ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.247
Committed: Thu Jan 7 10:03:46 2016 UTC (8 years, 4 months ago) by root
Branch: MAIN
CVS Tags: rel-7_13, rel-7_12
Changes since 1.246: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.246 This is a helper module to make it easier to do event-based I/O
36     on stream-based filehandles (sockets, pipes, and other stream
37     things). Specifically, it doesn't work as expected on files, packet-based
38     sockets or similar things.
39 root 1.8
40 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
41     AnyEvent::Handle examples.
42    
43 root 1.198 In the following, where the documentation refers to "bytes", it means
44     characters. As sysread and syswrite are used for all I/O, their
45 root 1.8 treatment of characters applies to this module as well.
46 elmex 1.1
47 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
48     C<on_error> callback.
49    
50 root 1.8 All callbacks will be invoked with the handle object as their first
51     argument.
52 elmex 1.1
53 root 1.176 =cut
54    
55     package AnyEvent::Handle;
56    
57     use Scalar::Util ();
58     use List::Util ();
59     use Carp ();
60 root 1.243 use Errno qw(EAGAIN EWOULDBLOCK EINTR);
61 root 1.176
62     use AnyEvent (); BEGIN { AnyEvent::common_sense }
63     use AnyEvent::Util qw(WSAEWOULDBLOCK);
64    
65 root 1.177 our $VERSION = $AnyEvent::VERSION;
66    
67 root 1.185 sub _load_func($) {
68     my $func = $_[0];
69    
70     unless (defined &$func) {
71     my $pkg = $func;
72     do {
73     $pkg =~ s/::[^:]+$//
74     or return;
75     eval "require $pkg";
76     } until defined &$func;
77     }
78    
79     \&$func
80     }
81    
82 root 1.203 sub MAX_READ_SIZE() { 131072 }
83    
84 elmex 1.1 =head1 METHODS
85    
86     =over 4
87    
88 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
89 elmex 1.1
90 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
91 elmex 1.1
92     =over 4
93    
94 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
95 root 1.158
96 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
97 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
98 root 1.245 C<AnyEvent::fh_unblock>) by the constructor and needs to stay in
99 root 1.83 that mode.
100 root 1.8
101 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
102    
103     Try to connect to the specified host and service (port), using
104     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
105     default C<peername>.
106    
107     You have to specify either this parameter, or C<fh>, above.
108    
109 root 1.160 It is possible to push requests on the read and write queues, and modify
110     properties of the stream, even while AnyEvent::Handle is connecting.
111    
112 root 1.159 When this parameter is specified, then the C<on_prepare>,
113     C<on_connect_error> and C<on_connect> callbacks will be called under the
114     appropriate circumstances:
115    
116     =over 4
117    
118     =item on_prepare => $cb->($handle)
119    
120     This (rarely used) callback is called before a new connection is
121 root 1.210 attempted, but after the file handle has been created (you can access that
122     file handle via C<< $handle->{fh} >>). It could be used to prepare the
123     file handle with parameters required for the actual connect (as opposed to
124     settings that can be changed when the connection is already established).
125 root 1.159
126 root 1.161 The return value of this callback should be the connect timeout value in
127 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
128     default timeout is to be used).
129 root 1.161
130 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
131    
132     This callback is called when a connection has been successfully established.
133    
134 root 1.198 The peer's numeric host and port (the socket peername) are passed as
135 root 1.228 parameters, together with a retry callback. At the time it is called the
136     read and write queues, EOF status, TLS status and similar properties of
137     the handle will have been reset.
138    
139     If, for some reason, the handle is not acceptable, calling C<$retry> will
140     continue with the next connection target (in case of multi-homed hosts or
141     SRV records there can be multiple connection endpoints). The C<$retry>
142     callback can be invoked after the connect callback returns, i.e. one can
143     start a handshake and then decide to retry with the next host if the
144     handshake fails.
145 root 1.159
146 root 1.198 In most cases, you should ignore the C<$retry> parameter.
147 root 1.158
148 root 1.159 =item on_connect_error => $cb->($handle, $message)
149 root 1.10
150 root 1.186 This callback is called when the connection could not be
151 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
152     message describing it (usually the same as C<"$!">).
153 root 1.8
154 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
155     fatal error instead.
156 root 1.82
157 root 1.159 =back
158 root 1.80
159 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
160 root 1.10
161 root 1.52 This is the error callback, which is called when, well, some error
162     occured, such as not being able to resolve the hostname, failure to
163 root 1.198 connect, or a read error.
164 root 1.52
165     Some errors are fatal (which is indicated by C<$fatal> being true). On
166 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
167     destroy >>) after invoking the error callback (which means you are free to
168     examine the handle object). Examples of fatal errors are an EOF condition
169 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
170 root 1.198 cases where the other side can close the connection at will, it is
171 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
172 root 1.82
173 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
174 root 1.233 against, but in some cases (TLS errors), this does not work well.
175    
176     If you report the error to the user, it is recommended to always output
177     the C<$message> argument in human-readable error messages (you don't need
178     to report C<"$!"> if you report C<$message>).
179    
180     If you want to react programmatically to the error, then looking at C<$!>
181     and comparing it against some of the documented C<Errno> values is usually
182     better than looking at the C<$message>.
183 root 1.133
184 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
185 root 1.82 to simply ignore this parameter and instead abondon the handle object
186     when this callback is invoked. Examples of non-fatal errors are timeouts
187     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
188 root 1.8
189 root 1.198 On entry to the callback, the value of C<$!> contains the operating
190     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
191 root 1.133 C<EPROTO>).
192 root 1.8
193 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
194 root 1.198 you will not be notified of errors otherwise. The default just calls
195 root 1.52 C<croak>.
196 root 1.8
197 root 1.40 =item on_read => $cb->($handle)
198 root 1.8
199     This sets the default read callback, which is called when data arrives
200 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
201     callback will only be called when at least one octet of data is in the
202     read buffer).
203 root 1.8
204     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
205 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
206 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
207     the beginning from it.
208 root 1.8
209 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
210     modifies the read queue. Or do both. Or ...
211    
212 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
213 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
214     calling the C<on_eof> callback. If no progress can be made, then a fatal
215     error will be raised (with C<$!> set to C<EPIPE>).
216 elmex 1.1
217 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
218     doesn't mean you I<require> some data: if there is an EOF and there
219     are outstanding read requests then an error will be flagged. With an
220     C<on_read> callback, the C<on_eof> callback will be invoked.
221    
222 root 1.159 =item on_eof => $cb->($handle)
223    
224     Set the callback to be called when an end-of-file condition is detected,
225     i.e. in the case of a socket, when the other side has closed the
226     connection cleanly, and there are no outstanding read requests in the
227     queue (if there are read requests, then an EOF counts as an unexpected
228     connection close and will be flagged as an error).
229    
230     For sockets, this just means that the other side has stopped sending data,
231     you can still try to write data, and, in fact, one can return from the EOF
232     callback and continue writing data, as only the read part has been shut
233     down.
234    
235     If an EOF condition has been detected but no C<on_eof> callback has been
236     set, then a fatal error will be raised with C<$!> set to <0>.
237    
238 root 1.40 =item on_drain => $cb->($handle)
239 elmex 1.1
240 root 1.229 This sets the callback that is called once when the write buffer becomes
241     empty (and immediately when the handle object is created).
242 elmex 1.1
243 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
244 elmex 1.2
245 root 1.69 This callback is useful when you don't want to put all of your write data
246     into the queue at once, for example, when you want to write the contents
247     of some file to the socket you might not want to read the whole file into
248     memory and push it into the queue, but instead only read more data from
249     the file when the write queue becomes empty.
250    
251 root 1.43 =item timeout => $fractional_seconds
252    
253 root 1.176 =item rtimeout => $fractional_seconds
254    
255     =item wtimeout => $fractional_seconds
256    
257     If non-zero, then these enables an "inactivity" timeout: whenever this
258     many seconds pass without a successful read or write on the underlying
259     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
260     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
261     error will be raised).
262    
263 root 1.218 There are three variants of the timeouts that work independently of each
264     other, for both read and write (triggered when nothing was read I<OR>
265     written), just read (triggered when nothing was read), and just write:
266 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
267     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
268     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
269 root 1.43
270 root 1.218 Note that timeout processing is active even when you do not have any
271     outstanding read or write requests: If you plan to keep the connection
272     idle then you should disable the timeout temporarily or ignore the
273     timeout in the corresponding C<on_timeout> callback, in which case
274     AnyEvent::Handle will simply restart the timeout.
275 root 1.43
276 root 1.218 Zero (the default) disables the corresponding timeout.
277 root 1.43
278     =item on_timeout => $cb->($handle)
279    
280 root 1.218 =item on_rtimeout => $cb->($handle)
281    
282     =item on_wtimeout => $cb->($handle)
283    
284 root 1.43 Called whenever the inactivity timeout passes. If you return from this
285     callback, then the timeout will be reset as if some activity had happened,
286     so this condition is not fatal in any way.
287    
288 root 1.8 =item rbuf_max => <bytes>
289 elmex 1.2
290 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
291     when the read buffer ever (strictly) exceeds this size. This is useful to
292 root 1.88 avoid some forms of denial-of-service attacks.
293 elmex 1.2
294 root 1.8 For example, a server accepting connections from untrusted sources should
295     be configured to accept only so-and-so much data that it cannot act on
296     (for example, when expecting a line, an attacker could send an unlimited
297     amount of data without a callback ever being called as long as the line
298     isn't finished).
299 elmex 1.2
300 root 1.209 =item wbuf_max => <bytes>
301    
302     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
303     when the write buffer ever (strictly) exceeds this size. This is useful to
304     avoid some forms of denial-of-service attacks.
305    
306     Although the units of this parameter is bytes, this is the I<raw> number
307     of bytes not yet accepted by the kernel. This can make a difference when
308     you e.g. use TLS, as TLS typically makes your write data larger (but it
309     can also make it smaller due to compression).
310    
311     As an example of when this limit is useful, take a chat server that sends
312     chat messages to a client. If the client does not read those in a timely
313     manner then the send buffer in the server would grow unbounded.
314    
315 root 1.70 =item autocork => <boolean>
316    
317 root 1.198 When disabled (the default), C<push_write> will try to immediately
318     write the data to the handle if possible. This avoids having to register
319 root 1.88 a write watcher and wait for the next event loop iteration, but can
320     be inefficient if you write multiple small chunks (on the wire, this
321     disadvantage is usually avoided by your kernel's nagle algorithm, see
322     C<no_delay>, but this option can save costly syscalls).
323 root 1.70
324 root 1.198 When enabled, writes will always be queued till the next event loop
325 root 1.70 iteration. This is efficient when you do many small writes per iteration,
326 root 1.88 but less efficient when you do a single write only per iteration (or when
327     the write buffer often is full). It also increases write latency.
