ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.250
Committed: Tue Feb 26 01:35:48 2019 UTC (5 years, 2 months ago) by root
Branch: MAIN
Changes since 1.249: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.246 This is a helper module to make it easier to do event-based I/O
36     on stream-based filehandles (sockets, pipes, and other stream
37     things). Specifically, it doesn't work as expected on files, packet-based
38     sockets or similar things.
39 root 1.8
40 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
41     AnyEvent::Handle examples.
42    
43 root 1.198 In the following, where the documentation refers to "bytes", it means
44     characters. As sysread and syswrite are used for all I/O, their
45 root 1.8 treatment of characters applies to this module as well.
46 elmex 1.1
47 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
48     C<on_error> callback.
49    
50 root 1.8 All callbacks will be invoked with the handle object as their first
51     argument.
52 elmex 1.1
53 root 1.176 =cut
54    
55     package AnyEvent::Handle;
56    
57     use Scalar::Util ();
58     use List::Util ();
59     use Carp ();
60 root 1.243 use Errno qw(EAGAIN EWOULDBLOCK EINTR);
61 root 1.176
62     use AnyEvent (); BEGIN { AnyEvent::common_sense }
63     use AnyEvent::Util qw(WSAEWOULDBLOCK);
64    
65 root 1.177 our $VERSION = $AnyEvent::VERSION;
66    
67 root 1.185 sub _load_func($) {
68     my $func = $_[0];
69    
70     unless (defined &$func) {
71     my $pkg = $func;
72     do {
73     $pkg =~ s/::[^:]+$//
74     or return;
75     eval "require $pkg";
76     } until defined &$func;
77     }
78    
79     \&$func
80     }
81    
82 root 1.203 sub MAX_READ_SIZE() { 131072 }
83    
84 elmex 1.1 =head1 METHODS
85    
86     =over 4
87    
88 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
89 elmex 1.1
90 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
91 elmex 1.1
92     =over 4
93    
94 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
95 root 1.158
96 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
97 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
98 root 1.245 C<AnyEvent::fh_unblock>) by the constructor and needs to stay in
99 root 1.83 that mode.
100 root 1.8
101 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
102    
103     Try to connect to the specified host and service (port), using
104     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
105     default C<peername>.
106    
107     You have to specify either this parameter, or C<fh>, above.
108    
109 root 1.160 It is possible to push requests on the read and write queues, and modify
110     properties of the stream, even while AnyEvent::Handle is connecting.
111    
112 root 1.159 When this parameter is specified, then the C<on_prepare>,
113     C<on_connect_error> and C<on_connect> callbacks will be called under the
114     appropriate circumstances:
115    
116     =over 4
117    
118     =item on_prepare => $cb->($handle)
119    
120     This (rarely used) callback is called before a new connection is
121 root 1.210 attempted, but after the file handle has been created (you can access that
122     file handle via C<< $handle->{fh} >>). It could be used to prepare the
123     file handle with parameters required for the actual connect (as opposed to
124     settings that can be changed when the connection is already established).
125 root 1.159
126 root 1.161 The return value of this callback should be the connect timeout value in
127 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
128     default timeout is to be used).
129 root 1.161
130 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
131    
132     This callback is called when a connection has been successfully established.
133    
134 root 1.198 The peer's numeric host and port (the socket peername) are passed as
135 root 1.228 parameters, together with a retry callback. At the time it is called the
136     read and write queues, EOF status, TLS status and similar properties of
137     the handle will have been reset.
138    
139     If, for some reason, the handle is not acceptable, calling C<$retry> will
140     continue with the next connection target (in case of multi-homed hosts or
141     SRV records there can be multiple connection endpoints). The C<$retry>
142     callback can be invoked after the connect callback returns, i.e. one can
143     start a handshake and then decide to retry with the next host if the
144     handshake fails.
145 root 1.159
146 root 1.198 In most cases, you should ignore the C<$retry> parameter.
147 root 1.158
148 root 1.159 =item on_connect_error => $cb->($handle, $message)
149 root 1.10
150 root 1.186 This callback is called when the connection could not be
151 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
152     message describing it (usually the same as C<"$!">).
