my $activity = "_${dir}activity";
809     my $cb;
810    
811     *$on_timeout = sub {
812     $_[0]{$on_timeout} = $_[1];
813     };
814    
815     *$timeout = sub {
816     my ($self, $new_value) = @_;
817 root 1.43
818 root 1.201 $new_value >= 0
819     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
820    
821 root 1.176 $self->{$timeout} = $new_value;
822     delete $self->{$tw}; &$cb;
823     };
824 root 1.43
825 root 1.176 *{"${dir}timeout_reset"} = sub {
826     $_[0]{$activity} = AE::now;
827     };
828 root 1.43
829 root 1.176 # main workhorse:
830     # reset the timeout watcher, as neccessary
831     # also check for time-outs
832     $cb = sub {
833     my ($self) = @_;
834    
835     if ($self->{$timeout} && $self->{fh}) {
836     my $NOW = AE::now;
837    
838     # when would the timeout trigger?
839     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
840    
841     # now or in the past already?
842     if ($after <= 0) {
843     $self->{$activity} = $NOW;
844 root 1.43
845 root 1.176 if ($self->{$on_timeout}) {
846     $self->{$on_timeout}($self);
847     } else {
848     $self->_error (Errno::ETIMEDOUT);
849     }
850 root 1.43
851 root 1.176 # callback could have changed timeout value, optimise
852     return unless $self->{$timeout};
853 root 1.43
854 root 1.176 # calculate new after
855     $after = $self->{$timeout};
856 root 1.43 }
857    
858 root 1.176 Scalar::Util::weaken $self;
859     return unless $self; # ->error could have destroyed $self
860 root 1.43
861 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
862     delete $self->{$tw};
863     $cb->($self);
864     };
865     } else {
866     delete $self->{$tw};
867 root 1.43 }
868     }
869     }
870    
871 root 1.9 #############################################################################
872    
873     =back
874    
875     =head2 WRITE QUEUE
876    
877     AnyEvent::Handle manages two queues per handle, one for writing and one
878     for reading.
879    
880     The write queue is very simple: you can add data to its end, and
881     AnyEvent::Handle will automatically try to get rid of it for you.
882    
883 elmex 1.20 When data could be written and the write buffer is shorter then the low
884 root 1.9 water mark, the C<on_drain> callback will be invoked.
885    
886     =over 4
887    
888 root 1.8 =item $handle->on_drain ($cb)
889    
890     Sets the C<on_drain> callback or clears it (see the description of
891     C<on_drain> in the constructor).
892    
893 root 1.193 This method may invoke callbacks (and therefore the handle might be
894     destroyed after it returns).
895    
896 root 1.8 =cut
897    
898     sub on_drain {
899 elmex 1.1 my ($self, $cb) = @_;
900    
901 root 1.8 $self->{on_drain} = $cb;
902    
903     $cb->($self)
904 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
905 root 1.8 }
906    
907     =item $handle->push_write ($data)
908    
909 root 1.209 Queues the given scalar to be written. You can push as much data as
910     you want (only limited by the available memory and C<wbuf_max>), as
911     C<AnyEvent::Handle> buffers it independently of the kernel.
912 root 1.8
913 root 1.193 This method may invoke callbacks (and therefore the handle might be
914     destroyed after it returns).
915    
916 root 1.8 =cut
917    
918 root 1.17 sub _drain_wbuf {
919     my ($self) = @_;
920 root 1.8
921 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
922 root 1.35
923 root 1.8 Scalar::Util::weaken $self;
924 root 1.35
925 root 1.8 my $cb = sub {
926     my $len = syswrite $self->{fh}, $self->{wbuf};
927    
928 root 1.146 if (defined $len) {
929 root 1.8 substr $self->{wbuf}, 0, $len, "";
930    
931 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
932 root 1.43
933 root 1.8 $self->{on_drain}($self)
934 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
935 root 1.8 && $self->{on_drain};
936    
937 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
938 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
939 root 1.52 $self->_error ($!, 1);
940 elmex 1.1 }
941 root 1.8 };
942    
943 root 1.35 # try to write data immediately
944 root 1.70 $cb->() unless $self->{autocork};
945 root 1.8
946 root 1.35 # if still data left in wbuf, we need to poll
947 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
948 root 1.35 if length $self->{wbuf};
949 root 1.209
950     if (
951     defined $self->{wbuf_max}
952     && $self->{wbuf_max} < length $self->{wbuf}
953     ) {
954     $self->_error (Errno::ENOSPC, 1), return;
955     }
956 root 1.8 };
957     }
958    
959 root 1.30 our %WH;
960    
961 root 1.185 # deprecated
962 root 1.30 sub register_write_type($$) {
963     $WH{$_[0]} = $_[1];
964     }
965    
966 root 1.17 sub push_write {
967     my $self = shift;
968    
969 root 1.29 if (@_ > 1) {
970     my $type = shift;
971    
972 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
973     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
974 root 1.29 ->($self, @_);
975     }
976    
977 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
978     # and diagnose the problem earlier and better.
979    
980 root 1.93 if ($self->{tls}) {
981 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
982 root 1.160 &_dotls ($self) if $self->{fh};
983 root 1.17 } else {
984 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
985 root 1.159 $self->_drain_wbuf if $self->{fh};
986 root 1.17 }
987     }
988    
989 root 1.29 =item $handle->push_write (type => @args)
990    
991 root 1.185 Instead of formatting your data yourself, you can also let this module
992     do the job by specifying a type and type-specific arguments. You
993     can also specify the (fully qualified) name of a package, in which
994     case AnyEvent tries to load the package and then expects to find the
995 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
996 root 1.29
997 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
998     drop by and tell us):
999 root 1.29
1000     =over 4
1001    
1002     =item netstring => $string
1003    
1004     Formats the given value as netstring
1005     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1006    
1007     =cut
1008    
1009     register_write_type netstring => sub {
1010     my ($self, $string) = @_;
1011    
1012 root 1.96 (length $string) . ":$string,"
1013 root 1.29 };
1014    
1015 root 1.61 =item packstring => $format, $data
1016    
1017     An octet string prefixed with an encoded length. The encoding C<$format>
1018     uses the same format as a Perl C<pack> format, but must specify a single
1019     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1020     optional C<!>, C<< < >> or C<< > >> modifier).
1021    
1022     =cut
1023    
1024     register_write_type packstring => sub {
1025     my ($self, $format, $string) = @_;
1026    
1027 root 1.65 pack "$format/a*", $string
1028 root 1.61 };
1029    
1030 root 1.39 =item json => $array_or_hashref
1031    
1032 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1033     provide your own JSON object, this means it will be encoded to JSON text
1034     in UTF-8.
