ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.236
Committed: Sat May 12 23:14:29 2012 UTC (12 years ago) by root
Branch: MAIN
CVS Tags: rel-7_01, rel-7_02, rel-7_03, rel-7_04
Changes since 1.235: +86 -0 lines
Log Message:
7.01

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.198 This is a helper module to make it easier to do event-based I/O on
36     stream-based filehandles (sockets, pipes, and other stream things).
37 root 1.8
38 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
39     AnyEvent::Handle examples.
40    
41 root 1.198 In the following, where the documentation refers to "bytes", it means
42     characters. As sysread and syswrite are used for all I/O, their
43 root 1.8 treatment of characters applies to this module as well.
44 elmex 1.1
45 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
46     C<on_error> callback.
47    
48 root 1.8 All callbacks will be invoked with the handle object as their first
49     argument.
50 elmex 1.1
51 root 1.176 =cut
52    
53     package AnyEvent::Handle;
54    
55     use Scalar::Util ();
56     use List::Util ();
57     use Carp ();
58     use Errno qw(EAGAIN EINTR);
59    
60     use AnyEvent (); BEGIN { AnyEvent::common_sense }
61     use AnyEvent::Util qw(WSAEWOULDBLOCK);
62    
63 root 1.177 our $VERSION = $AnyEvent::VERSION;
64    
65 root 1.185 sub _load_func($) {
66     my $func = $_[0];
67    
68     unless (defined &$func) {
69     my $pkg = $func;
70     do {
71     $pkg =~ s/::[^:]+$//
72     or return;
73     eval "require $pkg";
74     } until defined &$func;
75     }
76    
77     \&$func
78     }
79    
80 root 1.203 sub MAX_READ_SIZE() { 131072 }
81    
82 elmex 1.1 =head1 METHODS
83    
84     =over 4
85    
86 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
87 elmex 1.1
88 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
89 elmex 1.1
90     =over 4
91    
92 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
93 root 1.158
94 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
95 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
96     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
97     that mode.
98 root 1.8
99 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
100    
101     Try to connect to the specified host and service (port), using
102     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
103     default C<peername>.
104    
105     You have to specify either this parameter, or C<fh>, above.
106    
107 root 1.160 It is possible to push requests on the read and write queues, and modify
108     properties of the stream, even while AnyEvent::Handle is connecting.
109    
110 root 1.159 When this parameter is specified, then the C<on_prepare>,
111     C<on_connect_error> and C<on_connect> callbacks will be called under the
112     appropriate circumstances:
113    
114     =over 4
115    
116     =item on_prepare => $cb->($handle)
117    
118     This (rarely used) callback is called before a new connection is
119 root 1.210 attempted, but after the file handle has been created (you can access that
120     file handle via C<< $handle->{fh} >>). It could be used to prepare the
121     file handle with parameters required for the actual connect (as opposed to
122     settings that can be changed when the connection is already established).
123 root 1.159
124 root 1.161 The return value of this callback should be the connect timeout value in
125 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
126     default timeout is to be used).
127 root 1.161
128 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
129    
130     This callback is called when a connection has been successfully established.
131    
132 root 1.198 The peer's numeric host and port (the socket peername) are passed as
133 root 1.228 parameters, together with a retry callback. At the time it is called the
134     read and write queues, EOF status, TLS status and similar properties of
135     the handle will have been reset.
136    
137     It is not allowed to use the read or write queues while the handle object
138     is connecting.
139    
140     If, for some reason, the handle is not acceptable, calling C<$retry> will
141     continue with the next connection target (in case of multi-homed hosts or
142     SRV records there can be multiple connection endpoints). The C<$retry>
143     callback can be invoked after the connect callback returns, i.e. one can
144     start a handshake and then decide to retry with the next host if the
145     handshake fails.
146 root 1.159
147 root 1.198 In most cases, you should ignore the C<$retry> parameter.
148 root 1.158
149 root 1.159 =item on_connect_error => $cb->($handle, $message)
150 root 1.10
151 root 1.186 This callback is called when the connection could not be
152 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
153     message describing it (usually the same as C<"$!">).
154 root 1.8
155 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
156     fatal error instead.
157 root 1.82
158 root 1.159 =back
159 root 1.80
160 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
161 root 1.10
162 root 1.52 This is the error callback, which is called when, well, some error
163     occured, such as not being able to resolve the hostname, failure to
164 root 1.198 connect, or a read error.
165 root 1.52
166     Some errors are fatal (which is indicated by C<$fatal> being true). On
167 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
168     destroy >>) after invoking the error callback (which means you are free to
169     examine the handle object). Examples of fatal errors are an EOF condition
170 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
171 root 1.198 cases where the other side can close the connection at will, it is
172 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
173 root 1.82
174 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
175 root 1.233 against, but in some cases (TLS errors), this does not work well.
176    
177     If you report the error to the user, it is recommended to always output
178     the C<$message> argument in human-readable error messages (you don't need
179     to report C<"$!"> if you report C<$message>).
180    
181     If you want to react programmatically to the error, then looking at C<$!>
182     and comparing it against some of the documented C<Errno> values is usually
183     better than looking at the C<$message>.
184 root 1.133
185 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
186 root 1.82 to simply ignore this parameter and instead abondon the handle object
187     when this callback is invoked. Examples of non-fatal errors are timeouts
188     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
189 root 1.8
190 root 1.198 On entry to the callback, the value of C<$!> contains the operating
191     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
192 root 1.133 C<EPROTO>).
193 root 1.8
194 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
195 root 1.198 you will not be notified of errors otherwise. The default just calls
196 root 1.52 C<croak>.
197 root 1.8
198 root 1.40 =item on_read => $cb->($handle)
199 root 1.8
200     This sets the default read callback, which is called when data arrives
201 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
202     callback will only be called when at least one octet of data is in the
203     read buffer).
204 root 1.8
205     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
206 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
207 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
208     the beginning from it.
209 root 1.8
210 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
211     modifies the read queue. Or do both. Or ...
212    
213 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
214 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
215     calling the C<on_eof> callback. If no progress can be made, then a fatal
216     error will be raised (with C<$!> set to C<EPIPE>).
217 elmex 1.1
218 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
219     doesn't mean you I<require> some data: if there is an EOF and there
220     are outstanding read requests then an error will be flagged. With an
221     C<on_read> callback, the C<on_eof> callback will be invoked.
222    
223 root 1.159 =item on_eof => $cb->($handle)
224    
225     Set the callback to be called when an end-of-file condition is detected,
226     i.e. in the case of a socket, when the other side has closed the
227     connection cleanly, and there are no outstanding read requests in the
228     queue (if there are read requests, then an EOF counts as an unexpected
229     connection close and will be flagged as an error).
230    
231     For sockets, this just means that the other side has stopped sending data,
232     you can still try to write data, and, in fact, one can return from the EOF
233     callback and continue writing data, as only the read part has been shut
234     down.
235    
236     If an EOF condition has been detected but no C<on_eof> callback has been
237     set, then a fatal error will be raised with C<$!> set to <0>.
238    
239 root 1.40 =item on_drain => $cb->($handle)
240 elmex 1.1
241 root 1.229 This sets the callback that is called once when the write buffer becomes
242     empty (and immediately when the handle object is created).
243 elmex 1.1
244 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
245 elmex 1.2
246 root 1.69 This callback is useful when you don't want to put all of your write data
247     into the queue at once, for example, when you want to write the contents
248     of some file to the socket you might not want to read the whole file into
249     memory and push it into the queue, but instead only read more data from
250     the file when the write queue becomes empty.
251    
252 root 1.43 =item timeout => $fractional_seconds
253    
254 root 1.176 =item rtimeout => $fractional_seconds
255    
256     =item wtimeout => $fractional_seconds
257    
258     If non-zero, then these enables an "inactivity" timeout: whenever this
259     many seconds pass without a successful read or write on the underlying
260     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
261     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
262     error will be raised).
263    
264 root 1.218 There are three variants of the timeouts that work independently of each
265     other, for both read and write (triggered when nothing was read I<OR>
266     written), just read (triggered when nothing was read), and just write:
267 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
268     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
269     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
270 root 1.43
271 root 1.218 Note that timeout processing is active even when you do not have any
272     outstanding read or write requests: If you plan to keep the connection
273     idle then you should disable the timeout temporarily or ignore the
274     timeout in the corresponding C<on_timeout> callback, in which case
275     AnyEvent::Handle will simply restart the timeout.
276 root 1.43
277 root 1.218 Zero (the default) disables the corresponding timeout.
278 root 1.43
279     =item on_timeout => $cb->($handle)
280    
281 root 1.218 =item on_rtimeout => $cb->($handle)
282    
283     =item on_wtimeout => $cb->($handle)
284    
285 root 1.43 Called whenever the inactivity timeout passes. If you return from this
286     callback, then the timeout will be reset as if some activity had happened,
287     so this condition is not fatal in any way.
288    
289 root 1.8 =item rbuf_max => <bytes>
290 elmex 1.2
291 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
292     when the read buffer ever (strictly) exceeds this size. This is useful to
293 root 1.88 avoid some forms of denial-of-service attacks.
294 elmex 1.2
295 root 1.8 For example, a server accepting connections from untrusted sources should
296     be configured to accept only so-and-so much data that it cannot act on
297     (for example, when expecting a line, an attacker could send an unlimited
298     amount of data without a callback ever being called as long as the line
299     isn't finished).
300 elmex 1.2
301 root 1.209 =item wbuf_max => <bytes>
302    
303     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
304     when the write buffer ever (strictly) exceeds this size. This is useful to
305     avoid some forms of denial-of-service attacks.
306    
307     Although the units of this parameter is bytes, this is the I<raw> number
308     of bytes not yet accepted by the kernel. This can make a difference when
309     you e.g. use TLS, as TLS typically makes your write data larger (but it
310     can also make it smaller due to compression).
311    
312     As an example of when this limit is useful, take a chat server that sends
313     chat messages to a client. If the client does not read those in a timely
314     manner then the send buffer in the server would grow unbounded.