153 root 1.8
154 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
155     fatal error instead.
156 root 1.82
157 root 1.159 =back
158 root 1.80
159 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
160 root 1.10
161 root 1.52 This is the error callback, which is called when, well, some error
162     occured, such as not being able to resolve the hostname, failure to
163 root 1.198 connect, or a read error.
164 root 1.52
165     Some errors are fatal (which is indicated by C<$fatal> being true). On
166 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
167     destroy >>) after invoking the error callback (which means you are free to
168     examine the handle object). Examples of fatal errors are an EOF condition
169 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
170 root 1.198 cases where the other side can close the connection at will, it is
171 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
172 root 1.82
173 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
174 root 1.233 against, but in some cases (TLS errors), this does not work well.
175    
176     If you report the error to the user, it is recommended to always output
177     the C<$message> argument in human-readable error messages (you don't need
178     to report C<"$!"> if you report C<$message>).
179    
180     If you want to react programmatically to the error, then looking at C<$!>
181     and comparing it against some of the documented C<Errno> values is usually
182     better than looking at the C<$message>.
183 root 1.133
184 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
185 root 1.82 to simply ignore this parameter and instead abondon the handle object
186     when this callback is invoked. Examples of non-fatal errors are timeouts
187     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
188 root 1.8
189 root 1.198 On entry to the callback, the value of C<$!> contains the operating
190     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
191 root 1.133 C<EPROTO>).
192 root 1.8
193 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
194 root 1.198 you will not be notified of errors otherwise. The default just calls
195 root 1.52 C<croak>.
196 root 1.8
197 root 1.40 =item on_read => $cb->($handle)
198 root 1.8
199     This sets the default read callback, which is called when data arrives
200 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
201     callback will only be called when at least one octet of data is in the
202     read buffer).
203 root 1.8
204     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
205 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
206 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
207     the beginning from it.
208 root 1.8
209 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
210     modifies the read queue. Or do both. Or ...
211    
212 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
213 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
214     calling the C<on_eof> callback. If no progress can be made, then a fatal
215     error will be raised (with C<$!> set to C<EPIPE>).
216 elmex 1.1
217 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
218     doesn't mean you I<require> some data: if there is an EOF and there
219     are outstanding read requests then an error will be flagged. With an
220     C<on_read> callback, the C<on_eof> callback will be invoked.
221    
222 root 1.159 =item on_eof => $cb->($handle)
223    
224     Set the callback to be called when an end-of-file condition is detected,
225     i.e. in the case of a socket, when the other side has closed the
226     connection cleanly, and there are no outstanding read requests in the
227     queue (if there are read requests, then an EOF counts as an unexpected
228     connection close and will be flagged as an error).
229    
230     For sockets, this just means that the other side has stopped sending data,
231     you can still try to write data, and, in fact, one can return from the EOF
232     callback and continue writing data, as only the read part has been shut
233     down.
234    
235     If an EOF condition has been detected but no C<on_eof> callback has been
236     set, then a fatal error will be raised with C<$!> set to <0>.
237    
238 root 1.40 =item on_drain => $cb->($handle)
239 elmex 1.1
240 root 1.229 This sets the callback that is called once when the write buffer becomes
241     empty (and immediately when the handle object is created).
242 elmex 1.1
243 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
244 elmex 1.2
245 root 1.69 This callback is useful when you don't want to put all of your write data
246     into the queue at once, for example, when you want to write the contents
247     of some file to the socket you might not want to read the whole file into
248     memory and push it into the queue, but instead only read more data from
249     the file when the write queue becomes empty.
250    
251 root 1.43 =item timeout => $fractional_seconds
252    
253 root 1.176 =item rtimeout => $fractional_seconds
254    
255     =item wtimeout => $fractional_seconds
256    
257     If non-zero, then these enables an "inactivity" timeout: whenever this
258     many seconds pass without a successful read or write on the underlying
259     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
260     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
261     error will be raised).