1035    
1036     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1037     one end of a handle and read them at the other end without using any
1038     additional framing.
1039    
1040 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1041     this module doesn't need delimiters after or between JSON texts to be
1042     able to read them, many other languages depend on that.
1043    
1044     A simple RPC protocol that interoperates easily with others is to send
1045     JSON arrays (or objects, although arrays are usually the better choice as
1046     they mimic how function argument passing works) and a newline after each
1047     JSON text:
1048    
1049     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1050     $handle->push_write ("\012");
1051    
1052     An AnyEvent::Handle receiver would simply use the C<json> read type and
1053     rely on the fact that the newline will be skipped as leading whitespace:
1054    
1055     $handle->push_read (json => sub { my $array = $_[1]; ... });
1056    
1057     Other languages could read single lines terminated by a newline and pass
1058     this line into their JSON decoder of choice.
1059    
1060 root 1.40 =cut
1061    
1062 root 1.179 sub json_coder() {
1063     eval { require JSON::XS; JSON::XS->new->utf8 }
1064     || do { require JSON; JSON->new->utf8 }
1065     }
1066    
1067 root 1.40 register_write_type json => sub {
1068     my ($self, $ref) = @_;
1069    
1070 root 1.179 my $json = $self->{json} ||= json_coder;
1071 root 1.40
1072 root 1.179 $json->encode ($ref)
1073 root 1.40 };
1074    
1075 root 1.63 =item storable => $reference
1076    
1077     Freezes the given reference using L<Storable> and writes it to the
1078     handle. Uses the C<nfreeze> format.
1079    
1080     =cut
1081    
1082     register_write_type storable => sub {
1083     my ($self, $ref) = @_;
1084    
1085     require Storable;
1086    
1087 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1088 root 1.63 };
1089    
1090 root 1.53 =back
1091    
1092 root 1.133 =item $handle->push_shutdown
1093    
1094     Sometimes you know you want to close the socket after writing your data
1095     before it was actually written. One way to do that is to replace your
1096 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1097     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1098     replaces the C<on_drain> callback with:
1099 root 1.133
1100 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1101 root 1.133
1102     This simply shuts down the write side and signals an EOF condition to the
1103     the peer.
1104    
1105     You can rely on the normal read queue and C<on_eof> handling
1106     afterwards. This is the cleanest way to close a connection.
1107    
1108 root 1.193 This method may invoke callbacks (and therefore the handle might be
1109     destroyed after it returns).
1110    
1111 root 1.133 =cut
1112    
1113     sub push_shutdown {
1114 root 1.142 my ($self) = @_;
1115    
1116     delete $self->{low_water_mark};
1117     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1118 root 1.133 }
1119    
1120 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1121    
1122     Instead of one of the predefined types, you can also specify the name of
1123     a package. AnyEvent will try to load the package and then expects to find
1124     a function named C<anyevent_write_type> inside. If it isn't found, it
1125     progressively tries to load the parent package until it either finds the
1126     function (good) or runs out of packages (bad).
1127    
1128     Whenever the given C<type> is used, C<push_write> will the function with
1129     the handle object and the remaining arguments.
1130    
1131     The function is supposed to return a single octet string that will be
1132     appended to the write buffer, so you cna mentally treat this function as a
1133     "arguments to on-the-wire-format" converter.
1134 root 1.30
1135 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1136     arguments using the first one.
1137 root 1.29
1138 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1139 root 1.29
1140 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1141     # the "My" modules to be auto-loaded, or just about anywhere when the
1142     # My::Type::anyevent_write_type is defined before invoking it.
1143    
1144     package My::Type;
1145    
1146     sub anyevent_write_type {
1147     my ($handle, $delim, @args) = @_;
1148    
1149     join $delim, @args
1150     }
1151 root 1.29
1152 root 1.30 =cut
1153 root 1.29
1154 root 1.8 #############################################################################
1155    
1156 root 1.9 =back
1157    
1158     =head2 READ QUEUE
1159    
1160     AnyEvent::Handle manages two queues per handle, one for writing and one
1161     for reading.
1162    
1163     The read queue is more complex than the write queue. It can be used in two
1164     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1165     a queue.
1166    
1167     In the simple case, you just install an C<on_read> callback and whenever
1168     new data arrives, it will be called. You can then remove some data (if
1169 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1170 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1171 root 1.197 partial message has been received so far), or change the read queue with
1172     e.g. C<push_read>.
1173 root 1.9
1174     In the more complex case, you want to queue multiple callbacks. In this
1175     case, AnyEvent::Handle will call the first queued callback each time new
1176 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1177 root 1.61 done its job (see C<push_read>, below).
1178 root 1.9
1179     This way you can, for example, push three line-reads, followed by reading
1180     a chunk of data, and AnyEvent::Handle will execute them in order.
1181    
1182     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1183     the specified number of bytes which give an XML datagram.
1184    
1185     # in the default state, expect some header bytes
1186     $handle->on_read (sub {
1187     # some data is here, now queue the length-header-read (4 octets)
1188 root 1.52 shift->unshift_read (chunk => 4, sub {
1189 root 1.9 # header arrived, decode
1190     my $len = unpack "N", $_[1];
1191    
1192     # now read the payload
1193 root 1.52 shift->unshift_read (chunk => $len, sub {
1194 root 1.9 my $xml = $_[1];
1195     # handle xml
1196     });
1197     });
1198     });
1199    
1200 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1201     and another line or "ERROR" for the first request that is sent, and 64
1202     bytes for the second request. Due to the availability of a queue, we can
1203     just pipeline sending both requests and manipulate the queue as necessary
1204     in the callbacks.
1205    
1206     When the first callback is called and sees an "OK" response, it will
1207     C<unshift> another line-read. This line-read will be queued I<before> the
1208     64-byte chunk callback.
1209 root 1.9
1210 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1211 root 1.9 $handle->push_write ("request 1\015\012");
1212    
1213     # we expect "ERROR" or "OK" as response, so push a line read
1214 root 1.52 $handle->push_read (line => sub {
1215 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1216     # so it will be read before the second request reads its 64 bytes
1217     # which are already in the queue when this callback is called
1218     # we don't do this in case we got an error
1219     if ($_[1] eq "OK") {
1220 root 1.52 $_[0]->unshift_read (line => sub {
1221 root 1.9 my $response = $_[1];
1222     ...
1223     });
1224     }
1225     });
1226    
1227 root 1.69 # request two, simply returns 64 octets
1228 root 1.9 $handle->push_write ("request 2\015\012");
1229    
1230     # simply read 64 bytes, always
1231 root 1.52 $handle->push_read (chunk => 64, sub {
1232 root 1.9 my $response = $_[1];
1233     ...