315    
316 root 1.70 =item autocork => <boolean>
317    
318 root 1.198 When disabled (the default), C<push_write> will try to immediately
319     write the data to the handle if possible. This avoids having to register
320 root 1.88 a write watcher and wait for the next event loop iteration, but can
321     be inefficient if you write multiple small chunks (on the wire, this
322     disadvantage is usually avoided by your kernel's nagle algorithm, see
323     C<no_delay>, but this option can save costly syscalls).
324 root 1.70
325 root 1.198 When enabled, writes will always be queued till the next event loop
326 root 1.70 iteration. This is efficient when you do many small writes per iteration,
327 root 1.88 but less efficient when you do a single write only per iteration (or when
328     the write buffer often is full). It also increases write latency.
329 root 1.70
330     =item no_delay => <boolean>
331    
332     When doing small writes on sockets, your operating system kernel might
333     wait a bit for more data before actually sending it out. This is called
334     the Nagle algorithm, and usually it is beneficial.
335    
336 root 1.88 In some situations you want as low a delay as possible, which can be
337     accomplishd by setting this option to a true value.
338 root 1.70
339 root 1.198 The default is your operating system's default behaviour (most likely
340     enabled). This option explicitly enables or disables it, if possible.
341 root 1.70
342 root 1.182 =item keepalive => <boolean>
343    
344     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
345     normally, TCP connections have no time-out once established, so TCP
346 root 1.186 connections, once established, can stay alive forever even when the other
347 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
348 root 1.198 TCP connections when the other side becomes unreachable. While the default
349 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
350     and, if the other side doesn't reply, take down the TCP connection some 10
351     to 15 minutes later.
352    
353     It is harmless to specify this option for file handles that do not support
354     keepalives, and enabling it on connections that are potentially long-lived
355     is usually a good idea.
356    
357     =item oobinline => <boolean>
358    
359     BSD majorly fucked up the implementation of TCP urgent data. The result
360     is that almost no OS implements TCP according to the specs, and every OS
361     implements it slightly differently.
362    
363 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
364     is enabled) gives you the most portable way of getting urgent data, by
365     putting it into the stream.
366    
367     Since BSD emulation of OOB data on top of TCP's urgent data can have
368     security implications, AnyEvent::Handle sets this flag automatically
369 root 1.184 unless explicitly specified. Note that setting this flag after
370     establishing a connection I<may> be a bit too late (data loss could
371     already have occured on BSD systems), but at least it will protect you
372     from most attacks.
373 root 1.182
374 root 1.8 =item read_size => <bytes>
375 elmex 1.2
376 root 1.221 The initial read block size, the number of bytes this module will try
377     to read during each loop iteration. Each handle object will consume
378     at least this amount of memory for the read buffer as well, so when
379     handling many connections watch out for memory requirements). See also
380     C<max_read_size>. Default: C<2048>.
381 root 1.203
382     =item max_read_size => <bytes>
383    
384     The maximum read buffer size used by the dynamic adjustment
385     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
386     one go it will double C<read_size> up to the maximum given by this
387     option. Default: C<131072> or C<read_size>, whichever is higher.
388 root 1.8
389     =item low_water_mark => <bytes>
390    
391 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
392     buffer: If the buffer reaches this size or gets even samller it is
393 root 1.8 considered empty.
394 elmex 1.2
395 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
396     the write buffer before it is fully drained, but this is a rare case, as
397     the operating system kernel usually buffers data as well, so the default
398     is good in almost all cases.
399    
400 root 1.62 =item linger => <seconds>
401    
402 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
403 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
404     write data and will install a watcher that will write this data to the
405     socket. No errors will be reported (this mostly matches how the operating
406     system treats outstanding data at socket close time).
407 root 1.62
408 root 1.88 This will not work for partial TLS data that could not be encoded
409 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
410     help.
411 root 1.62
412 root 1.133 =item peername => $string
413    
414 root 1.134 A string used to identify the remote site - usually the DNS hostname
415     (I<not> IDN!) used to create the connection, rarely the IP address.
416 root 1.131
417 root 1.133 Apart from being useful in error messages, this string is also used in TLS
418 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
419 root 1.198 verification will be skipped when C<peername> is not specified or is
420 root 1.144 C<undef>.
421 root 1.131
422 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
423    
424 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
425 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
426 root 1.88 established and will transparently encrypt/decrypt data afterwards.
427 root 1.19
428 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
429     appropriate error message.
430    
431 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
432 root 1.88 automatically when you try to create a TLS handle): this module doesn't
433     have a dependency on that module, so if your module requires it, you have
434 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
435     old, you get an C<EPROTO> error.
436 root 1.26
437 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
438     C<accept>, and for the TLS client side of a connection, use C<connect>
439     mode.
440 root 1.19
441     You can also provide your own TLS connection object, but you have
442     to make sure that you call either C<Net::SSLeay::set_connect_state>
443     or C<Net::SSLeay::set_accept_state> on it before you pass it to
444 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
445     object.
446    
447     At some future point, AnyEvent::Handle might switch to another TLS
448     implementation, then the option to use your own session object will go
449     away.
450 root 1.19
451 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
452     passing in the wrong integer will lead to certain crash. This most often
453     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
454     segmentation fault.
455    
456 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
457 root 1.26
458 root 1.131 =item tls_ctx => $anyevent_tls
459 root 1.19
460 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
461 root 1.207 (unless a connection object was specified directly). If this
462     parameter is missing (or C<undef>), then AnyEvent::Handle will use
463     C<AnyEvent::Handle::TLS_CTX>.
464 root 1.19
465 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
466     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
467     new TLS context object.
468    
469 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
470 root 1.142
471     This callback will be invoked when the TLS/SSL handshake has finished. If
472     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
473     (C<on_stoptls> will not be called in this case).
474    
475     The session in C<< $handle->{tls} >> can still be examined in this
476     callback, even when the handshake was not successful.
477    
478 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
479     callback is in effect, instead, the error message will be passed to C<on_starttls>.
480    
481     Without this callback, handshake failures lead to C<on_error> being
482 root 1.198 called as usual.
483 root 1.143
484 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
485 root 1.143 need to do that, start an zero-second timer instead whose callback can
486     then call C<< ->starttls >> again.
487    
488 root 1.142 =item on_stoptls => $cb->($handle)
489    
490     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
491     set, then it will be invoked after freeing the TLS session. If it is not,
492     then a TLS shutdown condition will be treated like a normal EOF condition
493     on the handle.
494    
495     The session in C<< $handle->{tls} >> can still be examined in this
496     callback.
497    
498     This callback will only be called on TLS shutdowns, not when the
499     underlying handle signals EOF.
500    
501 root 1.40 =item json => JSON or JSON::XS object
502    
503     This is the json coder object used by the C<json> read and write types.
504    
505 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
506 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
507     texts.
508 root 1.40
509     Note that you are responsible to depend on the JSON module if you want to
510     use this functionality, as AnyEvent does not have a dependency itself.
511    
512 elmex 1.1 =back
513    
514     =cut
515    
516     sub new {
517 root 1.8 my $class = shift;
518     my $self = bless { @_ }, $class;
519    
520 root 1.159 if ($self->{fh}) {
521     $self->_start;
522     return unless $self->{fh}; # could be gone by now
523    
524     } elsif ($self->{connect}) {
525     require AnyEvent::Socket;
526    
527     $self->{peername} = $self->{connect}[0]
528     unless exists $self->{peername};
529    
530     $self->{_skip_drain_rbuf} = 1;
531    
532     {
533     Scalar::Util::weaken (my $self = $self);
534    
535     $self->{_connect} =
536     AnyEvent::Socket::tcp_connect (
537     $self->{connect}[0],
538     $self->{connect}[1],
539     sub {
540     my ($fh, $host, $port, $retry) = @_;
541    
542 root 1.206 delete $self->{_connect}; # no longer needed
543 root 1.205
544 root 1.159 if ($fh) {
545     $self->{fh} = $fh;
546    
547     delete $self->{_skip_drain_rbuf};
548     $self->_start;
549    
550     $self->{on_connect}
551     and $self->{on_connect}($self, $host, $port, sub {
552 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
553 root 1.159 $self->{_skip_drain_rbuf} = 1;
554     &$retry;
555     });
556    
557     } else {
558     if ($self->{on_connect_error}) {
559     $self->{on_connect_error}($self, "$!");
560 root 1.217 $self->destroy if $self;
561 root 1.159 } else {
562 root 1.161 $self->_error ($!, 1);
563 root 1.159 }
564     }
565     },
566     sub {
567     local $self->{fh} = $_[0];
568    
569 root 1.161 $self->{on_prepare}
570 root 1.210 ? $self->{on_prepare}->($self)
571 root 1.161 : ()
572 root 1.159 }
573     );
574     }
575    
576     } else {
577     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
578     }
579    
580     $self
581     }
582    
583     sub _start {
584     my ($self) = @_;
585 root 1.8
586 root 1.194 # too many clueless people try to use udp and similar sockets
587     # with AnyEvent::Handle, do them a favour.