328 root 1.70
329     =item no_delay => <boolean>
330    
331     When doing small writes on sockets, your operating system kernel might
332     wait a bit for more data before actually sending it out. This is called
333     the Nagle algorithm, and usually it is beneficial.
334    
335 root 1.88 In some situations you want as low a delay as possible, which can be
336     accomplishd by setting this option to a true value.
337 root 1.70
338 root 1.198 The default is your operating system's default behaviour (most likely
339     enabled). This option explicitly enables or disables it, if possible.
340 root 1.70
341 root 1.182 =item keepalive => <boolean>
342    
343     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
344     normally, TCP connections have no time-out once established, so TCP
345 root 1.186 connections, once established, can stay alive forever even when the other
346 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
347 root 1.198 TCP connections when the other side becomes unreachable. While the default
348 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
349     and, if the other side doesn't reply, take down the TCP connection some 10
350     to 15 minutes later.
351    
352     It is harmless to specify this option for file handles that do not support
353     keepalives, and enabling it on connections that are potentially long-lived
354     is usually a good idea.
355    
356     =item oobinline => <boolean>
357    
358     BSD majorly fucked up the implementation of TCP urgent data. The result
359     is that almost no OS implements TCP according to the specs, and every OS
360     implements it slightly differently.
361    
362 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
363     is enabled) gives you the most portable way of getting urgent data, by
364     putting it into the stream.
365    
366     Since BSD emulation of OOB data on top of TCP's urgent data can have
367     security implications, AnyEvent::Handle sets this flag automatically
368 root 1.184 unless explicitly specified. Note that setting this flag after
369     establishing a connection I<may> be a bit too late (data loss could
370     already have occured on BSD systems), but at least it will protect you
371     from most attacks.
372 root 1.182
373 root 1.8 =item read_size => <bytes>
374 elmex 1.2
375 root 1.221 The initial read block size, the number of bytes this module will try
376     to read during each loop iteration. Each handle object will consume
377     at least this amount of memory for the read buffer as well, so when
378     handling many connections watch out for memory requirements). See also
379     C<max_read_size>. Default: C<2048>.
380 root 1.203
381     =item max_read_size => <bytes>
382    
383     The maximum read buffer size used by the dynamic adjustment
384     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
385     one go it will double C<read_size> up to the maximum given by this
386     option. Default: C<131072> or C<read_size>, whichever is higher.
387 root 1.8
388     =item low_water_mark => <bytes>
389    
390 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
391     buffer: If the buffer reaches this size or gets even samller it is
392 root 1.8 considered empty.
393 elmex 1.2
394 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
395     the write buffer before it is fully drained, but this is a rare case, as
396     the operating system kernel usually buffers data as well, so the default
397     is good in almost all cases.
398    
399 root 1.62 =item linger => <seconds>
400    
401 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
402 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
403     write data and will install a watcher that will write this data to the
404     socket. No errors will be reported (this mostly matches how the operating
405     system treats outstanding data at socket close time).
406 root 1.62
407 root 1.88 This will not work for partial TLS data that could not be encoded
408 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
409     help.
410 root 1.62
411 root 1.133 =item peername => $string
412    
413 root 1.134 A string used to identify the remote site - usually the DNS hostname
414     (I<not> IDN!) used to create the connection, rarely the IP address.
415 root 1.131
416 root 1.133 Apart from being useful in error messages, this string is also used in TLS
417 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
418 root 1.198 verification will be skipped when C<peername> is not specified or is
419 root 1.144 C<undef>.
420 root 1.131
421 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
422    
423 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
424 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
425 root 1.88 established and will transparently encrypt/decrypt data afterwards.
426 root 1.19
427 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
428     appropriate error message.
429    
430 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
431 root 1.88 automatically when you try to create a TLS handle): this module doesn't
432     have a dependency on that module, so if your module requires it, you have
433 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
434     old, you get an C<EPROTO> error.
435 root 1.26
436 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
437     C<accept>, and for the TLS client side of a connection, use C<connect>
438     mode.
439 root 1.19
440     You can also provide your own TLS connection object, but you have
441     to make sure that you call either C<Net::SSLeay::set_connect_state>
442     or C<Net::SSLeay::set_accept_state> on it before you pass it to
443 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
444     object.
445    
446     At some future point, AnyEvent::Handle might switch to another TLS
447     implementation, then the option to use your own session object will go
448     away.
449 root 1.19
450 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
451     passing in the wrong integer will lead to certain crash. This most often
452     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
453     segmentation fault.
454    
455 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
456 root 1.26
457 root 1.131 =item tls_ctx => $anyevent_tls
458 root 1.19
459 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
460 root 1.207 (unless a connection object was specified directly). If this
461     parameter is missing (or C<undef>), then AnyEvent::Handle will use
462     C<AnyEvent::Handle::TLS_CTX>.
463 root 1.19
464 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
465     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
466     new TLS context object.
467    
468 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
469 root 1.142
470     This callback will be invoked when the TLS/SSL handshake has finished. If
471     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
472     (C<on_stoptls> will not be called in this case).
473    
474     The session in C<< $handle->{tls} >> can still be examined in this
475     callback, even when the handshake was not successful.
476    
477 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
478     callback is in effect, instead, the error message will be passed to C<on_starttls>.
479    
480     Without this callback, handshake failures lead to C<on_error> being
481 root 1.198 called as usual.
482 root 1.143
483 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
484 root 1.143 need to do that, start an zero-second timer instead whose callback can
485     then call C<< ->starttls >> again.
486    
487 root 1.142 =item on_stoptls => $cb->($handle)
488    
489     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
490     set, then it will be invoked after freeing the TLS session. If it is not,
491     then a TLS shutdown condition will be treated like a normal EOF condition
492     on the handle.
493    
494     The session in C<< $handle->{tls} >> can still be examined in this
495     callback.
496    
497     This callback will only be called on TLS shutdowns, not when the
498     underlying handle signals EOF.
499    
500 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
501 root 1.40
502     This is the json coder object used by the C<json> read and write types.
503    
504 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
505 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
506     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
507     guaranteed not to contain any newline character.
508    
509     For security reasons, this encoder will likely I<not> handle numbers and
510     strings, only arrays and objects/hashes. The reason is that originally
511     JSON was self-delimited, but Dougles Crockford thought it was a splendid
512     idea to redefine JSON incompatibly, so this is no longer true.
513    
514     For protocols that used back-to-back JSON texts, this might lead to
515     run-ins, where two or more JSON texts will be interpreted as one JSON
516     text.
517    
518     For this reason, if the default encoder uses L<JSON::XS>, it will default
519     to not allowing anything but arrays and objects/hashes, at least for the
520     forseeable future (it will change at some point). This might or might not
521     be true for the L<JSON> module, so this might cause a security issue.
522    
523     If you depend on either behaviour, you should create your own json object
524     and pass it in explicitly.
525 root 1.40
526 root 1.238 =item cbor => L<CBOR::XS> object
527    
528     This is the cbor coder object used by the C<cbor> read and write types.
529    
530     If you don't supply it, then AnyEvent::Handle will create and use a
531     suitable one (on demand), which will write CBOR without using extensions,
532 root 1.241 if possible.
533 root 1.238
534     Note that you are responsible to depend on the L<CBOR::XS> module if you
535     want to use this functionality, as AnyEvent does not have a dependency on
536     it itself.
537 root 1.40
538 elmex 1.1 =back
539    
540     =cut
541    
542     sub new {
543 root 1.8 my $class = shift;
544     my $self = bless { @_ }, $class;
545    
546 root 1.159 if ($self->{fh}) {
547     $self->_start;
548     return unless $self->{fh}; # could be gone by now
549    
550     } elsif ($self->{connect}) {
551     require AnyEvent::Socket;
552    
553     $self->{peername} = $self->{connect}[0]
554     unless exists $self->{peername};
555    
556     $self->{_skip_drain_rbuf} = 1;
557    
558     {
559     Scalar::Util::weaken (my $self = $self);
560    
561     $self->{_connect} =
562     AnyEvent::Socket::tcp_connect (
563     $self->{connect}[0],
564     $self->{connect}[1],
565     sub {
566     my ($fh, $host, $port, $retry) = @_;
567    
568 root 1.206 delete $self->{_connect}; # no longer needed
569 root 1.205
570 root 1.159 if ($fh) {
571     $self->{fh} = $fh;
572    
573     delete $self->{_skip_drain_rbuf};
574     $self->_start;
575    
576     $self->{on_connect}
577     and $self->{on_connect}($self, $host, $port, sub {
578 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
579 root 1.159 $self->{_skip_drain_rbuf} = 1;
580     &$retry;
581     });
582    
583     } else {
584     if ($self->{on_connect_error}) {
585     $self->{on_connect_error}($self, "$!");
586 root 1.217 $self->destroy if $self;
587 root 1.159 } else {
588 root 1.161 $self->_error ($!, 1);
589 root 1.159 }
590     }
591     },
592     sub {
593     local $self->{fh} = $_[0];
594    
595 root 1.161 $self->{on_prepare}
596 root 1.210 ? $self->{on_prepare}->($self)
597 root 1.161 : ()
598 root 1.159 }
599     );
600     }
601    
602     } else {
603     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
604     }
605    
606     $self
607     }
608    
609     sub _start {
610     my ($self) = @_;
611 root 1.8
612 root 1.194 # too many clueless people try to use udp and similar sockets
613     # with AnyEvent::Handle, do them a favour.