262    
263 root 1.218 There are three variants of the timeouts that work independently of each
264     other, for both read and write (triggered when nothing was read I<OR>
265     written), just read (triggered when nothing was read), and just write:
266 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
267     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
268     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
269 root 1.43
270 root 1.218 Note that timeout processing is active even when you do not have any
271     outstanding read or write requests: If you plan to keep the connection
272     idle then you should disable the timeout temporarily or ignore the
273     timeout in the corresponding C<on_timeout> callback, in which case
274     AnyEvent::Handle will simply restart the timeout.
275 root 1.43
276 root 1.218 Zero (the default) disables the corresponding timeout.
277 root 1.43
278     =item on_timeout => $cb->($handle)
279    
280 root 1.218 =item on_rtimeout => $cb->($handle)
281    
282     =item on_wtimeout => $cb->($handle)
283    
284 root 1.43 Called whenever the inactivity timeout passes. If you return from this
285     callback, then the timeout will be reset as if some activity had happened,
286     so this condition is not fatal in any way.
287    
288 root 1.8 =item rbuf_max => <bytes>
289 elmex 1.2
290 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
291     when the read buffer ever (strictly) exceeds this size. This is useful to
292 root 1.88 avoid some forms of denial-of-service attacks.
293 elmex 1.2
294 root 1.8 For example, a server accepting connections from untrusted sources should
295     be configured to accept only so-and-so much data that it cannot act on
296     (for example, when expecting a line, an attacker could send an unlimited
297     amount of data without a callback ever being called as long as the line
298     isn't finished).
299 elmex 1.2
300 root 1.209 =item wbuf_max => <bytes>
301    
302     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
303     when the write buffer ever (strictly) exceeds this size. This is useful to
304     avoid some forms of denial-of-service attacks.
305    
306     Although the units of this parameter is bytes, this is the I<raw> number
307     of bytes not yet accepted by the kernel. This can make a difference when
308     you e.g. use TLS, as TLS typically makes your write data larger (but it
309     can also make it smaller due to compression).
310    
311     As an example of when this limit is useful, take a chat server that sends
312     chat messages to a client. If the client does not read those in a timely
313     manner then the send buffer in the server would grow unbounded.
314    
315 root 1.70 =item autocork => <boolean>
316    
317 root 1.198 When disabled (the default), C<push_write> will try to immediately
318     write the data to the handle if possible. This avoids having to register
319 root 1.88 a write watcher and wait for the next event loop iteration, but can
320     be inefficient if you write multiple small chunks (on the wire, this
321     disadvantage is usually avoided by your kernel's nagle algorithm, see
322     C<no_delay>, but this option can save costly syscalls).
323 root 1.70
324 root 1.198 When enabled, writes will always be queued till the next event loop
325 root 1.70 iteration. This is efficient when you do many small writes per iteration,
326 root 1.88 but less efficient when you do a single write only per iteration (or when
327     the write buffer often is full). It also increases write latency.
328 root 1.70
329     =item no_delay => <boolean>
330    
331     When doing small writes on sockets, your operating system kernel might
332     wait a bit for more data before actually sending it out. This is called
333     the Nagle algorithm, and usually it is beneficial.
334    
335 root 1.88 In some situations you want as low a delay as possible, which can be
336     accomplishd by setting this option to a true value.
337 root 1.70
338 root 1.198 The default is your operating system's default behaviour (most likely
339     enabled). This option explicitly enables or disables it, if possible.
340 root 1.70
341 root 1.182 =item keepalive => <boolean>
342    
343     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
344     normally, TCP connections have no time-out once established, so TCP
345 root 1.186 connections, once established, can stay alive forever even when the other
346 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
347 root 1.198 TCP connections when the other side becomes unreachable. While the default
348 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
349     and, if the other side doesn't reply, take down the TCP connection some 10
350     to 15 minutes later.
351    
352     It is harmless to specify this option for file handles that do not support
353     keepalives, and enabling it on connections that are potentially long-lived
354     is usually a good idea.