1234     });
1235    
1236     =over 4
1237    
1238 root 1.10 =cut
1239    
1240 root 1.8 sub _drain_rbuf {
1241     my ($self) = @_;
1242 elmex 1.1
1243 root 1.159 # avoid recursion
1244 root 1.167 return if $self->{_skip_drain_rbuf};
1245 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1246 root 1.59
1247     while () {
1248 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1249     # we are draining the buffer, and this can only happen with TLS.
1250 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1251     if exists $self->{_tls_rbuf};
1252 root 1.115
1253 root 1.59 my $len = length $self->{rbuf};
1254 elmex 1.1
1255 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1256 root 1.29 unless ($cb->($self)) {
1257 root 1.163 # no progress can be made
1258     # (not enough data and no data forthcoming)
1259     $self->_error (Errno::EPIPE, 1), return
1260     if $self->{_eof};
1261 root 1.10
1262 root 1.38 unshift @{ $self->{_queue} }, $cb;
1263 root 1.55 last;
1264 root 1.8 }
1265     } elsif ($self->{on_read}) {
1266 root 1.61 last unless $len;
1267    
1268 root 1.8 $self->{on_read}($self);
1269    
1270     if (
1271 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1272     && !@{ $self->{_queue} } # and the queue is still empty
1273     && $self->{on_read} # but we still have on_read
1274 root 1.8 ) {
1275 root 1.55 # no further data will arrive
1276     # so no progress can be made
1277 root 1.150 $self->_error (Errno::EPIPE, 1), return
1278 root 1.55 if $self->{_eof};
1279    
1280     last; # more data might arrive
1281 elmex 1.1 }
1282 root 1.8 } else {
1283     # read side becomes idle
1284 root 1.93 delete $self->{_rw} unless $self->{tls};
1285 root 1.55 last;
1286 root 1.8 }
1287     }
1288    
1289 root 1.80 if ($self->{_eof}) {
1290 root 1.163 $self->{on_eof}
1291     ? $self->{on_eof}($self)
1292     : $self->_error (0, 1, "Unexpected end-of-file");
1293    
1294     return;
1295 root 1.80 }
1296 root 1.55
1297 root 1.169 if (
1298     defined $self->{rbuf_max}
1299     && $self->{rbuf_max} < length $self->{rbuf}
1300     ) {
1301     $self->_error (Errno::ENOSPC, 1), return;
1302     }
1303    
1304 root 1.55 # may need to restart read watcher
1305     unless ($self->{_rw}) {
1306     $self->start_read
1307     if $self->{on_read} || @{ $self->{_queue} };
1308     }
1309 elmex 1.1 }
1310    
1311 root 1.8 =item $handle->on_read ($cb)
1312 elmex 1.1
1313 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1314     the new callback is C<undef>). See the description of C<on_read> in the
1315     constructor.
1316 elmex 1.1
1317 root 1.193 This method may invoke callbacks (and therefore the handle might be
1318     destroyed after it returns).
1319    
1320 root 1.8 =cut
1321    
1322     sub on_read {
1323     my ($self, $cb) = @_;
1324 elmex 1.1
1325 root 1.8 $self->{on_read} = $cb;
1326 root 1.159 $self->_drain_rbuf if $cb;
1327 elmex 1.1 }
1328    
1329 root 1.8 =item $handle->rbuf
1330    
1331 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1332     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1333     much faster, and no less clean).
1334    
1335     The only operation allowed on the read buffer (apart from looking at it)
1336     is removing data from its beginning. Otherwise modifying or appending to
1337     it is not allowed and will lead to hard-to-track-down bugs.
1338    
1339     NOTE: The read buffer should only be used or modified in the C<on_read>
1340     callback or when C<push_read> or C<unshift_read> are used with a single
1341     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1342     will manage the read buffer on their own.
1343 elmex 1.1
1344     =cut
1345    
1346 elmex 1.2 sub rbuf : lvalue {
1347 root 1.8 $_[0]{rbuf}
1348 elmex 1.2 }
1349 elmex 1.1
1350 root 1.8 =item $handle->push_read ($cb)
1351    
1352     =item $handle->unshift_read ($cb)
1353    
1354     Append the given callback to the end of the queue (C<push_read>) or
1355     prepend it (C<unshift_read>).
1356    
1357     The callback is called each time some additional read data arrives.
1358 elmex 1.1
1359 elmex 1.20 It must check whether enough data is in the read buffer already.
1360 elmex 1.1
1361 root 1.8 If not enough data is available, it must return the empty list or a false
1362     value, in which case it will be called repeatedly until enough data is
1363     available (or an error condition is detected).
1364    
1365     If enough data was available, then the callback must remove all data it is
1366     interested in (which can be none at all) and return a true value. After returning
1367     true, it will be removed from the queue.
1368 elmex 1.1
1369 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1370     destroyed after it returns).
1371    
1372 elmex 1.1 =cut
1373    
1374 root 1.30 our %RH;
1375    
1376     sub register_read_type($$) {
1377     $RH{$_[0]} = $_[1];
1378     }
1379    
1380 root 1.8 sub push_read {
1381 root 1.28 my $self = shift;
1382     my $cb = pop;
1383    
1384     if (@_) {
1385     my $type = shift;
1386    
1387 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1388     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1389 root 1.28 ->($self, $cb, @_);
1390     }
1391 elmex 1.1
1392 root 1.38 push @{ $self->{_queue} }, $cb;
1393 root 1.159 $self->_drain_rbuf;
1394 elmex 1.1 }
1395    
1396 root 1.8 sub unshift_read {
1397 root 1.28 my $self = shift;
1398     my $cb = pop;
1399    
1400     if (@_) {
1401     my $type = shift;
1402    
1403 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1404     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1405 root 1.28 ->($self, $cb, @_);
1406     }
1407    
1408 root 1.38 unshift @{ $self->{_queue} }, $cb;
1409 root 1.159 $self->_drain_rbuf;
1410 root 1.8 }
1411 elmex 1.1
1412 root 1.28 =item $handle->push_read (type => @args, $cb)
1413 elmex 1.1
1414 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1415 elmex 1.1
1416 root 1.28 Instead of providing a callback that parses the data itself you can chose
1417     between a number of predefined parsing formats, for chunks of data, lines
1418 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1419     which case AnyEvent tries to load the package and then expects to find the
1420     C<anyevent_read_type> function inside (see "custom read types", below).
1421 elmex 1.1
1422 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1423     drop by and tell us):
1424 root 1.28
1425     =over 4
1426    
1427 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1428 root 1.28
1429     Invoke the callback only once C<$octets> bytes have been read. Pass the
1430     data read to the callback. The callback will never be called with less
1431     data.