614 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
615     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
616 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
617 root 1.194
618 root 1.245 AnyEvent::fh_unblock $self->{fh};
619 elmex 1.1
620 root 1.176 $self->{_activity} =
621     $self->{_ractivity} =
622     $self->{_wactivity} = AE::now;
623    
624 root 1.203 $self->{read_size} ||= 2048;
625     $self->{max_read_size} = $self->{read_size}
626     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
627    
628 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
629     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
630     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
631    
632 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
633     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
634    
635     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
636 root 1.131
637 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
638 root 1.94 if $self->{tls};
639 root 1.19
640 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
641 root 1.10
642 root 1.66 $self->start_read
643 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
644 root 1.160
645     $self->_drain_wbuf;
646 root 1.8 }
647 elmex 1.2
648 root 1.52 sub _error {
649 root 1.133 my ($self, $errno, $fatal, $message) = @_;
650 root 1.8
651 root 1.52 $! = $errno;
652 root 1.133 $message ||= "$!";
653 root 1.37
654 root 1.52 if ($self->{on_error}) {
655 root 1.133 $self->{on_error}($self, $fatal, $message);
656 root 1.151 $self->destroy if $fatal;
657 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
658 root 1.149 $self->destroy;
659 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
660 root 1.52 }
661 elmex 1.1 }
662    
663 root 1.8 =item $fh = $handle->fh
664 elmex 1.1
665 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
666 elmex 1.1
667     =cut
668    
669 root 1.38 sub fh { $_[0]{fh} }
670 elmex 1.1
671 root 1.8 =item $handle->on_error ($cb)
672 elmex 1.1
673 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
674 elmex 1.1
675 root 1.8 =cut
676    
677     sub on_error {
678     $_[0]{on_error} = $_[1];
679     }
680    
681     =item $handle->on_eof ($cb)
682    
683     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
684 elmex 1.1
685     =cut
686    
687 root 1.8 sub on_eof {
688     $_[0]{on_eof} = $_[1];
689     }
690    
691 root 1.43 =item $handle->on_timeout ($cb)
692    
693 root 1.176 =item $handle->on_rtimeout ($cb)
694    
695     =item $handle->on_wtimeout ($cb)
696    
697     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
698     callback, or disables the callback (but not the timeout) if C<$cb> =
699     C<undef>. See the C<timeout> constructor argument and method.
700 root 1.43
701     =cut
702    
703 root 1.176 # see below
704 root 1.43
705 root 1.70 =item $handle->autocork ($boolean)
706    
707     Enables or disables the current autocork behaviour (see C<autocork>
708 root 1.105 constructor argument). Changes will only take effect on the next write.
709 root 1.70
710     =cut
711    
712 root 1.105 sub autocork {
713     $_[0]{autocork} = $_[1];
714     }
715    
716 root 1.70 =item $handle->no_delay ($boolean)
717    
718     Enables or disables the C<no_delay> setting (see constructor argument of
719     the same name for details).
720    
721     =cut
722    
723     sub no_delay {
724     $_[0]{no_delay} = $_[1];
725    
726 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
727     if $_[0]{fh};
728 root 1.182 }
729    
730     =item $handle->keepalive ($boolean)
731    
732     Enables or disables the C<keepalive> setting (see constructor argument of
733     the same name for details).
734    
735     =cut
736    
737     sub keepalive {
738     $_[0]{keepalive} = $_[1];
739    
740     eval {
741     local $SIG{__DIE__};
742     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
743     if $_[0]{fh};
744     };
745     }
746    
747     =item $handle->oobinline ($boolean)
748    
749     Enables or disables the C<oobinline> setting (see constructor argument of
750     the same name for details).
751    
752     =cut
753    
754     sub oobinline {
755     $_[0]{oobinline} = $_[1];
756    
757     eval {
758     local $SIG{__DIE__};
759     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
760     if $_[0]{fh};
761     };
762     }
763    
764     =item $handle->keepalive ($boolean)
765    
766     Enables or disables the C<keepalive> setting (see constructor argument of
767     the same name for details).
768    
769     =cut
770    
771     sub keepalive {
772     $_[0]{keepalive} = $_[1];
773    
774     eval {
775     local $SIG{__DIE__};
776     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
777 root 1.159 if $_[0]{fh};
778 root 1.70 };
779     }
780    
781 root 1.142 =item $handle->on_starttls ($cb)
782    
783     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
784    
785     =cut
786    
787     sub on_starttls {
788     $_[0]{on_starttls} = $_[1];
789     }
790    
791     =item $handle->on_stoptls ($cb)
792    
793     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
794    
795     =cut
796    
797 root 1.189 sub on_stoptls {
798 root 1.142 $_[0]{on_stoptls} = $_[1];
799     }
800    
801 root 1.168 =item $handle->rbuf_max ($max_octets)
802    
803     Configures the C<rbuf_max> setting (C<undef> disables it).
804    
805 root 1.209 =item $handle->wbuf_max ($max_octets)
806    
807     Configures the C<wbuf_max> setting (C<undef> disables it).
808    
809 root 1.168 =cut
810    
811     sub rbuf_max {
812     $_[0]{rbuf_max} = $_[1];
813     }
814    
815 root 1.215 sub wbuf_max {
816 root 1.209 $_[0]{wbuf_max} = $_[1];
817     }
818    
819 root 1.43 #############################################################################
820    
821     =item $handle->timeout ($seconds)
822    
823 root 1.176 =item $handle->rtimeout ($seconds)
824    
825     =item $handle->wtimeout ($seconds)
826    
827 root 1.43 Configures (or disables) the inactivity timeout.
828    
829 root 1.218 The timeout will be checked instantly, so this method might destroy the
830     handle before it returns.
831    
832 root 1.176 =item $handle->timeout_reset
833    
834     =item $handle->rtimeout_reset
835    
836     =item $handle->wtimeout_reset
837    
838     Reset the activity timeout, as if data was received or sent.
839    
840     These methods are cheap to call.
841    
842 root 1.43 =cut
843    
844 root 1.176 for my $dir ("", "r", "w") {
845     my $timeout = "${dir}timeout";
846     my $tw = "_${dir}tw";
847     my $on_timeout = "on_${dir}timeout";
848     my $activity = "_${dir}activity";
849     my $cb;
850    
851     *$on_timeout = sub {
852     $_[0]{$on_timeout} = $_[1];
853     };
854    
855     *$timeout = sub {
856     my ($self, $new_value) = @_;
857 root 1.43
858 root 1.201 $new_value >= 0
859     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
860    
861 root 1.176 $self->{$timeout} = $new_value;
862     delete $self->{$tw}; &$cb;
863     };
864 root 1.43
865 root 1.176 *{"${dir}timeout_reset"} = sub {
866     $_[0]{$activity} = AE::now;
867     };
868 root 1.43
869 root 1.176 # main workhorse:
870     # reset the timeout watcher, as neccessary
871     # also check for time-outs
872     $cb = sub {
873     my ($self) = @_;
874    
875     if ($self->{$timeout} && $self->{fh}) {
876     my $NOW = AE::now;
877    
878     # when would the timeout trigger?
879     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
880    
881     # now or in the past already?
882     if ($after <= 0) {
883     $self->{$activity} = $NOW;
884 root 1.43
885 root 1.176 if ($self->{$on_timeout}) {
886     $self->{$on_timeout}($self);
887     } else {
888     $self->_error (Errno::ETIMEDOUT);
889     }
890 root 1.43
891 root 1.176 # callback could have changed timeout value, optimise
892     return unless $self->{$timeout};
893 root 1.43
894 root 1.176 # calculate new after
895     $after = $self->{$timeout};
896 root 1.43 }
897    
898 root 1.176 Scalar::Util::weaken $self;
899     return unless $self; # ->error could have destroyed $self
900 root 1.43
901 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
902     delete $self->{$tw};
903     $cb->($self);
904     };
905     } else {
906     delete $self->{$tw};
907 root 1.43 }
908     }
909     }
910    
911 root 1.9 #############################################################################
912    
913     =back
914    
915     =head2 WRITE QUEUE
916    
917     AnyEvent::Handle manages two queues per handle, one for writing and one
918     for reading.
919    
920     The write queue is very simple: you can add data to its end, and
921     AnyEvent::Handle will automatically try to get rid of it for you.
922    
923 elmex 1.20 When data could be written and the write buffer is shorter then the low
924 root 1.229 water mark, the C<on_drain> callback will be invoked once.
925 root 1.9
926     =over 4
927    
928 root 1.8 =item $handle->on_drain ($cb)
929    
930     Sets the C<on_drain> callback or clears it (see the description of
931     C<on_drain> in the constructor).
932    
933 root 1.193 This method may invoke callbacks (and therefore the handle might be
934     destroyed after it returns).
935    
936 root 1.8 =cut
937    
938     sub on_drain {
939 elmex 1.1 my ($self, $cb) = @_;
940    
941 root 1.8 $self->{on_drain} = $cb;
942    
943     $cb->($self)
944 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
945 root 1.8 }
946    
947     =item $handle->push_write ($data)
948    
949 root 1.209 Queues the given scalar to be written. You can push as much data as
950     you want (only limited by the available memory and C<wbuf_max>), as
951     C<AnyEvent::Handle> buffers it independently of the kernel.
952 root 1.8
953 root 1.193 This method may invoke callbacks (and therefore the handle might be
954     destroyed after it returns).
955    
956 root 1.8 =cut
957    
958 root 1.17 sub _drain_wbuf {
959     my ($self) = @_;
960 root 1.8
961 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
962 root 1.35
963 root 1.8 Scalar::Util::weaken $self;
964 root 1.35
965 root 1.8 my $cb = sub {
966     my $len = syswrite $self->{fh}, $self->{wbuf};
967    
968 root 1.146 if (defined $len) {
969 root 1.8 substr $self->{wbuf}, 0, $len, "";
970    
971 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
972 root 1.43
973 root 1.8 $self->{on_drain}($self)
974 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
975 root 1.8 && $self->{on_drain};
976    
977 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
978 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
979 root 1.52 $self->_error ($!, 1);
980 elmex 1.1 }
981 root 1.8 };
982    
983 root 1.35 # try to write data immediately
984 root 1.70 $cb->() unless $self->{autocork};
985 root 1.8
986 root 1.35 # if still data left in wbuf, we need to poll
987 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
988 root 1.35 if length $self->{wbuf};
989 root 1.209
990     if (
991     defined $self->{wbuf_max}
992     && $self->{wbuf_max} < length $self->{wbuf}
993     ) {
994     $self->_error (Errno::ENOSPC, 1), return;
995     }
996 root 1.8 };
997     }
998    
999 root 1.30 our %WH;
1000    
1001 root 1.185 # deprecated
1002 root 1.30 sub register_write_type($$) {
1003     $WH{$_[0]} = $_[1];
1004     }
1005    
1006 root 1.17 sub push_write {
1007     my $self = shift;
1008    
1009 root 1.29 if (@_ > 1) {
1010     my $type = shift;
1011    
1012 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
1013     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
1014 root 1.29 ->($self, @_);
1015     }
1016    
1017 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1018     # and diagnose the problem earlier and better.