588 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
589     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
590 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
591 root 1.194
592 root 1.8 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
593 elmex 1.1
594 root 1.176 $self->{_activity} =
595     $self->{_ractivity} =
596     $self->{_wactivity} = AE::now;
597    
598 root 1.203 $self->{read_size} ||= 2048;
599     $self->{max_read_size} = $self->{read_size}
600     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
601    
602 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
603     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
604     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
605    
606 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
607     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
608    
609     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
610 root 1.131
611 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
612 root 1.94 if $self->{tls};
613 root 1.19
614 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
615 root 1.10
616 root 1.66 $self->start_read
617 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
618 root 1.160
619     $self->_drain_wbuf;
620 root 1.8 }
621 elmex 1.2
622 root 1.52 sub _error {
623 root 1.133 my ($self, $errno, $fatal, $message) = @_;
624 root 1.8
625 root 1.52 $! = $errno;
626 root 1.133 $message ||= "$!";
627 root 1.37
628 root 1.52 if ($self->{on_error}) {
629 root 1.133 $self->{on_error}($self, $fatal, $message);
630 root 1.151 $self->destroy if $fatal;
631 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
632 root 1.149 $self->destroy;
633 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
634 root 1.52 }
635 elmex 1.1 }
636    
637 root 1.8 =item $fh = $handle->fh
638 elmex 1.1
639 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
640 elmex 1.1
641     =cut
642    
643 root 1.38 sub fh { $_[0]{fh} }
644 elmex 1.1
645 root 1.8 =item $handle->on_error ($cb)
646 elmex 1.1
647 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
648 elmex 1.1
649 root 1.8 =cut
650    
651     sub on_error {
652     $_[0]{on_error} = $_[1];
653     }
654    
655     =item $handle->on_eof ($cb)
656    
657     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
658 elmex 1.1
659     =cut
660    
661 root 1.8 sub on_eof {
662     $_[0]{on_eof} = $_[1];
663     }
664    
665 root 1.43 =item $handle->on_timeout ($cb)
666    
667 root 1.176 =item $handle->on_rtimeout ($cb)
668    
669     =item $handle->on_wtimeout ($cb)
670    
671     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
672     callback, or disables the callback (but not the timeout) if C<$cb> =
673     C<undef>. See the C<timeout> constructor argument and method.
674 root 1.43
675     =cut
676    
677 root 1.176 # see below
678 root 1.43
679 root 1.70 =item $handle->autocork ($boolean)
680    
681     Enables or disables the current autocork behaviour (see C<autocork>
682 root 1.105 constructor argument). Changes will only take effect on the next write.
683 root 1.70
684     =cut
685    
686 root 1.105 sub autocork {
687     $_[0]{autocork} = $_[1];
688     }
689    
690 root 1.70 =item $handle->no_delay ($boolean)
691    
692     Enables or disables the C<no_delay> setting (see constructor argument of
693     the same name for details).
694    
695     =cut
696    
697     sub no_delay {
698     $_[0]{no_delay} = $_[1];
699    
700 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
701     if $_[0]{fh};
702 root 1.182 }
703    
704     =item $handle->keepalive ($boolean)
705    
706     Enables or disables the C<keepalive> setting (see constructor argument of
707     the same name for details).
708    
709     =cut
710    
711     sub keepalive {
712     $_[0]{keepalive} = $_[1];
713    
714     eval {
715     local $SIG{__DIE__};
716     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
717     if $_[0]{fh};
718     };
719     }
720    
721     =item $handle->oobinline ($boolean)
722    
723     Enables or disables the C<oobinline> setting (see constructor argument of
724     the same name for details).
725    
726     =cut
727    
728     sub oobinline {
729     $_[0]{oobinline} = $_[1];
730    
731     eval {
732     local $SIG{__DIE__};
733     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
734     if $_[0]{fh};
735     };
736     }
737    
738     =item $handle->keepalive ($boolean)
739    
740     Enables or disables the C<keepalive> setting (see constructor argument of
741     the same name for details).
742    
743     =cut
744    
745     sub keepalive {
746     $_[0]{keepalive} = $_[1];
747    
748     eval {
749     local $SIG{__DIE__};
750     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
751 root 1.159 if $_[0]{fh};
752 root 1.70 };
753     }
754    
755 root 1.142 =item $handle->on_starttls ($cb)
756    
757     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
758    
759     =cut
760    
761     sub on_starttls {
762     $_[0]{on_starttls} = $_[1];
763     }
764    
765     =item $handle->on_stoptls ($cb)
766    
767     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
768    
769     =cut
770    
771 root 1.189 sub on_stoptls {
772 root 1.142 $_[0]{on_stoptls} = $_[1];
773     }
774    
775 root 1.168 =item $handle->rbuf_max ($max_octets)
776    
777     Configures the C<rbuf_max> setting (C<undef> disables it).
778    
779 root 1.209 =item $handle->wbuf_max ($max_octets)
780    
781     Configures the C<wbuf_max> setting (C<undef> disables it).
782    
783 root 1.168 =cut
784    
785     sub rbuf_max {
786     $_[0]{rbuf_max} = $_[1];
787     }
788    
789 root 1.215 sub wbuf_max {
790 root 1.209 $_[0]{wbuf_max} = $_[1];
791     }
792    
793 root 1.43 #############################################################################
794    
795     =item $handle->timeout ($seconds)
796    
797 root 1.176 =item $handle->rtimeout ($seconds)
798    
799     =item $handle->wtimeout ($seconds)
800    
801 root 1.43 Configures (or disables) the inactivity timeout.
802    
803 root 1.218 The timeout will be checked instantly, so this method might destroy the
804     handle before it returns.
805    
806 root 1.176 =item $handle->timeout_reset
807    
808     =item $handle->rtimeout_reset
809    
810     =item $handle->wtimeout_reset
811    
812     Reset the activity timeout, as if data was received or sent.
813    
814     These methods are cheap to call.
815    
816 root 1.43 =cut
817    
818 root 1.176 for my $dir ("", "r", "w") {
819     my $timeout = "${dir}timeout";
820     my $tw = "_${dir}tw";
821     my $on_timeout = "on_${dir}timeout";
822     my $activity = "_${dir}activity";
823     my $cb;
824    
825     *$on_timeout = sub {
826     $_[0]{$on_timeout} = $_[1];
827     };
828    
829     *$timeout = sub {
830     my ($self, $new_value) = @_;
831 root 1.43
832 root 1.201 $new_value >= 0
833     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
834    
835 root 1.176 $self->{$timeout} = $new_value;
836     delete $self->{$tw}; &$cb;
837     };
838 root 1.43
839 root 1.176 *{"${dir}timeout_reset"} = sub {
840     $_[0]{$activity} = AE::now;
841     };
842 root 1.43
843 root 1.176 # main workhorse:
844     # reset the timeout watcher, as neccessary
845     # also check for time-outs
846     $cb = sub {
847     my ($self) = @_;
848    
849     if ($self->{$timeout} && $self->{fh}) {
850     my $NOW = AE::now;
851    
852     # when would the timeout trigger?
853     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
854    
855     # now or in the past already?
856     if ($after <= 0) {
857     $self->{$activity} = $NOW;
858 root 1.43
859 root 1.176 if ($self->{$on_timeout}) {
860     $self->{$on_timeout}($self);
861     } else {
862     $self->_error (Errno::ETIMEDOUT);
863     }
864 root 1.43
865 root 1.176 # callback could have changed timeout value, optimise
866     return unless $self->{$timeout};
867 root 1.43
868 root 1.176 # calculate new after
869     $after = $self->{$timeout};
870 root 1.43 }
871    
872 root 1.176 Scalar::Util::weaken $self;
873     return unless $self; # ->error could have destroyed $self
874 root 1.43
875 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
876     delete $self->{$tw};
877     $cb->($self);
878     };
879     } else {
880     delete $self->{$tw};
881 root 1.43 }
882     }
883     }
884    
885 root 1.9 #############################################################################
886    
887     =back
888    
889     =head2 WRITE QUEUE
890    
891     AnyEvent::Handle manages two queues per handle, one for writing and one
892     for reading.
893    
894     The write queue is very simple: you can add data to its end, and
895     AnyEvent::Handle will automatically try to get rid of it for you.
896    
897 elmex 1.20 When data could be written and the write buffer is shorter then the low
898 root 1.229 water mark, the C<on_drain> callback will be invoked once.
899 root 1.9
900     =over 4
901    
902 root 1.8 =item $handle->on_drain ($cb)
903    
904     Sets the C<on_drain> callback or clears it (see the description of
905     C<on_drain> in the constructor).
906    
907 root 1.193 This method may invoke callbacks (and therefore the handle might be
908     destroyed after it returns).
909    
910 root 1.8 =cut
911    
912     sub on_drain {
913 elmex 1.1 my ($self, $cb) = @_;
914    
915 root 1.8 $self->{on_drain} = $cb;
916    
917     $cb->($self)
918 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
919 root 1.8 }
920    
921     =item $handle->push_write ($data)
922    
923 root 1.209 Queues the given scalar to be written. You can push as much data as
924     you want (only limited by the available memory and C<wbuf_max>), as
925     C<AnyEvent::Handle> buffers it independently of the kernel.
926 root 1.8
927 root 1.193 This method may invoke callbacks (and therefore the handle might be
928     destroyed after it returns).
929    
930 root 1.8 =cut
931    
932 root 1.17 sub _drain_wbuf {
933     my ($self) = @_;
934 root 1.8
935 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
936 root 1.35
937 root 1.8 Scalar::Util::weaken $self;
938 root 1.35
939 root 1.8 my $cb = sub {
940     my $len = syswrite $self->{fh}, $self->{wbuf};
941    
942 root 1.146 if (defined $len) {
943 root 1.8 substr $self->{wbuf}, 0, $len, "";
944    
945 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
946 root 1.43
947 root 1.8 $self->{on_drain}($self)
948 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
949 root 1.8 && $self->{on_drain};
950    
951 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
952 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
953 root 1.52 $self->_error ($!, 1);
954 elmex 1.1 }
955 root 1.8 };
956    
957 root 1.35 # try to write data immediately
958 root 1.70 $cb->() unless $self->{autocork};
959 root 1.8
960 root 1.35 # if still data left in wbuf, we need to poll
961 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
962 root 1.35 if length $self->{wbuf};
963 root 1.209
964     if (
965     defined $self->{wbuf_max}
966     && $self->{wbuf_max} < length $self->{wbuf}
967     ) {
968     $self->_error (Errno::ENOSPC, 1), return;
969     }
970 root 1.8 };
971     }
972    
973 root 1.30 our %WH;
974    
975 root 1.185 # deprecated
976 root 1.30 sub register_write_type($$) {
977     $WH{$_[0]} = $_[1];
978     }
979    
980 root 1.17 sub push_write {
981     my $self = shift;
982    
983 root 1.29 if (@_ > 1) {
984     my $type = shift;
985    
986 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
987     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
988 root 1.29 ->($self, @_);
989     }
990    
991 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
992     # and diagnose the problem earlier and better.