1432    
1433     Example: read 2 bytes.
1434    
1435     $handle->push_read (chunk => 2, sub {
1436     warn "yay ", unpack "H*", $_[1];
1437     });
1438 elmex 1.1
1439     =cut
1440    
1441 root 1.28 register_read_type chunk => sub {
1442     my ($self, $cb, $len) = @_;
1443 elmex 1.1
1444 root 1.8 sub {
1445     $len <= length $_[0]{rbuf} or return;
1446 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1447 root 1.8 1
1448     }
1449 root 1.28 };
1450 root 1.8
1451 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1452 elmex 1.1
1453 root 1.8 The callback will be called only once a full line (including the end of
1454     line marker, C<$eol>) has been read. This line (excluding the end of line
1455     marker) will be passed to the callback as second argument (C<$line>), and
1456     the end of line marker as the third argument (C<$eol>).
1457 elmex 1.1
1458 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1459     will be interpreted as a fixed record end marker, or it can be a regex
1460     object (e.g. created by C<qr>), in which case it is interpreted as a
1461     regular expression.
1462 elmex 1.1
1463 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1464     undef), then C<qr|\015?\012|> is used (which is good for most internet
1465     protocols).
1466 elmex 1.1
1467 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1468     not marked by the end of line marker.
1469 elmex 1.1
1470 root 1.8 =cut
1471 elmex 1.1
1472 root 1.28 register_read_type line => sub {
1473     my ($self, $cb, $eol) = @_;
1474 elmex 1.1
1475 root 1.76 if (@_ < 3) {
1476     # this is more than twice as fast as the generic code below
1477     sub {
1478     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1479 elmex 1.1
1480 root 1.76 $cb->($_[0], $1, $2);
1481     1
1482     }
1483     } else {
1484     $eol = quotemeta $eol unless ref $eol;
1485     $eol = qr|^(.*?)($eol)|s;
1486    
1487     sub {
1488     $_[0]{rbuf} =~ s/$eol// or return;
1489 elmex 1.1
1490 root 1.76 $cb->($_[0], $1, $2);
1491     1
1492     }
1493 root 1.8 }
1494 root 1.28 };
1495 elmex 1.1
1496 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1497 root 1.36
1498     Makes a regex match against the regex object C<$accept> and returns
1499     everything up to and including the match.
1500    
1501     Example: read a single line terminated by '\n'.
1502    
1503     $handle->push_read (regex => qr<\n>, sub { ... });
1504    
1505     If C<$reject> is given and not undef, then it determines when the data is
1506     to be rejected: it is matched against the data when the C<$accept> regex
1507     does not match and generates an C<EBADMSG> error when it matches. This is
1508     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1509     receive buffer overflow).
1510    
1511     Example: expect a single decimal number followed by whitespace, reject
1512     anything else (not the use of an anchor).
1513    
1514     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1515    
1516     If C<$skip> is given and not C<undef>, then it will be matched against
1517     the receive buffer when neither C<$accept> nor C<$reject> match,
1518     and everything preceding and including the match will be accepted
1519     unconditionally. This is useful to skip large amounts of data that you
1520     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1521     have to start matching from the beginning. This is purely an optimisation
1522 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1523 root 1.36
1524     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1525 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1526 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1527     it only accepts something not ending in either \015 or \012, as these are
1528     required for the accept regex.
1529    
1530     $handle->push_read (regex =>
1531     qr<\015\012\015\012>,
1532     undef, # no reject
1533     qr<^.*[^\015\012]>,
1534     sub { ... });
1535    
1536     =cut
1537    
1538     register_read_type regex => sub {
1539     my ($self, $cb, $accept, $reject, $skip) = @_;
1540    
1541     my $data;
1542     my $rbuf = \$self->{rbuf};
1543    
1544     sub {
1545     # accept
1546     if ($$rbuf =~ $accept) {
1547     $data .= substr $$rbuf, 0, $+[0], "";
1548     $cb->($self, $data);
1549     return 1;
1550     }
1551    
1552     # reject
1553     if ($reject && $$rbuf =~ $reject) {
1554 root 1.150 $self->_error (Errno::EBADMSG);
1555 root 1.36 }
1556    
1557     # skip
1558     if ($skip && $$rbuf =~ $skip) {
1559     $data .= substr $$rbuf, 0, $+[0], "";
1560     }
1561    
1562     ()
1563     }
1564     };
1565    
1566 root 1.61 =item netstring => $cb->($handle, $string)
1567    
1568     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1569    
1570     Throws an error with C<$!> set to EBADMSG on format violations.
1571    
1572     =cut
1573    
1574     register_read_type netstring => sub {
1575     my ($self, $cb) = @_;
1576    
1577     sub {
1578     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1579     if ($_[0]{rbuf} =~ /[^0-9]/) {
1580 root 1.150 $self->_error (Errno::EBADMSG);
1581 root 1.61 }
1582     return;
1583     }
1584    
1585     my $len = $1;
1586    
1587     $self->unshift_read (chunk => $len, sub {
1588     my $string = $_[1];
1589     $_[0]->unshift_read (chunk => 1, sub {
1590     if ($_[1] eq ",") {
1591     $cb->($_[0], $string);
1592     } else {
1593 root 1.150 $self->_error (Errno::EBADMSG);
1594 root 1.61 }
1595     });
1596     });
1597    
1598     1
1599     }
1600     };
1601    
1602     =item packstring => $format, $cb->($handle, $string)
1603    
1604     An octet string prefixed with an encoded length. The encoding C<$format>
1605     uses the same format as a Perl C<pack> format, but must specify a single
1606     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1607     optional C<!>, C<< < >> or C<< > >> modifier).
1608    
1609 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1610     EPP uses a prefix of C<N> (4 octtes).
1611 root 1.61
1612     Example: read a block of data prefixed by its length in BER-encoded
1613     format (very efficient).