1019    
1020 root 1.93 if ($self->{tls}) {
1021 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1022 root 1.160 &_dotls ($self) if $self->{fh};
1023 root 1.17 } else {
1024 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1025 root 1.159 $self->_drain_wbuf if $self->{fh};
1026 root 1.17 }
1027     }
1028    
1029 root 1.29 =item $handle->push_write (type => @args)
1030    
1031 root 1.185 Instead of formatting your data yourself, you can also let this module
1032     do the job by specifying a type and type-specific arguments. You
1033     can also specify the (fully qualified) name of a package, in which
1034     case AnyEvent tries to load the package and then expects to find the
1035 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1036 root 1.29
1037 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1038     drop by and tell us):
1039 root 1.29
1040     =over 4
1041    
1042     =item netstring => $string
1043    
1044     Formats the given value as netstring
1045     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1046    
1047     =cut
1048    
1049     register_write_type netstring => sub {
1050     my ($self, $string) = @_;
1051    
1052 root 1.96 (length $string) . ":$string,"
1053 root 1.29 };
1054    
1055 root 1.61 =item packstring => $format, $data
1056    
1057     An octet string prefixed with an encoded length. The encoding C<$format>
1058     uses the same format as a Perl C<pack> format, but must specify a single
1059     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1060     optional C<!>, C<< < >> or C<< > >> modifier).
1061    
1062     =cut
1063    
1064     register_write_type packstring => sub {
1065     my ($self, $format, $string) = @_;
1066    
1067 root 1.65 pack "$format/a*", $string
1068 root 1.61 };
1069    
1070 root 1.39 =item json => $array_or_hashref
1071    
1072 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1073     provide your own JSON object, this means it will be encoded to JSON text
1074     in UTF-8.
1075    
1076 root 1.241 The default encoder might or might not handle every type of JSON value -
1077     it might be limited to arrays and objects for security reasons. See the
1078     C<json> constructor attribute for more details.
1079    
1080     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1081     and hashes, you can write JSON at one end of a handle and read them at the
1082     other end without using any additional framing.
1083    
1084     The JSON text generated by the default encoder is guaranteed not to
1085     contain any newlines: While this module doesn't need delimiters after or
1086     between JSON texts to be able to read them, many other languages depend on
1087     them.
1088 root 1.41
1089 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1090     to send JSON arrays (or objects, although arrays are usually the better
1091     choice as they mimic how function argument passing works) and a newline
1092     after each JSON text:
1093 root 1.41
1094     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1095     $handle->push_write ("\012");
1096    
1097     An AnyEvent::Handle receiver would simply use the C<json> read type and
1098     rely on the fact that the newline will be skipped as leading whitespace:
1099    
1100     $handle->push_read (json => sub { my $array = $_[1]; ... });
1101    
1102     Other languages could read single lines terminated by a newline and pass
1103     this line into their JSON decoder of choice.
1104    
1105 root 1.238 =item cbor => $perl_scalar
1106    
1107     Encodes the given scalar into a CBOR value. Unless you provide your own
1108     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1109     using any extensions, if possible.
1110    
1111     CBOR values are self-delimiting, so you can write CBOR at one end of
1112     a handle and read them at the other end without using any additional
1113     framing.
1114    
1115     A simple nd very very fast RPC protocol that interoperates with
1116     other languages is to send CBOR and receive CBOR values (arrays are
1117     recommended):
1118    
1119     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1120    
1121     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1122    
1123     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1124    
1125 root 1.40 =cut
1126    
1127 root 1.179 sub json_coder() {
1128     eval { require JSON::XS; JSON::XS->new->utf8 }
1129 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1130 root 1.179 }
1131    
1132 root 1.40 register_write_type json => sub {
1133     my ($self, $ref) = @_;
1134    
1135 root 1.238 ($self->{json} ||= json_coder)
1136     ->encode ($ref)
1137     };
1138    
1139     sub cbor_coder() {
1140     require CBOR::XS;
1141     CBOR::XS->new
1142     }
1143    
1144     register_write_type cbor => sub {
1145     my ($self, $scalar) = @_;
1146 root 1.40
1147 root 1.238 ($self->{cbor} ||= cbor_coder)
1148     ->encode ($scalar)
1149 root 1.40 };
1150    
1151 root 1.63 =item storable => $reference
1152    
1153     Freezes the given reference using L<Storable> and writes it to the
1154     handle. Uses the C<nfreeze> format.
1155    
1156     =cut
1157    
1158     register_write_type storable => sub {
1159     my ($self, $ref) = @_;
1160    
1161 root 1.224 require Storable unless $Storable::VERSION;
1162 root 1.63
1163 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1164 root 1.63 };
1165    
1166 root 1.53 =back
1167    
1168 root 1.133 =item $handle->push_shutdown
1169    
1170     Sometimes you know you want to close the socket after writing your data
1171     before it was actually written. One way to do that is to replace your
1172 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1173     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1174     replaces the C<on_drain> callback with:
1175 root 1.133
1176 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1177 root 1.133
1178     This simply shuts down the write side and signals an EOF condition to the
1179     the peer.
1180    
1181     You can rely on the normal read queue and C<on_eof> handling
1182     afterwards. This is the cleanest way to close a connection.
1183    
1184 root 1.193 This method may invoke callbacks (and therefore the handle might be
1185     destroyed after it returns).
1186    
1187 root 1.133 =cut
1188    
1189     sub push_shutdown {
1190 root 1.142 my ($self) = @_;
1191    
1192     delete $self->{low_water_mark};
1193     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1194 root 1.133 }
1195    
1196 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1197    
1198     Instead of one of the predefined types, you can also specify the name of
1199     a package. AnyEvent will try to load the package and then expects to find
1200     a function named C<anyevent_write_type> inside. If it isn't found, it
1201     progressively tries to load the parent package until it either finds the
1202     function (good) or runs out of packages (bad).
1203    
1204     Whenever the given C<type> is used, C<push_write> will the function with
1205     the handle object and the remaining arguments.
1206    
1207     The function is supposed to return a single octet string that will be
1208 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1209 root 1.185 "arguments to on-the-wire-format" converter.
1210 root 1.30
1211 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1212     arguments using the first one.
1213 root 1.29
1214 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1215 root 1.29
1216 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1217     # the "My" modules to be auto-loaded, or just about anywhere when the
1218     # My::Type::anyevent_write_type is defined before invoking it.
1219    
1220     package My::Type;
1221    
1222     sub anyevent_write_type {
1223     my ($handle, $delim, @args) = @_;
1224    
1225     join $delim, @args
1226     }
1227 root 1.29
1228 root 1.30 =cut
1229 root 1.29
1230 root 1.8 #############################################################################
1231    
1232 root 1.9 =back
1233    
1234     =head2 READ QUEUE
1235    
1236     AnyEvent::Handle manages two queues per handle, one for writing and one
1237     for reading.
1238    
1239     The read queue is more complex than the write queue. It can be used in two
1240     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1241     a queue.
1242    
1243     In the simple case, you just install an C<on_read> callback and whenever
1244     new data arrives, it will be called. You can then remove some data (if
1245 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1246 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1247 root 1.197 partial message has been received so far), or change the read queue with
1248     e.g. C<push_read>.
1249 root 1.9
1250     In the more complex case, you want to queue multiple callbacks. In this
1251     case, AnyEvent::Handle will call the first queued callback each time new
1252 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1253 root 1.61 done its job (see C<push_read>, below).
1254 root 1.9
1255     This way you can, for example, push three line-reads, followed by reading
1256     a chunk of data, and AnyEvent::Handle will execute them in order.
1257    
1258     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1259     the specified number of bytes which give an XML datagram.
1260    
1261     # in the default state, expect some header bytes
1262     $handle->on_read (sub {
1263     # some data is here, now queue the length-header-read (4 octets)
1264 root 1.52 shift->unshift_read (chunk => 4, sub {
1265 root 1.9 # header arrived, decode
1266     my $len = unpack "N", $_[1];
1267    
1268     # now read the payload
1269 root 1.52 shift->unshift_read (chunk => $len, sub {
1270 root 1.9 my $xml = $_[1];
1271     # handle xml
1272     });
1273     });
1274     });
1275    
1276 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1277     and another line or "ERROR" for the first request that is sent, and 64
1278     bytes for the second request. Due to the availability of a queue, we can
1279     just pipeline sending both requests and manipulate the queue as necessary
1280     in the callbacks.
1281    
1282     When the first callback is called and sees an "OK" response, it will
1283     C<unshift> another line-read. This line-read will be queued I<before> the
1284     64-byte chunk callback.
1285 root 1.9
1286 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1287 root 1.9 $handle->push_write ("request 1\015\012");
1288    
1289     # we expect "ERROR" or "OK" as response, so push a line read
1290 root 1.52 $handle->push_read (line => sub {
1291 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1292     # so it will be read before the second request reads its 64 bytes
1293     # which are already in the queue when this callback is called
1294     # we don't do this in case we got an error
1295     if ($_[1] eq "OK") {
1296 root 1.52 $_[0]->unshift_read (line => sub {
1297 root 1.9 my $response = $_[1];
1298     ...
1299     });
1300     }
1301     });
1302    
1303 root 1.69 # request two, simply returns 64 octets
1304 root 1.9 $handle->push_write ("request 2\015\012");
1305    
1306     # simply read 64 bytes, always
1307 root 1.52 $handle->push_read (chunk => 64, sub {
1308 root 1.9 my $response = $_[1];
1309     ...
1310     });
1311    
1312     =over 4
1313    
1314 root 1.10 =cut
1315    
1316 root 1.8 sub _drain_rbuf {
1317     my ($self) = @_;
1318 elmex 1.1
1319 root 1.159 # avoid recursion
1320 root 1.167 return if $self->{_skip_drain_rbuf};
1321 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1322 root 1.59
1323     while () {
1324 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1325     # we are draining the buffer, and this can only happen with TLS.