355    
356     =item oobinline => <boolean>
357    
358     BSD majorly fucked up the implementation of TCP urgent data. The result
359     is that almost no OS implements TCP according to the specs, and every OS
360     implements it slightly differently.
361    
362 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
363     is enabled) gives you the most portable way of getting urgent data, by
364     putting it into the stream.
365    
366     Since BSD emulation of OOB data on top of TCP's urgent data can have
367     security implications, AnyEvent::Handle sets this flag automatically
368 root 1.184 unless explicitly specified. Note that setting this flag after
369     establishing a connection I<may> be a bit too late (data loss could
370     already have occured on BSD systems), but at least it will protect you
371     from most attacks.
372 root 1.182
373 root 1.8 =item read_size => <bytes>
374 elmex 1.2
375 root 1.221 The initial read block size, the number of bytes this module will try
376     to read during each loop iteration. Each handle object will consume
377     at least this amount of memory for the read buffer as well, so when
378     handling many connections watch out for memory requirements). See also
379     C<max_read_size>. Default: C<2048>.
380 root 1.203
381     =item max_read_size => <bytes>
382    
383     The maximum read buffer size used by the dynamic adjustment
384     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
385     one go it will double C<read_size> up to the maximum given by this
386     option. Default: C<131072> or C<read_size>, whichever is higher.
387 root 1.8
388     =item low_water_mark => <bytes>
389    
390 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
391     buffer: If the buffer reaches this size or gets even samller it is
392 root 1.8 considered empty.
393 elmex 1.2
394 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
395     the write buffer before it is fully drained, but this is a rare case, as
396     the operating system kernel usually buffers data as well, so the default
397     is good in almost all cases.
398    
399 root 1.62 =item linger => <seconds>
400    
401 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
402 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
403     write data and will install a watcher that will write this data to the
404     socket. No errors will be reported (this mostly matches how the operating
405     system treats outstanding data at socket close time).
406 root 1.62
407 root 1.88 This will not work for partial TLS data that could not be encoded
408 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
409     help.
410 root 1.62
411 root 1.133 =item peername => $string
412    
413 root 1.134 A string used to identify the remote site - usually the DNS hostname
414     (I<not> IDN!) used to create the connection, rarely the IP address.
415 root 1.131
416 root 1.133 Apart from being useful in error messages, this string is also used in TLS
417 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
418 root 1.198 verification will be skipped when C<peername> is not specified or is
419 root 1.144 C<undef>.
420 root 1.131
421 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
422    
423 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
424 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
425 root 1.88 established and will transparently encrypt/decrypt data afterwards.
426 root 1.19
427 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
428     appropriate error message.
429    
430 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
431 root 1.88 automatically when you try to create a TLS handle): this module doesn't
432     have a dependency on that module, so if your module requires it, you have
433 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
434     old, you get an C<EPROTO> error.
435 root 1.26
436 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
437     C<accept>, and for the TLS client side of a connection, use C<connect>
438     mode.
439 root 1.19
440     You can also provide your own TLS connection object, but you have
441     to make sure that you call either C<Net::SSLeay::set_connect_state>
442     or C<Net::SSLeay::set_accept_state> on it before you pass it to
443 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
444     object.
445    
446     At some future point, AnyEvent::Handle might switch to another TLS
447     implementation, then the option to use your own session object will go
448     away.
449 root 1.19
450 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
451     passing in the wrong integer will lead to certain crash. This most often
452     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
453     segmentation fault.
454    
455 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
456 root 1.26
457 root 1.131 =item tls_ctx => $anyevent_tls
458 root 1.19
459 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
460 root 1.207 (unless a connection object was specified directly). If this
461     parameter is missing (or C<undef>), then AnyEvent::Handle will use
462     C<AnyEvent::Handle::TLS_CTX>.
463 root 1.19
464 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
465     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
466     new TLS context object.
467    
468 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
469 root 1.142
470     This callback will be invoked when the TLS/SSL handshake has finished. If
471     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
472     (C<on_stoptls> will not be called in this case).
473    
474     The session in C<< $handle->{tls} >> can still be examined in this
475     callback, even when the handshake was not successful.