1614    
1615     $handle->push_read (packstring => "w", sub {
1616     my ($handle, $data) = @_;
1617     });
1618    
1619     =cut
1620    
1621     register_read_type packstring => sub {
1622     my ($self, $cb, $format) = @_;
1623    
1624     sub {
1625     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1626 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1627 root 1.61 or return;
1628    
1629 root 1.77 $format = length pack $format, $len;
1630 root 1.61
1631 root 1.77 # bypass unshift if we already have the remaining chunk
1632     if ($format + $len <= length $_[0]{rbuf}) {
1633     my $data = substr $_[0]{rbuf}, $format, $len;
1634     substr $_[0]{rbuf}, 0, $format + $len, "";
1635     $cb->($_[0], $data);
1636     } else {
1637     # remove prefix
1638     substr $_[0]{rbuf}, 0, $format, "";
1639    
1640     # read remaining chunk
1641     $_[0]->unshift_read (chunk => $len, $cb);
1642     }
1643 root 1.61
1644     1
1645     }
1646     };
1647    
1648 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1649    
1650 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1651     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1652 root 1.40
1653     If a C<json> object was passed to the constructor, then that will be used
1654     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1655    
1656     This read type uses the incremental parser available with JSON version
1657     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1658     dependency on your own: this module will load the JSON module, but
1659     AnyEvent does not depend on it itself.
1660    
1661     Since JSON texts are fully self-delimiting, the C<json> read and write
1662 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1663     the C<json> write type description, above, for an actual example.
1664 root 1.40
1665     =cut
1666    
1667     register_read_type json => sub {
1668 root 1.63 my ($self, $cb) = @_;
1669 root 1.40
1670 root 1.179 my $json = $self->{json} ||= json_coder;
1671 root 1.40
1672     my $data;
1673     my $rbuf = \$self->{rbuf};
1674    
1675     sub {
1676 root 1.113 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1677 root 1.110
1678 root 1.113 if ($ref) {
1679     $self->{rbuf} = $json->incr_text;
1680     $json->incr_text = "";
1681     $cb->($self, $ref);
1682 root 1.110
1683     1
1684 root 1.113 } elsif ($@) {
1685 root 1.111 # error case
1686 root 1.110 $json->incr_skip;
1687 root 1.40
1688     $self->{rbuf} = $json->incr_text;
1689     $json->incr_text = "";
1690    
1691 root 1.150 $self->_error (Errno::EBADMSG);
1692 root 1.114
1693 root 1.113 ()
1694     } else {
1695     $self->{rbuf} = "";
1696 root 1.114
1697 root 1.113 ()
1698     }
1699 root 1.40 }
1700     };
1701    
1702 root 1.63 =item storable => $cb->($handle, $ref)
1703    
1704     Deserialises a L<Storable> frozen representation as written by the
1705     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1706     data).
1707    
1708     Raises C<EBADMSG> error if the data could not be decoded.
1709    
1710     =cut
1711    
1712     register_read_type storable => sub {
1713     my ($self, $cb) = @_;
1714    
1715     require Storable;
1716    
1717     sub {
1718     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1719 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1720 root 1.63 or return;
1721    
1722 root 1.77 my $format = length pack "w", $len;
1723 root 1.63
1724 root 1.77 # bypass unshift if we already have the remaining chunk
1725     if ($format + $len <= length $_[0]{rbuf}) {
1726     my $data = substr $_[0]{rbuf}, $format, $len;
1727     substr $_[0]{rbuf}, 0, $format + $len, "";
1728     $cb->($_[0], Storable::thaw ($data));
1729     } else {
1730     # remove prefix
1731     substr $_[0]{rbuf}, 0, $format, "";
1732    
1733     # read remaining chunk
1734     $_[0]->unshift_read (chunk => $len, sub {
1735     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1736     $cb->($_[0], $ref);
1737     } else {
1738 root 1.150 $self->_error (Errno::EBADMSG);
1739 root 1.77 }
1740     });
1741     }
1742    
1743     1
1744 root 1.63 }
1745     };
1746    
1747 root 1.28 =back
1748    
1749 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1750 root 1.30
1751 root 1.185 Instead of one of the predefined types, you can also specify the name
1752     of a package. AnyEvent will try to load the package and then expects to
1753     find a function named C<anyevent_read_type> inside. If it isn't found, it
1754     progressively tries to load the parent package until it either finds the
1755     function (good) or runs out of packages (bad).
1756    
1757     Whenever this type is used, C<push_read> will invoke the function with the
1758     handle object, the original callback and the remaining arguments.
1759    
1760     The function is supposed to return a callback (usually a closure) that
1761     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1762     mentally treat the function as a "configurable read type to read callback"
1763     converter.
1764    
1765     It should invoke the original callback when it is done reading (remember
1766     to pass C<$handle> as first argument as all other callbacks do that,
1767     although there is no strict requirement on this).
1768 root 1.30
1769 root 1.185 For examples, see the source of this module (F<perldoc -m
1770     AnyEvent::Handle>, search for C<register_read_type>)).
1771 root 1.30
1772 root 1.10 =item $handle->stop_read
1773    
1774     =item $handle->start_read
1775    
1776 root 1.18 In rare cases you actually do not want to read anything from the
1777 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1778 root 1.22 any queued callbacks will be executed then. To start reading again, call
1779 root 1.10 C<start_read>.
1780    
1781 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1782     you change the C<on_read> callback or push/unshift a read callback, and it
1783     will automatically C<stop_read> for you when neither C<on_read> is set nor
1784     there are any read requests in the queue.
1785    
1786 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1787     as TLS does not support half-duplex connections. In current versions they
1788     work as expected, as this behaviour is required to avoid certain resource
1789     attacks, where the program would be forced to read (and buffer) arbitrary
1790     amounts of data before being able to send some data. The drawback is that
1791     some readings of the the SSL/TLS specifications basically require this
1792     attack to be working, as SSL/TLS implementations might stall sending data
1793     during a rehandshake.
1794    
1795     As a guideline, during the initial handshake, you should not stop reading,
1796     and as a client, it might cause problems, depending on your applciation.
1797 root 1.93
1798 root 1.10 =cut
1799    
1800     sub stop_read {
1801     my ($self) = @_;
1802 elmex 1.1
1803 root 1.213 delete $self->{_rw};
1804 root 1.8 }
1805 elmex 1.1
1806 root 1.10 sub start_read {
1807     my ($self) = @_;
1808    
1809 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1810 root 1.10 Scalar::Util::weaken $self;
1811    
1812 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1813 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1814 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1815 root 1.10
1816     if ($len > 0) {
1817 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1818 root 1.43
1819 root 1.93 if ($self->{tls}) {
1820     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1821 root 1.97
1822 root 1.93 &_dotls ($self);
1823     } else {
1824 root 1.159 $self->_drain_rbuf;
1825 root 1.93 }
1826 root 1.10
1827 root 1.203 if ($len == $self->{read_size}) {
1828     $self->{read_size} *= 2;
1829     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1830     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1831     }
1832    
1833 root 1.10 } elsif (defined $len) {
1834 root 1.38 delete $self->{_rw};
1835     $self->{_eof} = 1;
1836 root 1.159 $self->_drain_rbuf;
1837 root 1.10
1838 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1839 root 1.52 return $self->_error ($!, 1);
1840 root 1.10 }
1841 root 1.175 };
1842 root 1.10 }
1843 elmex 1.1 }
1844    
1845 root 1.133 our $ERROR_SYSCALL;
1846     our $ERROR_WANT_READ;
1847    
1848     sub _tls_error {
1849     my ($self, $err) = @_;
1850    
1851     return $self->_error ($!, 1)
1852     if $err == Net::SSLeay::ERROR_SYSCALL ();
1853    
1854 root 1.137 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1855    
1856     # reduce error string to look less scary
1857     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1858    
1859 root 1.143 if ($self->{_on_starttls}) {
1860     (delete $self->{_on_starttls})->($self, undef, $err);
1861     &_freetls;
1862     } else {
1863     &_freetls;
1864 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1865 root 1.143 }
1866 root 1.133 }
1867    
1868 root 1.97 # poll the write BIO and send the data if applicable
1869 root 1.133 # also decode read data if possible
1870     # this is basiclaly our TLS state machine
1871     # more efficient implementations are possible with openssl,
1872     # but not with the buggy and incomplete Net::SSLeay.