1326 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1327     if exists $self->{_tls_rbuf};
1328 root 1.115
1329 root 1.59 my $len = length $self->{rbuf};
1330 elmex 1.1
1331 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1332 root 1.29 unless ($cb->($self)) {
1333 root 1.163 # no progress can be made
1334     # (not enough data and no data forthcoming)
1335     $self->_error (Errno::EPIPE, 1), return
1336     if $self->{_eof};
1337 root 1.10
1338 root 1.38 unshift @{ $self->{_queue} }, $cb;
1339 root 1.55 last;
1340 root 1.8 }
1341     } elsif ($self->{on_read}) {
1342 root 1.61 last unless $len;
1343    
1344 root 1.8 $self->{on_read}($self);
1345    
1346     if (
1347 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1348     && !@{ $self->{_queue} } # and the queue is still empty
1349     && $self->{on_read} # but we still have on_read
1350 root 1.8 ) {
1351 root 1.55 # no further data will arrive
1352     # so no progress can be made
1353 root 1.150 $self->_error (Errno::EPIPE, 1), return
1354 root 1.55 if $self->{_eof};
1355    
1356     last; # more data might arrive
1357 elmex 1.1 }
1358 root 1.8 } else {
1359     # read side becomes idle
1360 root 1.93 delete $self->{_rw} unless $self->{tls};
1361 root 1.55 last;
1362 root 1.8 }
1363     }
1364    
1365 root 1.80 if ($self->{_eof}) {
1366 root 1.163 $self->{on_eof}
1367     ? $self->{on_eof}($self)
1368     : $self->_error (0, 1, "Unexpected end-of-file");
1369    
1370     return;
1371 root 1.80 }
1372 root 1.55
1373 root 1.169 if (
1374     defined $self->{rbuf_max}
1375     && $self->{rbuf_max} < length $self->{rbuf}
1376     ) {
1377     $self->_error (Errno::ENOSPC, 1), return;
1378     }
1379    
1380 root 1.55 # may need to restart read watcher
1381     unless ($self->{_rw}) {
1382     $self->start_read
1383     if $self->{on_read} || @{ $self->{_queue} };
1384     }
1385 elmex 1.1 }
1386    
1387 root 1.8 =item $handle->on_read ($cb)
1388 elmex 1.1
1389 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1390     the new callback is C<undef>). See the description of C<on_read> in the
1391     constructor.
1392 elmex 1.1
1393 root 1.193 This method may invoke callbacks (and therefore the handle might be
1394     destroyed after it returns).
1395    
1396 root 1.8 =cut
1397    
1398     sub on_read {
1399     my ($self, $cb) = @_;
1400 elmex 1.1
1401 root 1.8 $self->{on_read} = $cb;
1402 root 1.159 $self->_drain_rbuf if $cb;
1403 elmex 1.1 }
1404    
1405 root 1.8 =item $handle->rbuf
1406    
1407 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1408     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1409     much faster, and no less clean).
1410    
1411     The only operation allowed on the read buffer (apart from looking at it)
1412     is removing data from its beginning. Otherwise modifying or appending to
1413     it is not allowed and will lead to hard-to-track-down bugs.
1414    
1415     NOTE: The read buffer should only be used or modified in the C<on_read>
1416     callback or when C<push_read> or C<unshift_read> are used with a single
1417     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1418     will manage the read buffer on their own.
1419 elmex 1.1
1420     =cut
1421    
1422 elmex 1.2 sub rbuf : lvalue {
1423 root 1.8 $_[0]{rbuf}
1424 elmex 1.2 }
1425 elmex 1.1
1426 root 1.8 =item $handle->push_read ($cb)
1427    
1428     =item $handle->unshift_read ($cb)
1429    
1430     Append the given callback to the end of the queue (C<push_read>) or
1431     prepend it (C<unshift_read>).
1432    
1433     The callback is called each time some additional read data arrives.
1434 elmex 1.1
1435 elmex 1.20 It must check whether enough data is in the read buffer already.
1436 elmex 1.1
1437 root 1.8 If not enough data is available, it must return the empty list or a false
1438     value, in which case it will be called repeatedly until enough data is
1439     available (or an error condition is detected).
1440    
1441     If enough data was available, then the callback must remove all data it is
1442     interested in (which can be none at all) and return a true value. After returning
1443     true, it will be removed from the queue.
1444 elmex 1.1
1445 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1446     destroyed after it returns).
1447    
1448 elmex 1.1 =cut
1449    
1450 root 1.30 our %RH;
1451    
1452     sub register_read_type($$) {
1453     $RH{$_[0]} = $_[1];
1454     }
1455    
1456 root 1.8 sub push_read {
1457 root 1.28 my $self = shift;
1458     my $cb = pop;
1459    
1460     if (@_) {
1461     my $type = shift;
1462    
1463 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1464     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1465 root 1.28 ->($self, $cb, @_);
1466     }
1467 elmex 1.1
1468 root 1.38 push @{ $self->{_queue} }, $cb;
1469 root 1.159 $self->_drain_rbuf;
1470 elmex 1.1 }
1471    
1472 root 1.8 sub unshift_read {
1473 root 1.28 my $self = shift;
1474     my $cb = pop;
1475    
1476     if (@_) {
1477     my $type = shift;
1478    
1479 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1480     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1481 root 1.28 ->($self, $cb, @_);
1482     }
1483    
1484 root 1.38 unshift @{ $self->{_queue} }, $cb;
1485 root 1.159 $self->_drain_rbuf;
1486 root 1.8 }
1487 elmex 1.1
1488 root 1.28 =item $handle->push_read (type => @args, $cb)
1489 elmex 1.1
1490 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1491 elmex 1.1
1492 root 1.28 Instead of providing a callback that parses the data itself you can chose
1493     between a number of predefined parsing formats, for chunks of data, lines
1494 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1495     which case AnyEvent tries to load the package and then expects to find the
1496     C<anyevent_read_type> function inside (see "custom read types", below).
1497 elmex 1.1
1498 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1499     drop by and tell us):
1500 root 1.28
1501     =over 4
1502    
1503 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1504 root 1.28
1505     Invoke the callback only once C<$octets> bytes have been read. Pass the
1506     data read to the callback. The callback will never be called with less
1507     data.
1508    
1509     Example: read 2 bytes.
1510    
1511     $handle->push_read (chunk => 2, sub {
1512 root 1.225 say "yay " . unpack "H*", $_[1];
1513 root 1.28 });
1514 elmex 1.1
1515     =cut
1516    
1517 root 1.28 register_read_type chunk => sub {
1518     my ($self, $cb, $len) = @_;
1519 elmex 1.1
1520 root 1.8 sub {
1521     $len <= length $_[0]{rbuf} or return;
1522 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1523 root 1.8 1
1524     }
1525 root 1.28 };
1526 root 1.8
1527 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1528 elmex 1.1
1529 root 1.8 The callback will be called only once a full line (including the end of
1530     line marker, C<$eol>) has been read. This line (excluding the end of line
1531     marker) will be passed to the callback as second argument (C<$line>), and
1532     the end of line marker as the third argument (C<$eol>).
1533 elmex 1.1
1534 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1535     will be interpreted as a fixed record end marker, or it can be a regex
1536     object (e.g. created by C<qr>), in which case it is interpreted as a
1537     regular expression.
1538 elmex 1.1
1539 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1540     undef), then C<qr|\015?\012|> is used (which is good for most internet
1541     protocols).
1542 elmex 1.1
1543 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1544     not marked by the end of line marker.
1545 elmex 1.1
1546 root 1.8 =cut
1547 elmex 1.1
1548 root 1.28 register_read_type line => sub {
1549     my ($self, $cb, $eol) = @_;
1550 elmex 1.1
1551 root 1.76 if (@_ < 3) {
1552 root 1.237 # this is faster then the generic code below
1553 root 1.76 sub {
1554 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1555     or return;
1556 elmex 1.1
1557 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1558     $cb->($_[0], $str, "$1");
1559 root 1.76 1
1560     }
1561     } else {
1562     $eol = quotemeta $eol unless ref $eol;
1563     $eol = qr|^(.*?)($eol)|s;
1564    
1565     sub {
1566     $_[0]{rbuf} =~ s/$eol// or return;
1567 elmex 1.1
1568 root 1.227 $cb->($_[0], "$1", "$2");
1569 root 1.76 1
1570     }
1571 root 1.8 }
1572 root 1.28 };
1573 elmex 1.1
1574 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1575 root 1.36
1576     Makes a regex match against the regex object C<$accept> and returns
1577 root 1.244 everything up to and including the match. All the usual regex variables
1578     ($1, %+ etc.) from the regex match are available in the callback.
1579 root 1.36
1580     Example: read a single line terminated by '\n'.
1581    
1582     $handle->push_read (regex => qr<\n>, sub { ... });
1583    
1584     If C<$reject> is given and not undef, then it determines when the data is
1585     to be rejected: it is matched against the data when the C<$accept> regex
1586     does not match and generates an C<EBADMSG> error when it matches. This is
1587     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1588     receive buffer overflow).
1589    
1590     Example: expect a single decimal number followed by whitespace, reject
1591     anything else (not the use of an anchor).
1592    
1593     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1594    
1595     If C<$skip> is given and not C<undef>, then it will be matched against
1596     the receive buffer when neither C<$accept> nor C<$reject> match,
1597     and everything preceding and including the match will be accepted
1598     unconditionally. This is useful to skip large amounts of data that you
1599     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1600     have to start matching from the beginning. This is purely an optimisation
1601 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1602 root 1.36
1603     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1604 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1605 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1606     it only accepts something not ending in either \015 or \012, as these are
1607     required for the accept regex.
1608    
1609     $handle->push_read (regex =>
1610     qr<\015\012\015\012>,
1611     undef, # no reject
1612     qr<^.*[^\015\012]>,
1613     sub { ... });
1614    
1615     =cut
1616    
1617     register_read_type regex => sub {
1618     my ($self, $cb, $accept, $reject, $skip) = @_;
1619    
1620     my $data;
1621     my $rbuf = \$self->{rbuf};
1622    
1623     sub {
1624     # accept
1625     if ($$rbuf =~ $accept) {
1626     $data .= substr $$rbuf, 0, $+[0], "";
1627 root 1.220 $cb->($_[0], $data);
1628 root 1.36 return 1;
1629     }
1630    
1631     # reject
1632     if ($reject && $$rbuf =~ $reject) {
1633 root 1.220 $_[0]->_error (Errno::EBADMSG);
1634 root 1.36 }
1635    
1636     # skip
1637     if ($skip && $$rbuf =~ $skip) {
1638     $data .= substr $$rbuf, 0, $+[0], "";
1639     }
1640    
1641     ()
1642     }
1643     };
1644    
1645 root 1.61 =item netstring => $cb->($handle, $string)
1646    
1647     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1648    
1649     Throws an error with C<$!> set to EBADMSG on format violations.
1650    
1651     =cut
1652    
1653     register_read_type netstring => sub {
1654     my ($self, $cb) = @_;
1655    
1656     sub {
1657     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1658     if ($_[0]{rbuf} =~ /[^0-9]/) {
1659 root 1.220 $_[0]->_error (Errno::EBADMSG);
1660 root 1.61 }
1661     return;
1662     }
1663    
1664     my $len = $1;
1665    
1666 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1667 root 1.61 my $string = $_[1];
1668     $_[0]->unshift_read (chunk => 1, sub {
1669     if ($_[1] eq ",") {
1670     $cb->($_[0], $string);
1671     } else {
1672 root 1.220 $_[0]->_error (Errno::EBADMSG);
1673 root 1.61 }
1674     });
1675     });
1676    
1677     1
1678     }
1679     };
1680    
1681     =item packstring => $format, $cb->($handle, $string)
1682    
1683     An octet string prefixed with an encoded length. The encoding C<$format>
1684     uses the same format as a Perl C<pack> format, but must specify a single
1685     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1686     optional C<!>, C<< < >> or C<< > >> modifier).