476    
477 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
478     callback is in effect, instead, the error message will be passed to C<on_starttls>.
479    
480     Without this callback, handshake failures lead to C<on_error> being
481 root 1.198 called as usual.
482 root 1.143
483 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
484 root 1.143 need to do that, start an zero-second timer instead whose callback can
485     then call C<< ->starttls >> again.
486    
487 root 1.142 =item on_stoptls => $cb->($handle)
488    
489     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
490     set, then it will be invoked after freeing the TLS session. If it is not,
491     then a TLS shutdown condition will be treated like a normal EOF condition
492     on the handle.
493    
494     The session in C<< $handle->{tls} >> can still be examined in this
495     callback.
496    
497     This callback will only be called on TLS shutdowns, not when the
498     underlying handle signals EOF.
499    
500 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
501 root 1.40
502     This is the json coder object used by the C<json> read and write types.
503    
504 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
505 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
506     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
507     guaranteed not to contain any newline character.
508    
509     For security reasons, this encoder will likely I<not> handle numbers and
510     strings, only arrays and objects/hashes. The reason is that originally
511     JSON was self-delimited, but Dougles Crockford thought it was a splendid
512     idea to redefine JSON incompatibly, so this is no longer true.
513    
514     For protocols that used back-to-back JSON texts, this might lead to
515     run-ins, where two or more JSON texts will be interpreted as one JSON
516     text.
517    
518     For this reason, if the default encoder uses L<JSON::XS>, it will default
519     to not allowing anything but arrays and objects/hashes, at least for the
520     forseeable future (it will change at some point). This might or might not
521     be true for the L<JSON> module, so this might cause a security issue.
522    
523     If you depend on either behaviour, you should create your own json object
524     and pass it in explicitly.
525 root 1.40
526 root 1.238 =item cbor => L<CBOR::XS> object
527    
528     This is the cbor coder object used by the C<cbor> read and write types.
529    
530     If you don't supply it, then AnyEvent::Handle will create and use a
531     suitable one (on demand), which will write CBOR without using extensions,
532 root 1.241 if possible.
533 root 1.238
534     Note that you are responsible to depend on the L<CBOR::XS> module if you
535     want to use this functionality, as AnyEvent does not have a dependency on
536     it itself.
537 root 1.40
538 elmex 1.1 =back
539    
540     =cut
541    
542     sub new {
543 root 1.8 my $class = shift;
544     my $self = bless { @_ }, $class;
545    
546 root 1.159 if ($self->{fh}) {
547     $self->_start;
548     return unless $self->{fh}; # could be gone by now
549    
550     } elsif ($self->{connect}) {
551     require AnyEvent::Socket;
552    
553     $self->{peername} = $self->{connect}[0]
554     unless exists $self->{peername};
555    
556     $self->{_skip_drain_rbuf} = 1;
557    
558     {
559     Scalar::Util::weaken (my $self = $self);
560    
561     $self->{_connect} =
562     AnyEvent::Socket::tcp_connect (
563     $self->{connect}[0],
564     $self->{connect}[1],
565     sub {
566     my ($fh, $host, $port, $retry) = @_;
567    
568 root 1.206 delete $self->{_connect}; # no longer needed
569 root 1.205
570 root 1.159 if ($fh) {
571     $self->{fh} = $fh;
572    
573     delete $self->{_skip_drain_rbuf};
574     $self->_start;
575    
576     $self->{on_connect}
577     and $self->{on_connect}($self, $host, $port, sub {
578 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
579 root 1.159 $self->{_skip_drain_rbuf} = 1;
580     &$retry;
581     });
582    
583     } else {
584     if ($self->{on_connect_error}) {
585     $self->{on_connect_error}($self, "$!");
586 root 1.217 $self->destroy if $self;
587 root 1.159 } else {
588 root 1.161 $self->_error ($!, 1);
589 root 1.159 }
590     }
591     },
592     sub {
593     local $self->{fh} = $_[0];
594    
595 root 1.161 $self->{on_prepare}
596 root 1.210 ? $self->{on_prepare}->($self)
597 root 1.161 : ()
598 root 1.159 }
599     );
600     }
601    
602     } else {
603     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
604     }
605    
606     $self
607     }
608    
609     sub _start {
610     my ($self) = @_;
611 root 1.8
612 root 1.194 # too many clueless people try to use udp and similar sockets
613     # with AnyEvent::Handle, do them a favour.