1873 root 1.19 sub _dotls {
1874     my ($self) = @_;
1875    
1876 root 1.97 my $tmp;
1877 root 1.56
1878 root 1.38 if (length $self->{_tls_wbuf}) {
1879 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1880     substr $self->{_tls_wbuf}, 0, $tmp, "";
1881 root 1.22 }
1882 root 1.133
1883     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1884     return $self->_tls_error ($tmp)
1885     if $tmp != $ERROR_WANT_READ
1886 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1887 root 1.19 }
1888    
1889 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1890     unless (length $tmp) {
1891 root 1.143 $self->{_on_starttls}
1892     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1893 root 1.92 &_freetls;
1894 root 1.143
1895 root 1.142 if ($self->{on_stoptls}) {
1896     $self->{on_stoptls}($self);
1897     return;
1898     } else {
1899     # let's treat SSL-eof as we treat normal EOF
1900     delete $self->{_rw};
1901     $self->{_eof} = 1;
1902     }
1903 root 1.56 }
1904 root 1.91
1905 root 1.116 $self->{_tls_rbuf} .= $tmp;
1906 root 1.159 $self->_drain_rbuf;
1907 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1908 root 1.23 }
1909    
1910 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1911 root 1.133 return $self->_tls_error ($tmp)
1912     if $tmp != $ERROR_WANT_READ
1913 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1914 root 1.91
1915 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1916     $self->{wbuf} .= $tmp;
1917 root 1.91 $self->_drain_wbuf;
1918 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
1919 root 1.91 }
1920 root 1.142
1921     $self->{_on_starttls}
1922     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1923 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1924 root 1.19 }
1925    
1926 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1927    
1928     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1929     object is created, you can also do that at a later time by calling
1930     C<starttls>.
1931    
1932 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
1933     write data and then call C<< ->starttls >> then TLS negotiation will start
1934     immediately, after which the queued write data is then sent.
1935    
1936 root 1.25 The first argument is the same as the C<tls> constructor argument (either
1937     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1938    
1939 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
1940     when AnyEvent::Handle has to create its own TLS connection object, or
1941     a hash reference with C<< key => value >> pairs that will be used to
1942     construct a new context.
1943    
1944     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1945     context in C<< $handle->{tls_ctx} >> after this call and can be used or
1946     changed to your liking. Note that the handshake might have already started
1947     when this function returns.
1948 root 1.38
1949 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
1950 root 1.198 handshakes on the same stream. It is best to not attempt to use the
1951     stream after stopping TLS.
1952 root 1.92
1953 root 1.193 This method may invoke callbacks (and therefore the handle might be
1954     destroyed after it returns).
1955    
1956 root 1.25 =cut
1957    
1958 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
1959    
1960 root 1.19 sub starttls {
1961 root 1.160 my ($self, $tls, $ctx) = @_;
1962    
1963     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1964     if $self->{tls};
1965    
1966     $self->{tls} = $tls;
1967     $self->{tls_ctx} = $ctx if @_ > 2;
1968    
1969     return unless $self->{fh};
1970 root 1.19
1971 root 1.94 require Net::SSLeay;
1972    
1973 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1974     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1975 root 1.133
1976 root 1.180 $tls = delete $self->{tls};
1977 root 1.160 $ctx = $self->{tls_ctx};
1978 root 1.131
1979 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1980    
1981 root 1.131 if ("HASH" eq ref $ctx) {
1982     require AnyEvent::TLS;
1983    
1984 root 1.137 if ($ctx->{cache}) {
1985     my $key = $ctx+0;
1986     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1987     } else {
1988     $ctx = new AnyEvent::TLS %$ctx;
1989     }
1990 root 1.131 }
1991 root 1.92
1992 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
1993 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1994 root 1.19
1995 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1996     # but the openssl maintainers basically said: "trust us, it just works".
1997     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1998     # and mismaintained ssleay-module doesn't even offer them).
1999 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2000 root 1.87 #
2001     # in short: this is a mess.
2002     #
2003 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2004 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2005 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2006     # have identity issues in that area.
2007 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2008     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2009     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2010 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2011 root 1.21
2012 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2013     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2014 root 1.19
2015 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2016     $self->{rbuf} = "";
2017 root 1.172
2018 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2019 root 1.19
2020 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2021 root 1.143 if $self->{on_starttls};
2022 root 1.142
2023 root 1.93 &_dotls; # need to trigger the initial handshake
2024     $self->start_read; # make sure we actually do read
2025 root 1.19 }
2026    
2027 root 1.25 =item $handle->stoptls
2028    
2029 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2030     sending a close notify to the other side, but since OpenSSL doesn't
2031 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2032 root 1.160 the stream afterwards.
2033 root 1.25
2034 root 1.193 This method may invoke callbacks (and therefore the handle might be
2035     destroyed after it returns).
2036    
2037 root 1.25 =cut
2038    
2039     sub stoptls {
2040     my ($self) = @_;
2041    
2042 root 1.192 if ($self->{tls} && $self->{fh}) {
2043 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2044 root 1.92
2045     &_dotls;
2046    
2047 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2048     # # we, we... have to use openssl :/#d#
2049     # &_freetls;#d#
2050 root 1.92 }
2051     }
2052    
2053     sub _freetls {
2054     my ($self) = @_;
2055    
2056     return unless $self->{tls};
2057 root 1.38
2058 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2059 root 1.171 if $self->{tls} > 0;
2060 root 1.92
2061 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2062 root 1.25 }
2063    
2064 root 1.216 =item $handle->resettls
2065    
2066     This rarely-used method simply resets and TLS state on the handle, usually
2067     causing data loss.