993    
994 root 1.93 if ($self->{tls}) {
995 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
996 root 1.160 &_dotls ($self) if $self->{fh};
997 root 1.17 } else {
998 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
999 root 1.159 $self->_drain_wbuf if $self->{fh};
1000 root 1.17 }
1001     }
1002    
1003 root 1.29 =item $handle->push_write (type => @args)
1004    
1005 root 1.185 Instead of formatting your data yourself, you can also let this module
1006     do the job by specifying a type and type-specific arguments. You
1007     can also specify the (fully qualified) name of a package, in which
1008     case AnyEvent tries to load the package and then expects to find the
1009 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1010 root 1.29
1011 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1012     drop by and tell us):
1013 root 1.29
1014     =over 4
1015    
1016     =item netstring => $string
1017    
1018     Formats the given value as netstring
1019     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1020    
1021     =cut
1022    
1023     register_write_type netstring => sub {
1024     my ($self, $string) = @_;
1025    
1026 root 1.96 (length $string) . ":$string,"
1027 root 1.29 };
1028    
1029 root 1.61 =item packstring => $format, $data
1030    
1031     An octet string prefixed with an encoded length. The encoding C<$format>
1032     uses the same format as a Perl C<pack> format, but must specify a single
1033     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1034     optional C<!>, C<< < >> or C<< > >> modifier).
1035    
1036     =cut
1037    
1038     register_write_type packstring => sub {
1039     my ($self, $format, $string) = @_;
1040    
1041 root 1.65 pack "$format/a*", $string
1042 root 1.61 };
1043    
1044 root 1.39 =item json => $array_or_hashref
1045    
1046 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1047     provide your own JSON object, this means it will be encoded to JSON text
1048     in UTF-8.
1049    
1050     JSON objects (and arrays) are self-delimiting, so you can write JSON at
1051     one end of a handle and read them at the other end without using any
1052     additional framing.
1053    
1054 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
1055     this module doesn't need delimiters after or between JSON texts to be
1056     able to read them, many other languages depend on that.
1057    
1058     A simple RPC protocol that interoperates easily with others is to send
1059     JSON arrays (or objects, although arrays are usually the better choice as
1060     they mimic how function argument passing works) and a newline after each
1061     JSON text:
1062    
1063     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1064     $handle->push_write ("\012");
1065    
1066     An AnyEvent::Handle receiver would simply use the C<json> read type and
1067     rely on the fact that the newline will be skipped as leading whitespace:
1068    
1069     $handle->push_read (json => sub { my $array = $_[1]; ... });
1070    
1071     Other languages could read single lines terminated by a newline and pass
1072     this line into their JSON decoder of choice.
1073    
1074 root 1.40 =cut
1075    
1076 root 1.179 sub json_coder() {
1077     eval { require JSON::XS; JSON::XS->new->utf8 }
1078     || do { require JSON; JSON->new->utf8 }
1079     }
1080    
1081 root 1.40 register_write_type json => sub {
1082     my ($self, $ref) = @_;
1083    
1084 root 1.179 my $json = $self->{json} ||= json_coder;
1085 root 1.40
1086 root 1.179 $json->encode ($ref)
1087 root 1.40 };
1088    
1089 root 1.63 =item storable => $reference
1090    
1091     Freezes the given reference using L<Storable> and writes it to the
1092     handle. Uses the C<nfreeze> format.
1093    
1094     =cut
1095    
1096     register_write_type storable => sub {
1097     my ($self, $ref) = @_;
1098    
1099 root 1.224 require Storable unless $Storable::VERSION;
1100 root 1.63
1101 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1102 root 1.63 };
1103    
1104 root 1.53 =back
1105    
1106 root 1.133 =item $handle->push_shutdown
1107    
1108     Sometimes you know you want to close the socket after writing your data
1109     before it was actually written. One way to do that is to replace your
1110 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1111     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1112     replaces the C<on_drain> callback with:
1113 root 1.133
1114 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1115 root 1.133
1116     This simply shuts down the write side and signals an EOF condition to the
1117     the peer.
1118    
1119     You can rely on the normal read queue and C<on_eof> handling
1120     afterwards. This is the cleanest way to close a connection.
1121    
1122 root 1.193 This method may invoke callbacks (and therefore the handle might be
1123     destroyed after it returns).
1124    
1125 root 1.133 =cut
1126    
1127     sub push_shutdown {
1128 root 1.142 my ($self) = @_;
1129    
1130     delete $self->{low_water_mark};
1131     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1132 root 1.133 }
1133    
1134 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1135    
1136     Instead of one of the predefined types, you can also specify the name of
1137     a package. AnyEvent will try to load the package and then expects to find
1138     a function named C<anyevent_write_type> inside. If it isn't found, it
1139     progressively tries to load the parent package until it either finds the
1140     function (good) or runs out of packages (bad).
1141    
1142     Whenever the given C<type> is used, C<push_write> will the function with
1143     the handle object and the remaining arguments.
1144    
1145     The function is supposed to return a single octet string that will be
1146 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1147 root 1.185 "arguments to on-the-wire-format" converter.
1148 root 1.30
1149 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1150     arguments using the first one.
1151 root 1.29
1152 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1153 root 1.29
1154 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1155     # the "My" modules to be auto-loaded, or just about anywhere when the
1156     # My::Type::anyevent_write_type is defined before invoking it.
1157    
1158     package My::Type;
1159    
1160     sub anyevent_write_type {
1161     my ($handle, $delim, @args) = @_;
1162    
1163     join $delim, @args
1164     }
1165 root 1.29
1166 root 1.30 =cut
1167 root 1.29
1168 root 1.8 #############################################################################
1169    
1170 root 1.9 =back
1171    
1172     =head2 READ QUEUE
1173    
1174     AnyEvent::Handle manages two queues per handle, one for writing and one
1175     for reading.
1176    
1177     The read queue is more complex than the write queue. It can be used in two
1178     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1179     a queue.
1180    
1181     In the simple case, you just install an C<on_read> callback and whenever
1182     new data arrives, it will be called. You can then remove some data (if
1183 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1184 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1185 root 1.197 partial message has been received so far), or change the read queue with
1186     e.g. C<push_read>.
1187 root 1.9
1188     In the more complex case, you want to queue multiple callbacks. In this
1189     case, AnyEvent::Handle will call the first queued callback each time new
1190 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1191 root 1.61 done its job (see C<push_read>, below).
1192 root 1.9
1193     This way you can, for example, push three line-reads, followed by reading
1194     a chunk of data, and AnyEvent::Handle will execute them in order.
1195    
1196     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1197     the specified number of bytes which give an XML datagram.
1198    
1199     # in the default state, expect some header bytes
1200     $handle->on_read (sub {
1201     # some data is here, now queue the length-header-read (4 octets)
1202 root 1.52 shift->unshift_read (chunk => 4, sub {
1203 root 1.9 # header arrived, decode
1204     my $len = unpack "N", $_[1];
1205    
1206     # now read the payload
1207 root 1.52 shift->unshift_read (chunk => $len, sub {
1208 root 1.9 my $xml = $_[1];
1209     # handle xml
1210     });
1211     });
1212     });
1213    
1214 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1215     and another line or "ERROR" for the first request that is sent, and 64
1216     bytes for the second request. Due to the availability of a queue, we can
1217     just pipeline sending both requests and manipulate the queue as necessary
1218     in the callbacks.
1219    
1220     When the first callback is called and sees an "OK" response, it will
1221     C<unshift> another line-read. This line-read will be queued I<before> the
1222     64-byte chunk callback.
1223 root 1.9
1224 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1225 root 1.9 $handle->push_write ("request 1\015\012");
1226    
1227     # we expect "ERROR" or "OK" as response, so push a line read
1228 root 1.52 $handle->push_read (line => sub {
1229 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1230     # so it will be read before the second request reads its 64 bytes
1231     # which are already in the queue when this callback is called
1232     # we don't do this in case we got an error
1233     if ($_[1] eq "OK") {
1234 root 1.52 $_[0]->unshift_read (line => sub {
1235 root 1.9 my $response = $_[1];
1236     ...
1237     });
1238     }
1239     });
1240    
1241 root 1.69 # request two, simply returns 64 octets
1242 root 1.9 $handle->push_write ("request 2\015\012");
1243    
1244     # simply read 64 bytes, always
1245 root 1.52 $handle->push_read (chunk => 64, sub {
1246 root 1.9 my $response = $_[1];
1247     ...
1248     });
1249    
1250     =over 4
1251    
1252 root 1.10 =cut
1253    
1254 root 1.8 sub _drain_rbuf {
1255     my ($self) = @_;
1256 elmex 1.1
1257 root 1.159 # avoid recursion
1258 root 1.167 return if $self->{_skip_drain_rbuf};
1259 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1260 root 1.59
1261     while () {
1262 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1263     # we are draining the buffer, and this can only happen with TLS.