614 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
615     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
616 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
617 root 1.194
618 root 1.245 AnyEvent::fh_unblock $self->{fh};
619 elmex 1.1
620 root 1.176 $self->{_activity} =
621     $self->{_ractivity} =
622     $self->{_wactivity} = AE::now;
623    
624 root 1.203 $self->{read_size} ||= 2048;
625     $self->{max_read_size} = $self->{read_size}
626     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
627    
628 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
629     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
630     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
631    
632 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
633     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
634    
635     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
636 root 1.131
637 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
638 root 1.94 if $self->{tls};
639 root 1.19
640 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
641 root 1.10
642 root 1.66 $self->start_read
643 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
644 root 1.160
645     $self->_drain_wbuf;
646 root 1.8 }
647 elmex 1.2
648 root 1.52 sub _error {
649 root 1.133 my ($self, $errno, $fatal, $message) = @_;
650 root 1.8
651 root 1.52 $! = $errno;
652 root 1.133 $message ||= "$!";
653 root 1.37
654 root 1.52 if ($self->{on_error}) {
655 root 1.133 $self->{on_error}($self, $fatal, $message);
656 root 1.151 $self->destroy if $fatal;
657 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
658 root 1.149 $self->destroy;
659 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
660 root 1.52 }
661 elmex 1.1 }
662    
663 root 1.8 =item $fh = $handle->fh
664 elmex 1.1
665 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
666 elmex 1.1
667     =cut
668    
669 root 1.38 sub fh { $_[0]{fh} }
670 elmex 1.1
671 root 1.8 =item $handle->on_error ($cb)
672 elmex 1.1
673 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
674 elmex 1.1
675 root 1.8 =cut
676    
677     sub on_error {
678     $_[0]{on_error} = $_[1];
679     }
680    
681     =item $handle->on_eof ($cb)
682    
683     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
684 elmex 1.1
685     =cut
686    
687 root 1.8 sub on_eof {
688     $_[0]{on_eof} = $_[1];
689     }
690    
691 root 1.43 =item $handle->on_timeout ($cb)
692    
693 root 1.176 =item $handle->on_rtimeout ($cb)
694    
695     =item $handle->on_wtimeout ($cb)
696    
697     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
698     callback, or disables the callback (but not the timeout) if C<$cb> =
699     C<undef>. See the C<timeout> constructor argument and method.
700 root 1.43
701     =cut
702    
703 root 1.176 # see below
704 root 1.43
705 root 1.70 =item $handle->autocork ($boolean)
706    
707     Enables or disables the current autocork behaviour (see C<autocork>
708 root 1.105 constructor argument). Changes will only take effect on the next write.
709 root 1.70
710     =cut
711    
712 root 1.105 sub autocork {
713     $_[0]{autocork} = $_[1];
714     }
715    
716 root 1.70 =item $handle->no_delay ($boolean)
717    
718     Enables or disables the C<no_delay> setting (see constructor argument of
719     the same name for details).
720    
721     =cut
722    
723     sub no_delay {
724     $_[0]{no_delay} = $_[1];
725    
726 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
727     if $_[0]{fh};
728 root 1.182 }
729    
730     =item $handle->keepalive ($boolean)
731    
732     Enables or disables the C<keepalive> setting (see constructor argument of
733     the same name for details).
734    
735     =cut
736    
737     sub keepalive {
738     $_[0]{keepalive} = $_[1];
739    
740     eval {
741     local $SIG{__DIE__};
742     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
743     if $_[0]{fh};
744     };
745     }
746    
747     =item $handle->oobinline ($boolean)
748    
749     Enables or disables the C<oobinline> setting (see constructor argument of
750     the same name for details).