2068    
2069     One case where it may be useful is when you want to skip over the data in
2070     the stream but you are not interested in interpreting it, so data loss is
2071     no concern.
2072    
2073     =cut
2074    
2075     *resettls = \&_freetls;
2076    
2077 root 1.19 sub DESTROY {
2078 root 1.120 my ($self) = @_;
2079 root 1.19
2080 root 1.92 &_freetls;
2081 root 1.62
2082     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2083    
2084 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2085 root 1.62 my $fh = delete $self->{fh};
2086     my $wbuf = delete $self->{wbuf};
2087    
2088     my @linger;
2089    
2090 root 1.175 push @linger, AE::io $fh, 1, sub {
2091 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2092    
2093     if ($len > 0) {
2094     substr $wbuf, 0, $len, "";
2095 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2096 root 1.62 @linger = (); # end
2097     }
2098 root 1.175 };
2099     push @linger, AE::timer $linger, 0, sub {
2100 root 1.62 @linger = ();
2101 root 1.175 };
2102 root 1.62 }
2103 root 1.19 }
2104    
2105 root 1.99 =item $handle->destroy
2106    
2107 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2108 root 1.141 no further callbacks will be invoked and as many resources as possible
2109 root 1.165 will be freed. Any method you will call on the handle object after
2110     destroying it in this way will be silently ignored (and it will return the
2111     empty list).
2112 root 1.99
2113 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2114     object and it will simply shut down. This works in fatal error and EOF
2115     callbacks, as well as code outside. It does I<NOT> work in a read or write
2116     callback, so when you want to destroy the AnyEvent::Handle object from
2117     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2118     that case.
2119    
2120 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2121     will be removed as well, so if those are the only reference holders (as
2122     is common), then one doesn't need to do anything special to break any
2123     reference cycles.
2124    
2125 root 1.99 The handle might still linger in the background and write out remaining
2126     data, as specified by the C<linger> option, however.
2127    
2128     =cut
2129    
2130     sub destroy {
2131     my ($self) = @_;
2132    
2133     $self->DESTROY;
2134     %$self = ();
2135 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2136     }
2137    
2138 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2139     #nop
2140 root 1.99 }
2141    
2142 root 1.192 =item $handle->destroyed
2143    
2144     Returns false as long as the handle hasn't been destroyed by a call to C<<
2145     ->destroy >>, true otherwise.
2146    
2147     Can be useful to decide whether the handle is still valid after some
2148     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2149     C<< ->starttls >> and other methods can call user callbacks, which in turn
2150     can destroy the handle, so work can be avoided by checking sometimes:
2151    
2152     $hdl->starttls ("accept");
2153     return if $hdl->destroyed;
2154     $hdl->push_write (...
2155    
2156     Note that the call to C<push_write> will silently be ignored if the handle
2157     has been destroyed, so often you can just ignore the possibility of the
2158     handle being destroyed.
2159    
2160     =cut
2161    
2162     sub destroyed { 0 }
2163     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2164    
2165 root 1.19 =item AnyEvent::Handle::TLS_CTX
2166    
2167 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2168     for TLS mode.
2169 root 1.19
2170 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2171 root 1.19
2172     =cut
2173    
2174     our $TLS_CTX;
2175    
2176     sub TLS_CTX() {
2177 root 1.131 $TLS_CTX ||= do {
2178     require AnyEvent::TLS;
2179 root 1.19
2180 root 1.131 new AnyEvent::TLS
2181 root 1.19 }
2182     }
2183    
2184 elmex 1.1 =back
2185    
2186 root 1.95
2187     =head1 NONFREQUENTLY ASKED QUESTIONS
2188    
2189     =over 4
2190    
2191 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2192     still get further invocations!
2193    
2194     That's because AnyEvent::Handle keeps a reference to itself when handling
2195     read or write callbacks.
2196    
2197     It is only safe to "forget" the reference inside EOF or error callbacks,
2198     from within all other callbacks, you need to explicitly call the C<<
2199     ->destroy >> method.
2200    
2201 root 1.208 =item Why is my C<on_eof> callback never called?
2202    
2203     Probably because your C<on_error> callback is being called instead: When
2204     you have outstanding requests in your read queue, then an EOF is
2205     considered an error as you clearly expected some data.
2206    
2207     To avoid this, make sure you have an empty read queue whenever your handle
2208     is supposed to be "idle" (i.e. connection closes are O.K.). You cna set
2209     an C<on_read> handler that simply pushes the first read requests in the
2210     queue.
2211    
2212     See also the next question, which explains this in a bit more detail.
2213    
2214     =item How can I serve requests in a loop?
2215    
2216     Most protocols consist of some setup phase (authentication for example)
2217     followed by a request handling phase, where the server waits for requests
2218     and handles them, in a loop.
2219    
2220     There are two important variants: The first (traditional, better) variant
2221     handles requests until the server gets some QUIT command, causing it to
2222     close the connection first (highly desirable for a busy TCP server). A
2223     client dropping the connection is an error, which means this variant can
2224     detect an unexpected detection close.
2225    
2226     To handle this case, always make sure you have a on-empty read queue, by
2227     pushing the "read request start" handler on it:
2228    
2229     # we assume a request starts with a single line
2230     my @start_request; @start_request = (line => sub {
2231     my ($hdl, $line) = @_;
2232    
2233     ... handle request
2234    
2235     # push next request read, possibly from a nested callback
2236     $hdl->push_read (@start_request);
2237     });
2238    
2239     # auth done, now go into request handling loop
2240     # now push the first @start_request
2241     $hdl->push_read (@start_request);
2242    
2243     By always having an outstanding C<push_read>, the handle always expects
2244     some data and raises the C<EPIPE> error when the connction is dropped
2245     unexpectedly.
2246    
2247     The second variant is a protocol where the client can drop the connection
2248     at any time. For TCP, this means that the server machine may run out of
2249     sockets easier, and in general, it means you cnanot distinguish a protocl
2250     failure/client crash from a normal connection close. Nevertheless, these
2251     kinds of protocols are common (and sometimes even the best solution to the
2252     problem).
2253    
2254     Having an outstanding read request at all times is possible if you ignore
2255     C<EPIPE> errors, but this doesn't help with when the client drops the
2256     connection during a request, which would still be an error.