1264 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1265     if exists $self->{_tls_rbuf};
1266 root 1.115
1267 root 1.59 my $len = length $self->{rbuf};
1268 elmex 1.1
1269 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1270 root 1.29 unless ($cb->($self)) {
1271 root 1.163 # no progress can be made
1272     # (not enough data and no data forthcoming)
1273     $self->_error (Errno::EPIPE, 1), return
1274     if $self->{_eof};
1275 root 1.10
1276 root 1.38 unshift @{ $self->{_queue} }, $cb;
1277 root 1.55 last;
1278 root 1.8 }
1279     } elsif ($self->{on_read}) {
1280 root 1.61 last unless $len;
1281    
1282 root 1.8 $self->{on_read}($self);
1283    
1284     if (
1285 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1286     && !@{ $self->{_queue} } # and the queue is still empty
1287     && $self->{on_read} # but we still have on_read
1288 root 1.8 ) {
1289 root 1.55 # no further data will arrive
1290     # so no progress can be made
1291 root 1.150 $self->_error (Errno::EPIPE, 1), return
1292 root 1.55 if $self->{_eof};
1293    
1294     last; # more data might arrive
1295 elmex 1.1 }
1296 root 1.8 } else {
1297     # read side becomes idle
1298 root 1.93 delete $self->{_rw} unless $self->{tls};
1299 root 1.55 last;
1300 root 1.8 }
1301     }
1302    
1303 root 1.80 if ($self->{_eof}) {
1304 root 1.163 $self->{on_eof}
1305     ? $self->{on_eof}($self)
1306     : $self->_error (0, 1, "Unexpected end-of-file");
1307    
1308     return;
1309 root 1.80 }
1310 root 1.55
1311 root 1.169 if (
1312     defined $self->{rbuf_max}
1313     && $self->{rbuf_max} < length $self->{rbuf}
1314     ) {
1315     $self->_error (Errno::ENOSPC, 1), return;
1316     }
1317    
1318 root 1.55 # may need to restart read watcher
1319     unless ($self->{_rw}) {
1320     $self->start_read
1321     if $self->{on_read} || @{ $self->{_queue} };
1322     }
1323 elmex 1.1 }
1324    
1325 root 1.8 =item $handle->on_read ($cb)
1326 elmex 1.1
1327 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1328     the new callback is C<undef>). See the description of C<on_read> in the
1329     constructor.
1330 elmex 1.1
1331 root 1.193 This method may invoke callbacks (and therefore the handle might be
1332     destroyed after it returns).
1333    
1334 root 1.8 =cut
1335    
1336     sub on_read {
1337     my ($self, $cb) = @_;
1338 elmex 1.1
1339 root 1.8 $self->{on_read} = $cb;
1340 root 1.159 $self->_drain_rbuf if $cb;
1341 elmex 1.1 }
1342    
1343 root 1.8 =item $handle->rbuf
1344    
1345 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1346     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1347     much faster, and no less clean).
1348    
1349     The only operation allowed on the read buffer (apart from looking at it)
1350     is removing data from its beginning. Otherwise modifying or appending to
1351     it is not allowed and will lead to hard-to-track-down bugs.
1352    
1353     NOTE: The read buffer should only be used or modified in the C<on_read>
1354     callback or when C<push_read> or C<unshift_read> are used with a single
1355     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1356     will manage the read buffer on their own.
1357 elmex 1.1
1358     =cut
1359    
1360 elmex 1.2 sub rbuf : lvalue {
1361 root 1.8 $_[0]{rbuf}
1362 elmex 1.2 }
1363 elmex 1.1
1364 root 1.8 =item $handle->push_read ($cb)
1365    
1366     =item $handle->unshift_read ($cb)
1367    
1368     Append the given callback to the end of the queue (C<push_read>) or
1369     prepend it (C<unshift_read>).
1370    
1371     The callback is called each time some additional read data arrives.
1372 elmex 1.1
1373 elmex 1.20 It must check whether enough data is in the read buffer already.
1374 elmex 1.1
1375 root 1.8 If not enough data is available, it must return the empty list or a false
1376     value, in which case it will be called repeatedly until enough data is
1377     available (or an error condition is detected).
1378    
1379     If enough data was available, then the callback must remove all data it is
1380     interested in (which can be none at all) and return a true value. After returning
1381     true, it will be removed from the queue.
1382 elmex 1.1
1383 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1384     destroyed after it returns).
1385    
1386 elmex 1.1 =cut
1387    
1388 root 1.30 our %RH;
1389    
1390     sub register_read_type($$) {
1391     $RH{$_[0]} = $_[1];
1392     }
1393    
1394 root 1.8 sub push_read {
1395 root 1.28 my $self = shift;
1396     my $cb = pop;
1397    
1398     if (@_) {
1399     my $type = shift;
1400    
1401 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1402     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1403 root 1.28 ->($self, $cb, @_);
1404     }
1405 elmex 1.1
1406 root 1.38 push @{ $self->{_queue} }, $cb;
1407 root 1.159 $self->_drain_rbuf;
1408 elmex 1.1 }
1409    
1410 root 1.8 sub unshift_read {
1411 root 1.28 my $self = shift;
1412     my $cb = pop;
1413    
1414     if (@_) {
1415     my $type = shift;
1416    
1417 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1418     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1419 root 1.28 ->($self, $cb, @_);
1420     }
1421    
1422 root 1.38 unshift @{ $self->{_queue} }, $cb;
1423 root 1.159 $self->_drain_rbuf;
1424 root 1.8 }
1425 elmex 1.1
1426 root 1.28 =item $handle->push_read (type => @args, $cb)
1427 elmex 1.1
1428 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1429 elmex 1.1
1430 root 1.28 Instead of providing a callback that parses the data itself you can chose
1431     between a number of predefined parsing formats, for chunks of data, lines
1432 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1433     which case AnyEvent tries to load the package and then expects to find the
1434     C<anyevent_read_type> function inside (see "custom read types", below).
1435 elmex 1.1
1436 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1437     drop by and tell us):
1438 root 1.28
1439     =over 4
1440    
1441 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1442 root 1.28
1443     Invoke the callback only once C<$octets> bytes have been read. Pass the
1444     data read to the callback. The callback will never be called with less
1445     data.
1446    
1447     Example: read 2 bytes.
1448    
1449     $handle->push_read (chunk => 2, sub {
1450 root 1.225 say "yay " . unpack "H*", $_[1];
1451 root 1.28 });
1452 elmex 1.1
1453     =cut
1454    
1455 root 1.28 register_read_type chunk => sub {
1456     my ($self, $cb, $len) = @_;
1457 elmex 1.1
1458 root 1.8 sub {
1459     $len <= length $_[0]{rbuf} or return;
1460 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1461 root 1.8 1
1462     }
1463 root 1.28 };
1464 root 1.8
1465 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1466 elmex 1.1
1467 root 1.8 The callback will be called only once a full line (including the end of
1468     line marker, C<$eol>) has been read. This line (excluding the end of line
1469     marker) will be passed to the callback as second argument (C<$line>), and
1470     the end of line marker as the third argument (C<$eol>).
1471 elmex 1.1
1472 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1473     will be interpreted as a fixed record end marker, or it can be a regex
1474     object (e.g. created by C<qr>), in which case it is interpreted as a
1475     regular expression.
1476 elmex 1.1
1477 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1478     undef), then C<qr|\015?\012|> is used (which is good for most internet
1479     protocols).
1480 elmex 1.1
1481 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1482     not marked by the end of line marker.
1483 elmex 1.1
1484 root 1.8 =cut
1485 elmex 1.1
1486 root 1.28 register_read_type line => sub {
1487     my ($self, $cb, $eol) = @_;
1488 elmex 1.1
1489 root 1.76 if (@_ < 3) {
1490     # this is more than twice as fast as the generic code below
1491     sub {
1492     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1493 elmex 1.1
1494 root 1.227 $cb->($_[0], "$1", "$2");
1495 root 1.76 1
1496     }
1497     } else {
1498     $eol = quotemeta $eol unless ref $eol;
1499     $eol = qr|^(.*?)($eol)|s;
1500    
1501     sub {
1502     $_[0]{rbuf} =~ s/$eol// or return;
1503 elmex 1.1
1504 root 1.227 $cb->($_[0], "$1", "$2");
1505 root 1.76 1
1506     }
1507 root 1.8 }
1508 root 1.28 };
1509 elmex 1.1
1510 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1511 root 1.36
1512     Makes a regex match against the regex object C<$accept> and returns
1513     everything up to and including the match.
1514    
1515     Example: read a single line terminated by '\n'.
1516    
1517     $handle->push_read (regex => qr<\n>, sub { ... });
1518    
1519     If C<$reject> is given and not undef, then it determines when the data is
1520     to be rejected: it is matched against the data when the C<$accept> regex
1521     does not match and generates an C<EBADMSG> error when it matches. This is
1522     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1523     receive buffer overflow).
1524    
1525     Example: expect a single decimal number followed by whitespace, reject
1526     anything else (not the use of an anchor).
1527    
1528     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1529    
1530     If C<$skip> is given and not C<undef>, then it will be matched against
1531     the receive buffer when neither C<$accept> nor C<$reject> match,
1532     and everything preceding and including the match will be accepted
1533     unconditionally. This is useful to skip large amounts of data that you
1534     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1535     have to start matching from the beginning. This is purely an optimisation
1536 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1537 root 1.36
1538     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1539 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1540 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1541     it only accepts something not ending in either \015 or \012, as these are
1542     required for the accept regex.
1543    
1544     $handle->push_read (regex =>
1545     qr<\015\012\015\012>,
1546     undef, # no reject
1547     qr<^.*[^\015\012]>,
1548     sub { ... });
1549    
1550     =cut
1551    
1552     register_read_type regex => sub {
1553     my ($self, $cb, $accept, $reject, $skip) = @_;
1554    
1555     my $data;
1556     my $rbuf = \$self->{rbuf};
1557    
1558     sub {
1559     # accept
1560     if ($$rbuf =~ $accept) {
1561     $data .= substr $$rbuf, 0, $+[0], "";
1562 root 1.220 $cb->($_[0], $data);
1563 root 1.36 return 1;
1564     }
1565    
1566     # reject
1567     if ($reject && $$rbuf =~ $reject) {
1568 root 1.220 $_[0]->_error (Errno::EBADMSG);
1569 root 1.36 }
1570    
1571     # skip
1572     if ($skip && $$rbuf =~ $skip) {
1573     $data .= substr $$rbuf, 0, $+[0], "";
1574     }
1575    
1576     ()
1577     }
1578     };
1579    
1580 root 1.61 =item netstring => $cb->($handle, $string)
1581    
1582     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1583    
1584     Throws an error with C<$!> set to EBADMSG on format violations.
1585    
1586     =cut
1587    
1588     register_read_type netstring => sub {
1589     my ($self, $cb) = @_;
1590    
1591     sub {
1592     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1593     if ($_[0]{rbuf} =~ /[^0-9]/) {
1594 root 1.220 $_[0]->_error (Errno::EBADMSG);
1595 root 1.61 }
1596     return;
1597     }
1598    
1599     my $len = $1;
1600    
1601 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1602 root 1.61 my $string = $_[1];
1603     $_[0]->unshift_read (chunk => 1, sub {
1604     if ($_[1] eq ",") {
1605     $cb->($_[0], $string);
1606     } else {
1607 root 1.220 $_[0]->_error (Errno::EBADMSG);
1608 root 1.61 }
1609     });
1610     });
1611    
1612     1
1613     }
1614     };
1615    
1616     =item packstring => $format, $cb->($handle, $string)
1617    
1618     An octet string prefixed with an encoded length. The encoding C<$format>
1619     uses the same format as a Perl C<pack> format, but must specify a single
1620     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1621     optional C<!>, C<< < >> or C<< > >> modifier).