1687    
1688 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1689     EPP uses a prefix of C<N> (4 octtes).
1690 root 1.61
1691     Example: read a block of data prefixed by its length in BER-encoded
1692     format (very efficient).
1693    
1694     $handle->push_read (packstring => "w", sub {
1695     my ($handle, $data) = @_;
1696     });
1697    
1698     =cut
1699    
1700     register_read_type packstring => sub {
1701     my ($self, $cb, $format) = @_;
1702    
1703     sub {
1704     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1705 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1706 root 1.61 or return;
1707    
1708 root 1.77 $format = length pack $format, $len;
1709 root 1.61
1710 root 1.77 # bypass unshift if we already have the remaining chunk
1711     if ($format + $len <= length $_[0]{rbuf}) {
1712     my $data = substr $_[0]{rbuf}, $format, $len;
1713     substr $_[0]{rbuf}, 0, $format + $len, "";
1714     $cb->($_[0], $data);
1715     } else {
1716     # remove prefix
1717     substr $_[0]{rbuf}, 0, $format, "";
1718    
1719     # read remaining chunk
1720     $_[0]->unshift_read (chunk => $len, $cb);
1721     }
1722 root 1.61
1723     1
1724     }
1725     };
1726    
1727 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1728    
1729 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1730     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1731 root 1.40
1732 root 1.240 If a C<json> object was passed to the constructor, then that will be
1733     used for the final decode, otherwise it will create a L<JSON::XS> or
1734     L<JSON::PP> coder object expecting UTF-8.
1735 root 1.40
1736     This read type uses the incremental parser available with JSON version
1737 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1738 root 1.40
1739     Since JSON texts are fully self-delimiting, the C<json> read and write
1740 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1741     the C<json> write type description, above, for an actual example.
1742 root 1.40
1743     =cut
1744    
1745     register_read_type json => sub {
1746 root 1.63 my ($self, $cb) = @_;
1747 root 1.40
1748 root 1.179 my $json = $self->{json} ||= json_coder;
1749 root 1.40
1750     my $data;
1751    
1752     sub {
1753 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1754 root 1.110
1755 root 1.113 if ($ref) {
1756 root 1.220 $_[0]{rbuf} = $json->incr_text;
1757 root 1.113 $json->incr_text = "";
1758 root 1.220 $cb->($_[0], $ref);
1759 root 1.110
1760     1
1761 root 1.113 } elsif ($@) {
1762 root 1.111 # error case
1763 root 1.110 $json->incr_skip;
1764 root 1.40
1765 root 1.220 $_[0]{rbuf} = $json->incr_text;
1766 root 1.40 $json->incr_text = "";
1767    
1768 root 1.220 $_[0]->_error (Errno::EBADMSG);
1769 root 1.114
1770 root 1.113 ()
1771     } else {
1772 root 1.220 $_[0]{rbuf} = "";
1773 root 1.114
1774 root 1.113 ()
1775     }
1776 root 1.40 }
1777     };
1778    
1779 root 1.238 =item cbor => $cb->($handle, $scalar)
1780    
1781     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1782     error occurs, an C<EBADMSG> error will be raised.
1783    
1784     If a L<CBOR::XS> object was passed to the constructor, then that will be
1785     used for the final decode, otherwise it will create a CBOR coder without
1786     enabling any options.
1787    
1788     You have to provide a dependency to L<CBOR::XS> on your own: this module
1789     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1790     itself.
1791    
1792     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1793     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1794     the C<cbor> write type description, above, for an actual example.
1795    
1796     =cut
1797    
1798     register_read_type cbor => sub {
1799     my ($self, $cb) = @_;
1800    
1801     my $cbor = $self->{cbor} ||= cbor_coder;
1802    
1803     my $data;
1804    
1805     sub {
1806     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1807    
1808     if (@value) {
1809     $cb->($_[0], @value);
1810    
1811     1
1812     } elsif ($@) {
1813     # error case
1814     $cbor->incr_reset;
1815    
1816     $_[0]->_error (Errno::EBADMSG);
1817    
1818     ()
1819     } else {
1820     ()
1821     }
1822     }
1823     };
1824    
1825 root 1.63 =item storable => $cb->($handle, $ref)
1826    
1827     Deserialises a L<Storable> frozen representation as written by the
1828     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1829     data).
1830    
1831     Raises C<EBADMSG> error if the data could not be decoded.
1832    
1833     =cut
1834    
1835     register_read_type storable => sub {
1836     my ($self, $cb) = @_;
1837    
1838 root 1.224 require Storable unless $Storable::VERSION;
1839 root 1.63
1840     sub {
1841     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1842 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1843 root 1.63 or return;
1844    
1845 root 1.77 my $format = length pack "w", $len;
1846 root 1.63
1847 root 1.77 # bypass unshift if we already have the remaining chunk
1848     if ($format + $len <= length $_[0]{rbuf}) {
1849     my $data = substr $_[0]{rbuf}, $format, $len;
1850     substr $_[0]{rbuf}, 0, $format + $len, "";
1851 root 1.232
1852     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1853     or return $_[0]->_error (Errno::EBADMSG);
1854 root 1.77 } else {
1855     # remove prefix
1856     substr $_[0]{rbuf}, 0, $format, "";
1857    
1858     # read remaining chunk
1859     $_[0]->unshift_read (chunk => $len, sub {
1860 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1861     or $_[0]->_error (Errno::EBADMSG);
1862 root 1.77 });
1863     }
1864    
1865     1
1866 root 1.63 }
1867     };
1868    
1869 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1870    
1871     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1872     record without consuming anything. Only SSL version 3 or higher
1873     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1874     SSL2-compatible framing is supported).
1875    
1876     If it detects that the input data is likely TLS, it calls the callback
1877     with a true value for C<$detect> and the (on-wire) TLS version as second
1878     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1879     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1880     be definitely not TLS, it calls the callback with a false value for
1881     C<$detect>.
1882    
1883     The callback could use this information to decide whether or not to start
1884     TLS negotiation.
1885    
1886     In all cases the data read so far is passed to the following read
1887     handlers.
1888    
1889     Usually you want to use the C<tls_autostart> read type instead.
1890    
1891     If you want to design a protocol that works in the presence of TLS
1892     dtection, make sure that any non-TLS data doesn't start with the octet 22
1893     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1894     read type does are a bit more strict, but might losen in the future to
1895     accomodate protocol changes.
1896    
1897     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1898     L<Net::SSLeay>).
1899    
1900 root 1.247 =item tls_autostart => [$tls_ctx, ]$tls
1901 root 1.236
1902     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1903     to start tls by calling C<starttls> with the given arguments.
1904    
1905     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1906     been configured to accept, as servers do not normally send a handshake on
1907     their own and ths cannot be detected in this way.
1908    
1909     See C<tls_detect> above for more details.
1910    
1911     Example: give the client a chance to start TLS before accepting a text
1912     line.
1913    
1914 root 1.247 $hdl->push_read (tls_autostart => "accept");
1915 root 1.236 $hdl->push_read (line => sub {
1916     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1917     });
1918    
1919     =cut
1920    
1921     register_read_type tls_detect => sub {
1922     my ($self, $cb) = @_;
1923    
1924     sub {
1925     # this regex matches a full or partial tls record
1926     if (
1927     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1928     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1929     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1930     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1931     ) {
1932     return if 3 != length $1; # partial match, can't decide yet
1933    
1934     # full match, valid TLS record
1935     my ($major, $minor) = unpack "CC", $1;
1936     $cb->($self, "accept", $major + $minor * 0.1);
1937     } else {
1938     # mismatch == guaranteed not TLS
1939     $cb->($self, undef);
1940     }
1941    
1942     1
1943     }
1944     };
1945    
1946     register_read_type tls_autostart => sub {
1947     my ($self, @tls) = @_;
1948    
1949     $RH{tls_detect}($self, sub {
1950     return unless $_[1];
1951     $_[0]->starttls (@tls);
1952     })
1953     };
1954    
1955 root 1.28 =back
1956    
1957 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1958 root 1.30
1959 root 1.185 Instead of one of the predefined types, you can also specify the name
1960     of a package. AnyEvent will try to load the package and then expects to
1961     find a function named C<anyevent_read_type> inside. If it isn't found, it
1962     progressively tries to load the parent package until it either finds the
1963     function (good) or runs out of packages (bad).
1964    
1965     Whenever this type is used, C<push_read> will invoke the function with the
1966     handle object, the original callback and the remaining arguments.
1967    
1968     The function is supposed to return a callback (usually a closure) that
1969     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1970     mentally treat the function as a "configurable read type to read callback"
1971     converter.
1972    
1973     It should invoke the original callback when it is done reading (remember
1974     to pass C<$handle> as first argument as all other callbacks do that,
1975     although there is no strict requirement on this).
1976 root 1.30
1977 root 1.185 For examples, see the source of this module (F<perldoc -m
1978     AnyEvent::Handle>, search for C<register_read_type>)).
1979 root 1.30
1980 root 1.10 =item $handle->stop_read
1981    
1982     =item $handle->start_read
1983    
1984 root 1.18 In rare cases you actually do not want to read anything from the
1985 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1986 root 1.22 any queued callbacks will be executed then. To start reading again, call
1987 root 1.10 C<start_read>.
1988    
1989 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1990     you change the C<on_read> callback or push/unshift a read callback, and it
1991     will automatically C<stop_read> for you when neither C<on_read> is set nor
1992     there are any read requests in the queue.
1993    
1994 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1995     as TLS does not support half-duplex connections. In current versions they
1996     work as expected, as this behaviour is required to avoid certain resource
1997     attacks, where the program would be forced to read (and buffer) arbitrary
1998     amounts of data before being able to send some data. The drawback is that
1999     some readings of the the SSL/TLS specifications basically require this
2000     attack to be working, as SSL/TLS implementations might stall sending data
2001     during a rehandshake.