2257    
2258     A better solution is to push the initial request read in an C<on_read>
2259     callback. This avoids an error, as when the server doesn't expect data
2260     (i.e. is idly waiting for the next request, an EOF will not raise an
2261     error, but simply result in an C<on_eof> callback. It is also a bit slower
2262     and simpler:
2263    
2264     # auth done, now go into request handling loop
2265     $hdl->on_read (sub {
2266     my ($hdl) = @_;
2267    
2268     # called each time we receive data but the read queue is empty
2269     # simply start read the request
2270    
2271     $hdl->push_read (line => sub {
2272     my ($hdl, $line) = @_;
2273    
2274     ... handle request
2275    
2276     # do nothing special when the request has been handled, just
2277     # let the request queue go empty.
2278     });
2279     });
2280    
2281 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2282     reading?
2283    
2284     Unlike, say, TCP, TLS connections do not consist of two independent
2285 root 1.198 communication channels, one for each direction. Or put differently, the
2286 root 1.101 read and write directions are not independent of each other: you cannot
2287     write data unless you are also prepared to read, and vice versa.
2288    
2289 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2290 root 1.101 callback invocations when you are not expecting any read data - the reason
2291     is that AnyEvent::Handle always reads in TLS mode.
2292    
2293     During the connection, you have to make sure that you always have a
2294     non-empty read-queue, or an C<on_read> watcher. At the end of the
2295     connection (or when you no longer want to use it) you can call the
2296     C<destroy> method.
2297    
2298 root 1.95 =item How do I read data until the other side closes the connection?
2299    
2300 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2301     to achieve this is by setting an C<on_read> callback that does nothing,
2302     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2303     will be in C<$_[0]{rbuf}>:
2304 root 1.95
2305     $handle->on_read (sub { });
2306     $handle->on_eof (undef);
2307     $handle->on_error (sub {
2308     my $data = delete $_[0]{rbuf};
2309     });
2310    
2311 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2312     which is not normally allowed by the API. It is expressly permitted in
2313     this case only, as the handle object needs to be destroyed afterwards.
2314    
2315 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2316     and packets loss, might get closed quite violently with an error, when in
2317 root 1.198 fact all data has been received.
2318 root 1.95
2319 root 1.101 It is usually better to use acknowledgements when transferring data,
2320 root 1.95 to make sure the other side hasn't just died and you got the data
2321     intact. This is also one reason why so many internet protocols have an
2322     explicit QUIT command.
2323    
2324 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2325     all data has been written?
2326 root 1.95
2327     After writing your last bits of data, set the C<on_drain> callback
2328     and destroy the handle in there - with the default setting of
2329     C<low_water_mark> this will be called precisely when all data has been
2330     written to the socket:
2331    
2332     $handle->push_write (...);
2333     $handle->on_drain (sub {
2334     warn "all data submitted to the kernel\n";
2335     undef $handle;
2336     });
2337    
2338 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2339     consider using C<< ->push_shutdown >> instead.
2340    
2341     =item I want to contact a TLS/SSL server, I don't care about security.
2342    
2343     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2344 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2345 root 1.143 parameter:
2346    
2347 root 1.144 tcp_connect $host, $port, sub {
2348     my ($fh) = @_;
2349 root 1.143
2350 root 1.144 my $handle = new AnyEvent::Handle
2351     fh => $fh,
2352     tls => "connect",
2353     on_error => sub { ... };
2354    
2355     $handle->push_write (...);
2356     };
2357 root 1.143
2358     =item I want to contact a TLS/SSL server, I do care about security.
2359    
2360 root 1.144 Then you should additionally enable certificate verification, including
2361     peername verification, if the protocol you use supports it (see
2362     L<AnyEvent::TLS>, C<verify_peername>).
2363    
2364     E.g. for HTTPS:
2365    
2366     tcp_connect $host, $port, sub {
2367     my ($fh) = @_;
2368    
2369     my $handle = new AnyEvent::Handle
2370     fh => $fh,
2371     peername => $host,
2372     tls => "connect",
2373     tls_ctx => { verify => 1, verify_peername => "https" },
2374     ...
2375    
2376     Note that you must specify the hostname you connected to (or whatever
2377     "peername" the protocol needs) as the C<peername> argument, otherwise no
2378     peername verification will be done.
2379    
2380     The above will use the system-dependent default set of trusted CA
2381     certificates. If you want to check against a specific CA, add the
2382     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2383    
2384     tls_ctx => {
2385     verify => 1,
2386     verify_peername => "https",
2387     ca_file => "my-ca-cert.pem",
2388     },
2389    
2390     =item I want to create a TLS/SSL server, how do I do that?
2391    
2392     Well, you first need to get a server certificate and key. You have
2393     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2394     self-signed certificate (cheap. check the search engine of your choice,
2395     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2396     nice program for that purpose).
2397    
2398     Then create a file with your private key (in PEM format, see
2399     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2400     file should then look like this:
2401    
2402     -----BEGIN RSA PRIVATE KEY-----
2403     ...header data
2404     ... lots of base64'y-stuff
2405     -----END RSA PRIVATE KEY-----
2406    
2407     -----BEGIN CERTIFICATE-----
2408     ... lots of base64'y-stuff
2409     -----END CERTIFICATE-----
2410    
2411     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2412     specify this file as C<cert_file>:
2413    
2414     tcp_server undef, $port, sub {
2415     my ($fh) = @_;
2416    
2417     my $handle = new AnyEvent::Handle
2418     fh => $fh,
2419     tls => "accept",
2420     tls_ctx => { cert_file => "my-server-keycert.pem" },
2421     ...
2422 root 1.143
2423 root 1.144 When you have intermediate CA certificates that your clients might not
2424     know about, just append them to the C<cert_file>.
2425 root 1.143
2426 root 1.95 =back
2427    
2428    
2429 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2430    
2431     In many cases, you might want to subclass AnyEvent::Handle.
2432    
2433     To make this easier, a given version of AnyEvent::Handle uses these
2434     conventions:
2435    
2436     =over 4
2437    
2438     =item * all constructor arguments become object members.
2439    
2440     At least initially, when you pass a C<tls>-argument to the constructor it
2441 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2442 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2443    
2444     =item * other object member names are prefixed with an C<_>.
2445    
2446     All object members not explicitly documented (internal use) are prefixed
2447     with an underscore character, so the remaining non-C<_>-namespace is free
2448     for use for subclasses.
2449    
2450     =item * all members not documented here and not prefixed with an underscore
2451     are free to use in subclasses.
2452    
2453     Of course, new versions of AnyEvent::Handle may introduce more "public"
2454 root 1.198 member variables, but that's just life. At least it is documented.
2455 root 1.38
2456     =back
2457    
2458 elmex 1.1 =head1 AUTHOR
2459    
2460 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2461 elmex 1.1
2462     =cut
2463    
2464     1; # End of AnyEvent::Handle