1622    
1623 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1624     EPP uses a prefix of C<N> (4 octtes).
1625 root 1.61
1626     Example: read a block of data prefixed by its length in BER-encoded
1627     format (very efficient).
1628    
1629     $handle->push_read (packstring => "w", sub {
1630     my ($handle, $data) = @_;
1631     });
1632    
1633     =cut
1634    
1635     register_read_type packstring => sub {
1636     my ($self, $cb, $format) = @_;
1637    
1638     sub {
1639     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1640 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1641 root 1.61 or return;
1642    
1643 root 1.77 $format = length pack $format, $len;
1644 root 1.61
1645 root 1.77 # bypass unshift if we already have the remaining chunk
1646     if ($format + $len <= length $_[0]{rbuf}) {
1647     my $data = substr $_[0]{rbuf}, $format, $len;
1648     substr $_[0]{rbuf}, 0, $format + $len, "";
1649     $cb->($_[0], $data);
1650     } else {
1651     # remove prefix
1652     substr $_[0]{rbuf}, 0, $format, "";
1653    
1654     # read remaining chunk
1655     $_[0]->unshift_read (chunk => $len, $cb);
1656     }
1657 root 1.61
1658     1
1659     }
1660     };
1661    
1662 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1663    
1664 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1665     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1666 root 1.40
1667     If a C<json> object was passed to the constructor, then that will be used
1668     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1669    
1670     This read type uses the incremental parser available with JSON version
1671     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1672     dependency on your own: this module will load the JSON module, but
1673     AnyEvent does not depend on it itself.
1674    
1675     Since JSON texts are fully self-delimiting, the C<json> read and write
1676 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1677     the C<json> write type description, above, for an actual example.
1678 root 1.40
1679     =cut
1680    
1681     register_read_type json => sub {
1682 root 1.63 my ($self, $cb) = @_;
1683 root 1.40
1684 root 1.179 my $json = $self->{json} ||= json_coder;
1685 root 1.40
1686     my $data;
1687     my $rbuf = \$self->{rbuf};
1688    
1689     sub {
1690 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1691 root 1.110
1692 root 1.113 if ($ref) {
1693 root 1.220 $_[0]{rbuf} = $json->incr_text;
1694 root 1.113 $json->incr_text = "";
1695 root 1.220 $cb->($_[0], $ref);
1696 root 1.110
1697     1
1698 root 1.113 } elsif ($@) {
1699 root 1.111 # error case
1700 root 1.110 $json->incr_skip;
1701 root 1.40
1702 root 1.220 $_[0]{rbuf} = $json->incr_text;
1703 root 1.40 $json->incr_text = "";
1704    
1705 root 1.220 $_[0]->_error (Errno::EBADMSG);
1706 root 1.114
1707 root 1.113 ()
1708     } else {
1709 root 1.220 $_[0]{rbuf} = "";
1710 root 1.114
1711 root 1.113 ()
1712     }
1713 root 1.40 }
1714     };
1715    
1716 root 1.63 =item storable => $cb->($handle, $ref)
1717    
1718     Deserialises a L<Storable> frozen representation as written by the
1719     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1720     data).
1721    
1722     Raises C<EBADMSG> error if the data could not be decoded.
1723    
1724     =cut
1725    
1726     register_read_type storable => sub {
1727     my ($self, $cb) = @_;
1728    
1729 root 1.224 require Storable unless $Storable::VERSION;
1730 root 1.63
1731     sub {
1732     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1733 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1734 root 1.63 or return;
1735    
1736 root 1.77 my $format = length pack "w", $len;
1737 root 1.63
1738 root 1.77 # bypass unshift if we already have the remaining chunk
1739     if ($format + $len <= length $_[0]{rbuf}) {
1740     my $data = substr $_[0]{rbuf}, $format, $len;
1741     substr $_[0]{rbuf}, 0, $format + $len, "";
1742 root 1.232
1743     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1744     or return $_[0]->_error (Errno::EBADMSG);
1745 root 1.77 } else {
1746     # remove prefix
1747     substr $_[0]{rbuf}, 0, $format, "";
1748    
1749     # read remaining chunk
1750     $_[0]->unshift_read (chunk => $len, sub {
1751 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1752     or $_[0]->_error (Errno::EBADMSG);
1753 root 1.77 });
1754     }
1755    
1756     1
1757 root 1.63 }
1758     };
1759    
1760 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1761    
1762     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1763     record without consuming anything. Only SSL version 3 or higher
1764     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1765     SSL2-compatible framing is supported).
1766    
1767     If it detects that the input data is likely TLS, it calls the callback
1768     with a true value for C<$detect> and the (on-wire) TLS version as second
1769     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1770     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1771     be definitely not TLS, it calls the callback with a false value for
1772     C<$detect>.
1773    
1774     The callback could use this information to decide whether or not to start
1775     TLS negotiation.
1776    
1777     In all cases the data read so far is passed to the following read
1778     handlers.
1779    
1780     Usually you want to use the C<tls_autostart> read type instead.
1781    
1782     If you want to design a protocol that works in the presence of TLS
1783     dtection, make sure that any non-TLS data doesn't start with the octet 22
1784     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1785     read type does are a bit more strict, but might losen in the future to
1786     accomodate protocol changes.
1787    
1788     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1789     L<Net::SSLeay>).
1790    
1791     =item tls_autostart => $tls[, $tls_ctx]
1792    
1793     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1794     to start tls by calling C<starttls> with the given arguments.
1795    
1796     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1797     been configured to accept, as servers do not normally send a handshake on
1798     their own and ths cannot be detected in this way.
1799    
1800     See C<tls_detect> above for more details.
1801    
1802     Example: give the client a chance to start TLS before accepting a text
1803     line.
1804    
1805     $hdl->push_read (tls_detect => "accept");
1806     $hdl->push_read (line => sub {
1807     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1808     });
1809    
1810     =cut
1811    
1812     register_read_type tls_detect => sub {
1813     my ($self, $cb) = @_;
1814    
1815     sub {
1816     # this regex matches a full or partial tls record
1817     if (
1818     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1819     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1820     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1821     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1822     ) {
1823     return if 3 != length $1; # partial match, can't decide yet
1824    
1825     # full match, valid TLS record
1826     my ($major, $minor) = unpack "CC", $1;
1827     $cb->($self, "accept", $major + $minor * 0.1);
1828     } else {
1829     # mismatch == guaranteed not TLS
1830     $cb->($self, undef);
1831     }
1832    
1833     1
1834     }
1835     };
1836    
1837     register_read_type tls_autostart => sub {
1838     my ($self, @tls) = @_;
1839    
1840     $RH{tls_detect}($self, sub {
1841     return unless $_[1];
1842     $_[0]->starttls (@tls);
1843     })
1844     };
1845    
1846 root 1.28 =back
1847    
1848 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1849 root 1.30
1850 root 1.185 Instead of one of the predefined types, you can also specify the name
1851     of a package. AnyEvent will try to load the package and then expects to
1852     find a function named C<anyevent_read_type> inside. If it isn't found, it
1853     progressively tries to load the parent package until it either finds the
1854     function (good) or runs out of packages (bad).
1855    
1856     Whenever this type is used, C<push_read> will invoke the function with the
1857     handle object, the original callback and the remaining arguments.
1858    
1859     The function is supposed to return a callback (usually a closure) that
1860     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1861     mentally treat the function as a "configurable read type to read callback"
1862     converter.
1863    
1864     It should invoke the original callback when it is done reading (remember
1865     to pass C<$handle> as first argument as all other callbacks do that,
1866     although there is no strict requirement on this).
1867 root 1.30
1868 root 1.185 For examples, see the source of this module (F<perldoc -m
1869     AnyEvent::Handle>, search for C<register_read_type>)).
1870 root 1.30
1871 root 1.10 =item $handle->stop_read
1872    
1873     =item $handle->start_read
1874    
1875 root 1.18 In rare cases you actually do not want to read anything from the
1876 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1877 root 1.22 any queued callbacks will be executed then. To start reading again, call
1878 root 1.10 C<start_read>.
1879    
1880 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1881     you change the C<on_read> callback or push/unshift a read callback, and it
1882     will automatically C<stop_read> for you when neither C<on_read> is set nor
1883     there are any read requests in the queue.
1884    
1885 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1886     as TLS does not support half-duplex connections. In current versions they
1887     work as expected, as this behaviour is required to avoid certain resource
1888     attacks, where the program would be forced to read (and buffer) arbitrary
1889     amounts of data before being able to send some data. The drawback is that
1890     some readings of the the SSL/TLS specifications basically require this
1891     attack to be working, as SSL/TLS implementations might stall sending data
1892     during a rehandshake.
1893    
1894     As a guideline, during the initial handshake, you should not stop reading,
1895 root 1.226 and as a client, it might cause problems, depending on your application.