2002    
2003     As a guideline, during the initial handshake, you should not stop reading,
2004 root 1.226 and as a client, it might cause problems, depending on your application.
2005 root 1.93
2006 root 1.10 =cut
2007    
2008     sub stop_read {
2009     my ($self) = @_;
2010 elmex 1.1
2011 root 1.213 delete $self->{_rw};
2012 root 1.8 }
2013 elmex 1.1
2014 root 1.10 sub start_read {
2015     my ($self) = @_;
2016    
2017 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2018 root 1.10 Scalar::Util::weaken $self;
2019    
2020 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2021 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2022 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2023 root 1.10
2024     if ($len > 0) {
2025 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2026 root 1.43
2027 root 1.93 if ($self->{tls}) {
2028     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2029 root 1.97
2030 root 1.93 &_dotls ($self);
2031     } else {
2032 root 1.159 $self->_drain_rbuf;
2033 root 1.93 }
2034 root 1.10
2035 root 1.203 if ($len == $self->{read_size}) {
2036     $self->{read_size} *= 2;
2037     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2038     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2039     }
2040    
2041 root 1.10 } elsif (defined $len) {
2042 root 1.38 delete $self->{_rw};
2043     $self->{_eof} = 1;
2044 root 1.159 $self->_drain_rbuf;
2045 root 1.10
2046 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
2047 root 1.52 return $self->_error ($!, 1);
2048 root 1.10 }
2049 root 1.175 };
2050 root 1.10 }
2051 elmex 1.1 }
2052    
2053 root 1.133 our $ERROR_SYSCALL;
2054     our $ERROR_WANT_READ;
2055    
2056     sub _tls_error {
2057     my ($self, $err) = @_;
2058    
2059     return $self->_error ($!, 1)
2060     if $err == Net::SSLeay::ERROR_SYSCALL ();
2061    
2062 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2063 root 1.137
2064     # reduce error string to look less scary
2065     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2066    
2067 root 1.143 if ($self->{_on_starttls}) {
2068     (delete $self->{_on_starttls})->($self, undef, $err);
2069     &_freetls;
2070     } else {
2071     &_freetls;
2072 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2073 root 1.143 }
2074 root 1.133 }
2075    
2076 root 1.97 # poll the write BIO and send the data if applicable
2077 root 1.133 # also decode read data if possible
2078     # this is basiclaly our TLS state machine
2079     # more efficient implementations are possible with openssl,
2080     # but not with the buggy and incomplete Net::SSLeay.
2081 root 1.19 sub _dotls {
2082     my ($self) = @_;
2083    
2084 root 1.97 my $tmp;
2085 root 1.56
2086 root 1.239 while (length $self->{_tls_wbuf}) {
2087     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2088     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2089    
2090     return $self->_tls_error ($tmp)
2091     if $tmp != $ERROR_WANT_READ
2092     && ($tmp != $ERROR_SYSCALL || $!);
2093    
2094     last;
2095 root 1.22 }
2096 root 1.133
2097 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2098 root 1.19 }
2099    
2100 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2101     unless (length $tmp) {
2102 root 1.143 $self->{_on_starttls}
2103     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2104 root 1.92 &_freetls;
2105 root 1.143
2106 root 1.142 if ($self->{on_stoptls}) {
2107     $self->{on_stoptls}($self);
2108     return;
2109     } else {
2110     # let's treat SSL-eof as we treat normal EOF
2111     delete $self->{_rw};
2112     $self->{_eof} = 1;
2113     }
2114 root 1.56 }
2115 root 1.91
2116 root 1.116 $self->{_tls_rbuf} .= $tmp;
2117 root 1.159 $self->_drain_rbuf;
2118 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2119 root 1.23 }
2120    
2121 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2122 root 1.133 return $self->_tls_error ($tmp)
2123     if $tmp != $ERROR_WANT_READ
2124 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2125 root 1.91
2126 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2127     $self->{wbuf} .= $tmp;
2128 root 1.91 $self->_drain_wbuf;
2129 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2130 root 1.91 }
2131 root 1.142
2132     $self->{_on_starttls}
2133     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2134 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2135 root 1.19 }
2136    
2137 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2138    
2139     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2140     object is created, you can also do that at a later time by calling
2141 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2142 root 1.25
2143 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2144     write data and then call C<< ->starttls >> then TLS negotiation will start
2145 root 1.234 immediately, after which the queued write data is then sent. This might
2146     change in future versions, so best make sure you have no outstanding write
2147     data when calling this method.
2148 root 1.157
2149 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2150     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2151    
2152 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2153     when AnyEvent::Handle has to create its own TLS connection object, or
2154     a hash reference with C<< key => value >> pairs that will be used to
2155     construct a new context.
2156    
2157     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2158     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2159     changed to your liking. Note that the handshake might have already started
2160     when this function returns.
2161 root 1.38
2162 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2163 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2164     stream after stopping TLS.
2165 root 1.92
2166 root 1.193 This method may invoke callbacks (and therefore the handle might be
2167     destroyed after it returns).
2168    
2169 root 1.25 =cut
2170    
2171 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2172    
2173 root 1.19 sub starttls {
2174 root 1.160 my ($self, $tls, $ctx) = @_;
2175    
2176     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2177     if $self->{tls};
2178    
2179 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2180     eval {
2181     require Net::SSLeay;
2182     require AnyEvent::TLS;
2183     1
2184     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2185     }
2186    
2187 root 1.160 $self->{tls} = $tls;
2188     $self->{tls_ctx} = $ctx if @_ > 2;
2189    
2190     return unless $self->{fh};
2191 root 1.19
2192 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2193     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2194 root 1.133
2195 root 1.180 $tls = delete $self->{tls};
2196 root 1.160 $ctx = $self->{tls_ctx};
2197 root 1.131
2198 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2199    
2200 root 1.131 if ("HASH" eq ref $ctx) {
2201 root 1.137 if ($ctx->{cache}) {
2202     my $key = $ctx+0;
2203     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2204     } else {
2205     $ctx = new AnyEvent::TLS %$ctx;
2206     }
2207 root 1.131 }
2208 root 1.92
2209 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2210 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2211 root 1.19
2212 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2213     # but the openssl maintainers basically said: "trust us, it just works".
2214     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2215     # and mismaintained ssleay-module doesn't even offer them).
2216 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2217 root 1.87 #
2218     # in short: this is a mess.
2219     #
2220 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2221 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2222 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2223     # have identity issues in that area.
2224 root 1.131 # Net::SSLeay::CTX_set_mode ($ssl,
2225     # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2226     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2227 root 1.160 Net::SSLeay::CTX_set_mode ($tls, 1|2);
2228 root 1.21
2229 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2230     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2231 root 1.19
2232 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2233     $self->{rbuf} = "";
2234 root 1.172
2235 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2236 root 1.19
2237 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2238 root 1.143 if $self->{on_starttls};
2239 root 1.142
2240 root 1.93 &_dotls; # need to trigger the initial handshake
2241     $self->start_read; # make sure we actually do read
2242 root 1.19 }
2243    
2244 root 1.25 =item $handle->stoptls
2245    
2246 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2247     sending a close notify to the other side, but since OpenSSL doesn't
2248 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2249 root 1.160 the stream afterwards.
2250 root 1.25
2251 root 1.193 This method may invoke callbacks (and therefore the handle might be
2252     destroyed after it returns).
2253    
2254 root 1.25 =cut
2255    
2256     sub stoptls {
2257     my ($self) = @_;
2258    
2259 root 1.192 if ($self->{tls} && $self->{fh}) {
2260 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2261 root 1.92
2262     &_dotls;
2263    
2264 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2265     # # we, we... have to use openssl :/#d#
2266     # &_freetls;#d#
2267 root 1.92 }
2268     }
2269    
2270     sub _freetls {
2271     my ($self) = @_;
2272    
2273     return unless $self->{tls};
2274 root 1.38
2275 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2276 root 1.171 if $self->{tls} > 0;
2277 root 1.92
2278 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2279 root 1.25 }
2280    
2281 root 1.216 =item $handle->resettls
2282    
2283     This rarely-used method simply resets and TLS state on the handle, usually
2284     causing data loss.
2285    
2286     One case where it may be useful is when you want to skip over the data in
2287     the stream but you are not interested in interpreting it, so data loss is
2288     no concern.
2289    
2290     =cut
2291    
2292     *resettls = \&_freetls;
2293    
2294 root 1.19 sub DESTROY {
2295 root 1.120 my ($self) = @_;
2296 root 1.19
2297 root 1.92 &_freetls;
2298 root 1.62
2299     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2300    
2301 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2302 root 1.62 my $fh = delete $self->{fh};
2303     my $wbuf = delete $self->{wbuf};
2304    
2305     my @linger;
2306    
2307 root 1.175 push @linger, AE::io $fh, 1, sub {
2308 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2309    
2310     if ($len > 0) {
2311     substr $wbuf, 0, $len, "";
2312 root 1.243 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2313 root 1.62 @linger = (); # end
2314     }
2315 root 1.175 };
2316     push @linger, AE::timer $linger, 0, sub {
2317 root 1.62 @linger = ();
2318 root 1.175 };
2319 root 1.62 }
2320 root 1.19 }
2321    
2322 root 1.99 =item $handle->destroy
2323    
2324 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2325 root 1.141 no further callbacks will be invoked and as many resources as possible
2326 root 1.165 will be freed. Any method you will call on the handle object after
2327     destroying it in this way will be silently ignored (and it will return the
2328     empty list).
2329 root 1.99
2330 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2331     object and it will simply shut down. This works in fatal error and EOF
2332     callbacks, as well as code outside. It does I<NOT> work in a read or write
2333     callback, so when you want to destroy the AnyEvent::Handle object from
2334     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2335     that case.
2336    
2337 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2338     will be removed as well, so if those are the only reference holders (as
2339     is common), then one doesn't need to do anything special to break any
2340     reference cycles.
2341    
2342 root 1.99 The handle might still linger in the background and write out remaining
2343     data, as specified by the C<linger> option, however.
2344    
2345     =cut
2346    
2347     sub destroy {
2348     my ($self) = @_;
2349    
2350     $self->DESTROY;
2351     %$self = ();
2352 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2353     }
2354    
2355 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2356     #nop
2357 root 1.99 }
2358    
2359 root 1.192 =item $handle->destroyed
2360    
2361     Returns false as long as the handle hasn't been destroyed by a call to C<<
2362     ->destroy >>, true otherwise.