1896 root 1.93
1897 root 1.10 =cut
1898    
1899     sub stop_read {
1900     my ($self) = @_;
1901 elmex 1.1
1902 root 1.213 delete $self->{_rw};
1903 root 1.8 }
1904 elmex 1.1
1905 root 1.10 sub start_read {
1906     my ($self) = @_;
1907    
1908 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
1909 root 1.10 Scalar::Util::weaken $self;
1910    
1911 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1912 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1913 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
1914 root 1.10
1915     if ($len > 0) {
1916 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
1917 root 1.43
1918 root 1.93 if ($self->{tls}) {
1919     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1920 root 1.97
1921 root 1.93 &_dotls ($self);
1922     } else {
1923 root 1.159 $self->_drain_rbuf;
1924 root 1.93 }
1925 root 1.10
1926 root 1.203 if ($len == $self->{read_size}) {
1927     $self->{read_size} *= 2;
1928     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
1929     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
1930     }
1931    
1932 root 1.10 } elsif (defined $len) {
1933 root 1.38 delete $self->{_rw};
1934     $self->{_eof} = 1;
1935 root 1.159 $self->_drain_rbuf;
1936 root 1.10
1937 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1938 root 1.52 return $self->_error ($!, 1);
1939 root 1.10 }
1940 root 1.175 };
1941 root 1.10 }
1942 elmex 1.1 }
1943    
1944 root 1.133 our $ERROR_SYSCALL;
1945     our $ERROR_WANT_READ;
1946    
1947     sub _tls_error {
1948     my ($self, $err) = @_;
1949    
1950     return $self->_error ($!, 1)
1951     if $err == Net::SSLeay::ERROR_SYSCALL ();
1952    
1953 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1954 root 1.137
1955     # reduce error string to look less scary
1956     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1957    
1958 root 1.143 if ($self->{_on_starttls}) {
1959     (delete $self->{_on_starttls})->($self, undef, $err);
1960     &_freetls;
1961     } else {
1962     &_freetls;
1963 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
1964 root 1.143 }
1965 root 1.133 }
1966    
1967 root 1.97 # poll the write BIO and send the data if applicable
1968 root 1.133 # also decode read data if possible
1969     # this is basiclaly our TLS state machine
1970     # more efficient implementations are possible with openssl,
1971     # but not with the buggy and incomplete Net::SSLeay.
1972 root 1.19 sub _dotls {
1973     my ($self) = @_;
1974    
1975 root 1.97 my $tmp;
1976 root 1.56
1977 root 1.38 if (length $self->{_tls_wbuf}) {
1978 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1979     substr $self->{_tls_wbuf}, 0, $tmp, "";
1980 root 1.22 }
1981 root 1.133
1982     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1983     return $self->_tls_error ($tmp)
1984     if $tmp != $ERROR_WANT_READ
1985 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
1986 root 1.19 }
1987    
1988 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1989     unless (length $tmp) {
1990 root 1.143 $self->{_on_starttls}
1991     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1992 root 1.92 &_freetls;
1993 root 1.143
1994 root 1.142 if ($self->{on_stoptls}) {
1995     $self->{on_stoptls}($self);
1996     return;
1997     } else {
1998     # let's treat SSL-eof as we treat normal EOF
1999     delete $self->{_rw};
2000     $self->{_eof} = 1;
2001     }
2002 root 1.56 }
2003 root 1.91
2004 root 1.116 $self->{_tls_rbuf} .= $tmp;
2005 root 1.159 $self->_drain_rbuf;
2006 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2007 root 1.23 }
2008    
2009 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
2010 root 1.133 return $self->_tls_error ($tmp)
2011     if $tmp != $ERROR_WANT_READ
2012 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2013 root 1.91
2014 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2015     $self->{wbuf} .= $tmp;
2016 root 1.91 $self->_drain_wbuf;
2017 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2018 root 1.91 }
2019 root 1.142
2020     $self->{_on_starttls}
2021     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2022 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2023 root 1.19 }
2024    
2025 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2026    
2027     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2028     object is created, you can also do that at a later time by calling
2029 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2030 root 1.25
2031 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2032     write data and then call C<< ->starttls >> then TLS negotiation will start
2033 root 1.234 immediately, after which the queued write data is then sent. This might
2034     change in future versions, so best make sure you have no outstanding write
2035     data when calling this method.
2036 root 1.157
2037 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2038     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2039    
2040 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2041     when AnyEvent::Handle has to create its own TLS connection object, or
2042     a hash reference with C<< key => value >> pairs that will be used to
2043     construct a new context.
2044    
2045     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2046     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2047     changed to your liking. Note that the handshake might have already started
2048     when this function returns.
2049 root 1.38
2050 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2051 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2052     stream after stopping TLS.
2053 root 1.92
2054 root 1.193 This method may invoke callbacks (and therefore the handle might be
2055     destroyed after it returns).
2056    
2057 root 1.25 =cut
2058    
2059 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2060    
2061 root 1.19 sub starttls {
2062 root 1.160 my ($self, $tls, $ctx) = @_;
2063    
2064     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2065     if $self->{tls};
2066    
2067 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2068     eval {
2069     require Net::SSLeay;
2070     require AnyEvent::TLS;
2071     1
2072     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2073     }
2074    
2075 root 1.160 $self->{tls} = $tls;
2076     $self->{tls_ctx} = $ctx if @_ > 2;
2077    
2078     return unless $self->{fh};
2079 root 1.19
2080 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2081     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2082 root 1.133
2083 root 1.180 $tls = delete $self->{tls};
2084 root 1.160 $ctx = $self->{tls_ctx};
2085 root 1.131
2086 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2087    
2088 root 1.131 if ("HASH" eq ref $ctx) {
2089 root 1.137 if ($ctx->{cache}) {
2090     my $key = $ctx+0;
2091     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2092     } else {
2093     $ctx = new AnyEvent::TLS %$ctx;
2094     }
2095 root 1.131 }
2096 root 1.92
2097 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2098 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2099 root 1.19
2100 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2101     # but the openssl maintainers basically said: "trust us, it just works".
2102     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2103     # and mismaintained ssleay-module doesn't even offer them).
2104 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2105 root 1.87 #
2106     # in short: this is a mess.
2107     #
2108 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2109 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2110 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2111     # have identity issues in that area.
2112 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2113     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2114     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2115 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2116 root 1.21
2117 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2118     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2119 root 1.19
2120 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2121     $self->{rbuf} = "";
2122 root 1.172
2123 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2124 root 1.19
2125 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2126 root 1.143 if $self->{on_starttls};
2127 root 1.142
2128 root 1.93 &_dotls; # need to trigger the initial handshake
2129     $self->start_read; # make sure we actually do read
2130 root 1.19 }
2131    
2132 root 1.25 =item $handle->stoptls
2133    
2134 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2135     sending a close notify to the other side, but since OpenSSL doesn't
2136 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2137 root 1.160 the stream afterwards.
2138 root 1.25
2139 root 1.193 This method may invoke callbacks (and therefore the handle might be
2140     destroyed after it returns).
2141    
2142 root 1.25 =cut
2143    
2144     sub stoptls {
2145     my ($self) = @_;
2146    
2147 root 1.192 if ($self->{tls} && $self->{fh}) {
2148 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2149 root 1.92
2150     &_dotls;
2151    
2152 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2153     # # we, we... have to use openssl :/#d#
2154     # &_freetls;#d#
2155 root 1.92 }
2156     }
2157    
2158     sub _freetls {
2159     my ($self) = @_;
2160    
2161     return unless $self->{tls};
2162 root 1.38
2163 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2164 root 1.171 if $self->{tls} > 0;
2165 root 1.92
2166 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2167 root 1.25 }
2168    
2169 root 1.216 =item $handle->resettls
2170    
2171     This rarely-used method simply resets and TLS state on the handle, usually
2172     causing data loss.
2173    
2174     One case where it may be useful is when you want to skip over the data in
2175     the stream but you are not interested in interpreting it, so data loss is
2176     no concern.
2177    
2178     =cut
2179    
2180     *resettls = \&_freetls;
2181    
2182 root 1.19 sub DESTROY {
2183 root 1.120 my ($self) = @_;
2184 root 1.19
2185 root 1.92 &_freetls;
2186 root 1.62
2187     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2188    
2189 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2190 root 1.62 my $fh = delete $self->{fh};
2191     my $wbuf = delete $self->{wbuf};
2192    
2193     my @linger;
2194    
2195 root 1.175 push @linger, AE::io $fh, 1, sub {
2196 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2197    
2198     if ($len > 0) {
2199     substr $wbuf, 0, $len, "";
2200 root 1.202 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK)) {
2201 root 1.62 @linger = (); # end
2202     }
2203 root 1.175 };
2204     push @linger, AE::timer $linger, 0, sub {
2205 root 1.62 @linger = ();
2206 root 1.175 };
2207 root 1.62 }
2208 root 1.19 }
2209    
2210 root 1.99 =item $handle->destroy
2211    
2212 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2213 root 1.141 no further callbacks will be invoked and as many resources as possible
2214 root 1.165 will be freed. Any method you will call on the handle object after
2215     destroying it in this way will be silently ignored (and it will return the
2216     empty list).
2217 root 1.99
2218 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2219     object and it will simply shut down. This works in fatal error and EOF
2220     callbacks, as well as code outside. It does I<NOT> work in a read or write
2221     callback, so when you want to destroy the AnyEvent::Handle object from
2222     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2223     that case.
2224    
2225 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2226     will be removed as well, so if those are the only reference holders (as
2227     is common), then one doesn't need to do anything special to break any
2228     reference cycles.
2229    
2230 root 1.99 The handle might still linger in the background and write out remaining
2231     data, as specified by the C<linger> option, however.
2232    
2233     =cut
2234    
2235     sub destroy {
2236     my ($self) = @_;
2237    
2238     $self->DESTROY;
2239     %$self = ();
2240 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2241     }
2242    
2243 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2244     #nop
2245 root 1.99 }
2246    
2247 root 1.192 =item $handle->destroyed
2248    
2249     Returns false as long as the handle hasn't been destroyed by a call to C<<
2250     ->destroy >>, true otherwise.
2251    
2252     Can be useful to decide whether the handle is still valid after some
2253     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2254     C<< ->starttls >> and other methods can call user callbacks, which in turn
2255     can destroy the handle, so work can be avoided by checking sometimes:
2256    
2257     $hdl->starttls ("accept");
2258     return if $hdl->destroyed;
2259     $hdl->push_write (...
2260    
2261     Note that the call to C<push_write> will silently be ignored if the handle
2262     has been destroyed, so often you can just ignore the possibility of the
2263     handle being destroyed.
2264    
2265     =cut
2266    
2267     sub destroyed { 0 }
2268     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2269    
2270 root 1.19 =item AnyEvent::Handle::TLS_CTX
2271    
2272 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2273     for TLS mode.
2274 root 1.19
2275 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2276 root 1.19
2277     =cut
2278    
2279     our $TLS_CTX;
2280    
2281     sub TLS_CTX() {
2282 root 1.131 $TLS_CTX ||= do {
2283     require AnyEvent::TLS;
2284 root 1.19
2285 root 1.131 new AnyEvent::TLS
2286 root 1.19 }
2287     }
2288    
2289 elmex 1.1 =back
2290    
2291 root 1.95
2292     =head1 NONFREQUENTLY ASKED QUESTIONS
2293    
2294     =over 4
2295    
2296 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2297     still get further invocations!
2298    
2299     That's because AnyEvent::Handle keeps a reference to itself when handling
2300     read or write callbacks.
2301    
2302     It is only safe to "forget" the reference inside EOF or error callbacks,
2303     from within all other callbacks, you need to explicitly call the C<<
2304     ->destroy >> method.
2305    
2306 root 1.208 =item Why is my C<on_eof> callback never called?
2307    
2308     Probably because your C<on_error> callback is being called instead: When
2309     you have outstanding requests in your read queue, then an EOF is
2310     considered an error as you clearly expected some data.
2311    
2312     To avoid this, make sure you have an empty read queue whenever your handle
2313 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2314 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2315     queue.
2316    
2317     See also the next question, which explains this in a bit more detail.
2318    
2319     =item How can I serve requests in a loop?
2320    
2321     Most protocols consist of some setup phase (authentication for example)
2322     followed by a request handling phase, where the server waits for requests
2323     and handles them, in a loop.
2324    
2325     There are two important variants: The first (traditional, better) variant
2326     handles requests until the server gets some QUIT command, causing it to
2327     close the connection first (highly desirable for a busy TCP server). A
2328     client dropping the connection is an error, which means this variant can
2329     detect an unexpected detection close.
2330    
2331 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2332 root 1.208 pushing the "read request start" handler on it:
2333    
2334     # we assume a request starts with a single line
2335     my @start_request; @start_request = (line => sub {
2336     my ($hdl, $line) = @_;
2337    
2338     ... handle request
2339    
2340     # push next request read, possibly from a nested callback
2341     $hdl->push_read (@start_request);
2342     });
2343    
2344     # auth done, now go into request handling loop
2345     # now push the first @start_request
2346     $hdl->push_read (@start_request);
2347    
2348     By always having an outstanding C<push_read>, the handle always expects
2349     some data and raises the C<EPIPE> error when the connction is dropped
2350     unexpectedly.
2351    
2352     The second variant is a protocol where the client can drop the connection
2353     at any time. For TCP, this means that the server machine may run out of
2354 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2355 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2356     kinds of protocols are common (and sometimes even the best solution to the
2357     problem).
2358    
2359     Having an outstanding read request at all times is possible if you ignore
2360     C<EPIPE> errors, but this doesn't help with when the client drops the
2361     connection during a request, which would still be an error.
2362    
2363     A better solution is to push the initial request read in an C<on_read>
2364     callback. This avoids an error, as when the server doesn't expect data
2365     (i.e. is idly waiting for the next request, an EOF will not raise an
2366     error, but simply result in an C<on_eof> callback. It is also a bit slower
2367     and simpler:
2368    
2369     # auth done, now go into request handling loop
2370     $hdl->on_read (sub {
2371     my ($hdl) = @_;
2372    
2373     # called each time we receive data but the read queue is empty
2374     # simply start read the request
2375    
2376     $hdl->push_read (line => sub {
2377     my ($hdl, $line) = @_;
2378    
2379     ... handle request
2380    
2381     # do nothing special when the request has been handled, just
2382     # let the request queue go empty.
2383     });
2384     });
2385    
2386 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2387     reading?
2388    
2389     Unlike, say, TCP, TLS connections do not consist of two independent
2390 root 1.198 communication channels, one for each direction. Or put differently, the
2391 root 1.101 read and write directions are not independent of each other: you cannot
2392     write data unless you are also prepared to read, and vice versa.
2393    
2394 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2395 root 1.101 callback invocations when you are not expecting any read data - the reason
2396     is that AnyEvent::Handle always reads in TLS mode.
2397    
2398     During the connection, you have to make sure that you always have a
2399     non-empty read-queue, or an C<on_read> watcher. At the end of the
2400     connection (or when you no longer want to use it) you can call the
2401     C<destroy> method.
2402    
2403 root 1.95 =item How do I read data until the other side closes the connection?
2404    
2405 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2406     to achieve this is by setting an C<on_read> callback that does nothing,
2407     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2408     will be in C<$_[0]{rbuf}>:
2409 root 1.95
2410     $handle->on_read (sub { });
2411     $handle->on_eof (undef);
2412     $handle->on_error (sub {
2413     my $data = delete $_[0]{rbuf};
2414     });
2415    
2416 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2417     which is not normally allowed by the API. It is expressly permitted in
2418     this case only, as the handle object needs to be destroyed afterwards.
2419    
2420 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2421     and packets loss, might get closed quite violently with an error, when in
2422 root 1.198 fact all data has been received.
2423 root 1.95
2424 root 1.101 It is usually better to use acknowledgements when transferring data,
2425 root 1.95 to make sure the other side hasn't just died and you got the data
2426     intact. This is also one reason why so many internet protocols have an
2427     explicit QUIT command.
2428    
2429 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2430     all data has been written?
2431 root 1.95
2432     After writing your last bits of data, set the C<on_drain> callback
2433     and destroy the handle in there - with the default setting of
2434     C<low_water_mark> this will be called precisely when all data has been
2435     written to the socket:
2436    
2437     $handle->push_write (...);
2438     $handle->on_drain (sub {
2439 root 1.231 AE::log debug => "All data submitted to the kernel.";
2440 root 1.95 undef $handle;
2441     });
2442    
2443 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2444     consider using C<< ->push_shutdown >> instead.
2445    
2446     =item I want to contact a TLS/SSL server, I don't care about security.
2447    
2448     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2449 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2450 root 1.143 parameter:
2451    
2452 root 1.144 tcp_connect $host, $port, sub {
2453     my ($fh) = @_;
2454 root 1.143
2455 root 1.144 my $handle = new AnyEvent::Handle
2456     fh => $fh,
2457     tls => "connect",
2458     on_error => sub { ... };
2459    
2460     $handle->push_write (...);
2461     };
2462 root 1.143
2463     =item I want to contact a TLS/SSL server, I do care about security.
2464    
2465 root 1.144 Then you should additionally enable certificate verification, including
2466     peername verification, if the protocol you use supports it (see
2467     L<AnyEvent::TLS>, C<verify_peername>).
2468    
2469     E.g. for HTTPS:
2470    
2471     tcp_connect $host, $port, sub {
2472     my ($fh) = @_;
2473    
2474     my $handle = new AnyEvent::Handle
2475     fh => $fh,
2476     peername => $host,
2477     tls => "connect",
2478     tls_ctx => { verify => 1, verify_peername => "https" },
2479     ...
2480    
2481     Note that you must specify the hostname you connected to (or whatever
2482     "peername" the protocol needs) as the C<peername> argument, otherwise no
2483     peername verification will be done.
2484    
2485     The above will use the system-dependent default set of trusted CA
2486     certificates. If you want to check against a specific CA, add the
2487     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2488    
2489     tls_ctx => {
2490     verify => 1,
2491     verify_peername => "https",
2492     ca_file => "my-ca-cert.pem",
2493     },
2494    
2495     =item I want to create a TLS/SSL server, how do I do that?
2496    
2497     Well, you first need to get a server certificate and key. You have
2498     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2499     self-signed certificate (cheap. check the search engine of your choice,
2500     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2501     nice program for that purpose).
2502    
2503     Then create a file with your private key (in PEM format, see
2504     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2505     file should then look like this:
2506    
2507     -----BEGIN RSA PRIVATE KEY-----
2508     ...header data
2509     ... lots of base64'y-stuff
2510     -----END RSA PRIVATE KEY-----
2511    
2512     -----BEGIN CERTIFICATE-----
2513     ... lots of base64'y-stuff
2514     -----END CERTIFICATE-----
2515    
2516     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2517     specify this file as C<cert_file>:
2518    
2519     tcp_server undef, $port, sub {
2520     my ($fh) = @_;
2521    
2522     my $handle = new AnyEvent::Handle
2523     fh => $fh,
2524     tls => "accept",
2525     tls_ctx => { cert_file => "my-server-keycert.pem" },
2526     ...
2527 root 1.143
2528 root 1.144 When you have intermediate CA certificates that your clients might not
2529     know about, just append them to the C<cert_file>.
2530 root 1.143
2531 root 1.95 =back
2532    
2533 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2534    
2535     In many cases, you might want to subclass AnyEvent::Handle.
2536    
2537     To make this easier, a given version of AnyEvent::Handle uses these
2538     conventions:
2539    
2540     =over 4
2541    
2542     =item * all constructor arguments become object members.
2543    
2544     At least initially, when you pass a C<tls>-argument to the constructor it
2545 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2546 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2547    
2548     =item * other object member names are prefixed with an C<_>.
2549    
2550     All object members not explicitly documented (internal use) are prefixed
2551     with an underscore character, so the remaining non-C<_>-namespace is free
2552     for use for subclasses.
2553    
2554     =item * all members not documented here and not prefixed with an underscore
2555     are free to use in subclasses.
2556    
2557     Of course, new versions of AnyEvent::Handle may introduce more "public"
2558 root 1.198 member variables, but that's just life. At least it is documented.
2559 root 1.38
2560     =back
2561    
2562 elmex 1.1 =head1 AUTHOR
2563    
2564 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2565 elmex 1.1
2566     =cut
2567    
2568 root 1.230 1
2569