2363    
2364     Can be useful to decide whether the handle is still valid after some
2365     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2366     C<< ->starttls >> and other methods can call user callbacks, which in turn
2367     can destroy the handle, so work can be avoided by checking sometimes:
2368    
2369     $hdl->starttls ("accept");
2370     return if $hdl->destroyed;
2371     $hdl->push_write (...
2372    
2373     Note that the call to C<push_write> will silently be ignored if the handle
2374     has been destroyed, so often you can just ignore the possibility of the
2375     handle being destroyed.
2376    
2377     =cut
2378    
2379     sub destroyed { 0 }
2380     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2381    
2382 root 1.19 =item AnyEvent::Handle::TLS_CTX
2383    
2384 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2385     for TLS mode.
2386 root 1.19
2387 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2388 root 1.19
2389     =cut
2390    
2391     our $TLS_CTX;
2392    
2393     sub TLS_CTX() {
2394 root 1.131 $TLS_CTX ||= do {
2395     require AnyEvent::TLS;
2396 root 1.19
2397 root 1.131 new AnyEvent::TLS
2398 root 1.19 }
2399     }
2400    
2401 elmex 1.1 =back
2402    
2403 root 1.95
2404     =head1 NONFREQUENTLY ASKED QUESTIONS
2405    
2406     =over 4
2407    
2408 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2409     still get further invocations!
2410    
2411     That's because AnyEvent::Handle keeps a reference to itself when handling
2412     read or write callbacks.
2413    
2414     It is only safe to "forget" the reference inside EOF or error callbacks,
2415     from within all other callbacks, you need to explicitly call the C<<
2416     ->destroy >> method.
2417    
2418 root 1.208 =item Why is my C<on_eof> callback never called?
2419    
2420     Probably because your C<on_error> callback is being called instead: When
2421     you have outstanding requests in your read queue, then an EOF is
2422     considered an error as you clearly expected some data.
2423    
2424     To avoid this, make sure you have an empty read queue whenever your handle
2425 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2426 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2427     queue.
2428    
2429     See also the next question, which explains this in a bit more detail.
2430    
2431     =item How can I serve requests in a loop?
2432    
2433     Most protocols consist of some setup phase (authentication for example)
2434     followed by a request handling phase, where the server waits for requests
2435     and handles them, in a loop.
2436    
2437     There are two important variants: The first (traditional, better) variant
2438     handles requests until the server gets some QUIT command, causing it to
2439     close the connection first (highly desirable for a busy TCP server). A
2440     client dropping the connection is an error, which means this variant can
2441     detect an unexpected detection close.
2442    
2443 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2444 root 1.208 pushing the "read request start" handler on it:
2445    
2446     # we assume a request starts with a single line
2447     my @start_request; @start_request = (line => sub {
2448     my ($hdl, $line) = @_;
2449    
2450     ... handle request
2451    
2452     # push next request read, possibly from a nested callback
2453     $hdl->push_read (@start_request);
2454     });
2455    
2456     # auth done, now go into request handling loop
2457     # now push the first @start_request
2458     $hdl->push_read (@start_request);
2459    
2460     By always having an outstanding C<push_read>, the handle always expects
2461     some data and raises the C<EPIPE> error when the connction is dropped
2462     unexpectedly.
2463    
2464     The second variant is a protocol where the client can drop the connection
2465     at any time. For TCP, this means that the server machine may run out of
2466 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2467 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2468     kinds of protocols are common (and sometimes even the best solution to the
2469     problem).
2470    
2471     Having an outstanding read request at all times is possible if you ignore
2472     C<EPIPE> errors, but this doesn't help with when the client drops the
2473     connection during a request, which would still be an error.
2474    
2475     A better solution is to push the initial request read in an C<on_read>
2476     callback. This avoids an error, as when the server doesn't expect data
2477     (i.e. is idly waiting for the next request, an EOF will not raise an
2478     error, but simply result in an C<on_eof> callback. It is also a bit slower
2479     and simpler:
2480    
2481     # auth done, now go into request handling loop
2482     $hdl->on_read (sub {
2483     my ($hdl) = @_;
2484    
2485     # called each time we receive data but the read queue is empty
2486     # simply start read the request
2487    
2488     $hdl->push_read (line => sub {
2489     my ($hdl, $line) = @_;
2490    
2491     ... handle request
2492    
2493     # do nothing special when the request has been handled, just
2494     # let the request queue go empty.
2495     });
2496     });
2497    
2498 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2499     reading?
2500    
2501     Unlike, say, TCP, TLS connections do not consist of two independent
2502 root 1.198 communication channels, one for each direction. Or put differently, the
2503 root 1.101 read and write directions are not independent of each other: you cannot
2504     write data unless you are also prepared to read, and vice versa.
2505    
2506 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2507 root 1.101 callback invocations when you are not expecting any read data - the reason
2508     is that AnyEvent::Handle always reads in TLS mode.
2509    
2510     During the connection, you have to make sure that you always have a
2511     non-empty read-queue, or an C<on_read> watcher. At the end of the
2512     connection (or when you no longer want to use it) you can call the
2513     C<destroy> method.
2514    
2515 root 1.95 =item How do I read data until the other side closes the connection?
2516    
2517 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2518     to achieve this is by setting an C<on_read> callback that does nothing,
2519     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2520     will be in C<$_[0]{rbuf}>:
2521 root 1.95
2522     $handle->on_read (sub { });
2523     $handle->on_eof (undef);
2524     $handle->on_error (sub {
2525     my $data = delete $_[0]{rbuf};
2526     });
2527    
2528 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2529     which is not normally allowed by the API. It is expressly permitted in
2530     this case only, as the handle object needs to be destroyed afterwards.
2531    
2532 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2533     and packets loss, might get closed quite violently with an error, when in
2534 root 1.198 fact all data has been received.
2535 root 1.95
2536 root 1.101 It is usually better to use acknowledgements when transferring data,
2537 root 1.95 to make sure the other side hasn't just died and you got the data
2538     intact. This is also one reason why so many internet protocols have an
2539     explicit QUIT command.
2540    
2541 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2542     all data has been written?
2543 root 1.95
2544     After writing your last bits of data, set the C<on_drain> callback
2545     and destroy the handle in there - with the default setting of
2546     C<low_water_mark> this will be called precisely when all data has been
2547     written to the socket:
2548    
2549     $handle->push_write (...);
2550     $handle->on_drain (sub {
2551 root 1.231 AE::log debug => "All data submitted to the kernel.";
2552 root 1.95 undef $handle;
2553     });
2554    
2555 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2556     consider using C<< ->push_shutdown >> instead.
2557    
2558     =item I want to contact a TLS/SSL server, I don't care about security.
2559    
2560     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2561 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2562 root 1.143 parameter:
2563    
2564 root 1.144 tcp_connect $host, $port, sub {
2565     my ($fh) = @_;
2566 root 1.143
2567 root 1.144 my $handle = new AnyEvent::Handle
2568     fh => $fh,
2569     tls => "connect",
2570     on_error => sub { ... };
2571    
2572     $handle->push_write (...);
2573     };
2574 root 1.143
2575     =item I want to contact a TLS/SSL server, I do care about security.
2576    
2577 root 1.144 Then you should additionally enable certificate verification, including
2578     peername verification, if the protocol you use supports it (see
2579     L<AnyEvent::TLS>, C<verify_peername>).
2580    
2581     E.g. for HTTPS:
2582    
2583     tcp_connect $host, $port, sub {
2584     my ($fh) = @_;
2585    
2586     my $handle = new AnyEvent::Handle
2587     fh => $fh,
2588     peername => $host,
2589     tls => "connect",
2590     tls_ctx => { verify => 1, verify_peername => "https" },
2591     ...
2592    
2593     Note that you must specify the hostname you connected to (or whatever
2594     "peername" the protocol needs) as the C<peername> argument, otherwise no
2595     peername verification will be done.
2596    
2597     The above will use the system-dependent default set of trusted CA
2598     certificates. If you want to check against a specific CA, add the
2599     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2600    
2601     tls_ctx => {
2602     verify => 1,
2603     verify_peername => "https",
2604     ca_file => "my-ca-cert.pem",
2605     },
2606    
2607     =item I want to create a TLS/SSL server, how do I do that?
2608    
2609     Well, you first need to get a server certificate and key. You have
2610     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2611     self-signed certificate (cheap. check the search engine of your choice,
2612     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2613     nice program for that purpose).
2614    
2615     Then create a file with your private key (in PEM format, see
2616     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2617     file should then look like this:
2618    
2619     -----BEGIN RSA PRIVATE KEY-----
2620     ...header data
2621     ... lots of base64'y-stuff
2622     -----END RSA PRIVATE KEY-----
2623    
2624     -----BEGIN CERTIFICATE-----
2625     ... lots of base64'y-stuff
2626     -----END CERTIFICATE-----
2627    
2628     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2629     specify this file as C<cert_file>:
2630    
2631     tcp_server undef, $port, sub {
2632     my ($fh) = @_;
2633    
2634     my $handle = new AnyEvent::Handle
2635     fh => $fh,
2636     tls => "accept",
2637     tls_ctx => { cert_file => "my-server-keycert.pem" },
2638     ...
2639 root 1.143
2640 root 1.144 When you have intermediate CA certificates that your clients might not
2641     know about, just append them to the C<cert_file>.
2642 root 1.143
2643 root 1.95 =back
2644    
2645 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2646    
2647     In many cases, you might want to subclass AnyEvent::Handle.
2648    
2649     To make this easier, a given version of AnyEvent::Handle uses these
2650     conventions:
2651    
2652     =over 4
2653    
2654     =item * all constructor arguments become object members.
2655    
2656     At least initially, when you pass a C<tls>-argument to the constructor it
2657 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2658 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2659    
2660     =item * other object member names are prefixed with an C<_>.
2661    
2662     All object members not explicitly documented (internal use) are prefixed
2663     with an underscore character, so the remaining non-C<_>-namespace is free
2664     for use for subclasses.
2665    
2666     =item * all members not documented here and not prefixed with an underscore
2667     are free to use in subclasses.
2668    
2669     Of course, new versions of AnyEvent::Handle may introduce more "public"
2670 root 1.198 member variables, but that's just life. At least it is documented.
2671 root 1.38
2672     =back
2673    
2674 elmex 1.1 =head1 AUTHOR
2675    
2676 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2677 elmex 1.1
2678     =cut
2679    
2680 root 1.230 1
2681