751    
752     =cut
753    
754     sub oobinline {
755     $_[0]{oobinline} = $_[1];
756    
757     eval {
758     local $SIG{__DIE__};
759     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
760     if $_[0]{fh};
761     };
762     }
763    
764 root 1.142 =item $handle->on_starttls ($cb)
765    
766     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
767    
768     =cut
769    
770     sub on_starttls {
771     $_[0]{on_starttls} = $_[1];
772     }
773    
774     =item $handle->on_stoptls ($cb)
775    
776     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
777    
778     =cut
779    
780 root 1.189 sub on_stoptls {
781 root 1.142 $_[0]{on_stoptls} = $_[1];
782     }
783    
784 root 1.168 =item $handle->rbuf_max ($max_octets)
785    
786     Configures the C<rbuf_max> setting (C<undef> disables it).
787    
788 root 1.209 =item $handle->wbuf_max ($max_octets)
789    
790     Configures the C<wbuf_max> setting (C<undef> disables it).
791    
792 root 1.168 =cut
793    
794     sub rbuf_max {
795     $_[0]{rbuf_max} = $_[1];
796     }
797    
798 root 1.215 sub wbuf_max {
799 root 1.209 $_[0]{wbuf_max} = $_[1];
800     }
801    
802 root 1.43 #############################################################################
803    
804     =item $handle->timeout ($seconds)
805    
806 root 1.176 =item $handle->rtimeout ($seconds)
807    
808     =item $handle->wtimeout ($seconds)
809    
810 root 1.43 Configures (or disables) the inactivity timeout.
811    
812 root 1.218 The timeout will be checked instantly, so this method might destroy the
813     handle before it returns.
814    
815 root 1.176 =item $handle->timeout_reset
816    
817     =item $handle->rtimeout_reset
818    
819     =item $handle->wtimeout_reset
820    
821     Reset the activity timeout, as if data was received or sent.
822    
823     These methods are cheap to call.
824    
825 root 1.43 =cut
826    
827 root 1.176 for my $dir ("", "r", "w") {
828     my $timeout = "${dir}timeout";
829     my $tw = "_${dir}tw";
830     my $on_timeout = "on_${dir}timeout";
831     my $activity = "_${dir}activity";
832     my $cb;
833    
834     *$on_timeout = sub {
835     $_[0]{$on_timeout} = $_[1];
836     };
837    
838     *$timeout = sub {
839     my ($self, $new_value) = @_;
840 root 1.43
841 root 1.201 $new_value >= 0
842     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
843    
844 root 1.176 $self->{$timeout} = $new_value;
845     delete $self->{$tw}; &$cb;
846     };
847 root 1.43
848 root 1.176 *{"${dir}timeout_reset"} = sub {
849     $_[0]{$activity} = AE::now;
850     };
851 root 1.43
852 root 1.176 # main workhorse:
853     # reset the timeout watcher, as neccessary
854     # also check for time-outs
855     $cb = sub {
856     my ($self) = @_;
857    
858     if ($self->{$timeout} && $self->{fh}) {
859     my $NOW = AE::now;
860    
861     # when would the timeout trigger?
862     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
863    
864     # now or in the past already?
865     if ($after <= 0) {
866     $self->{$activity} = $NOW;
867 root 1.43
868 root 1.176 if ($self->{$on_timeout}) {
869     $self->{$on_timeout}($self);
870     } else {
871     $self->_error (Errno::ETIMEDOUT);
872     }
873 root 1.43
874 root 1.176 # callback could have changed timeout value, optimise
875     return unless $self->{$timeout};
876 root 1.43
877 root 1.176 # calculate new after
878     $after = $self->{$timeout};
879 root 1.43 }
880    
881 root 1.176 Scalar::Util::weaken $self;
882     return unless $self; # ->error could have destroyed $self
883 root 1.43
884 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
885     delete $self->{$tw};
886     $cb->($self);
887     };
888     } else {
889     delete $self->{$tw};
890 root 1.43 }
891     }
892     }
893    
894 root 1.9 #############################################################################
895    
896     =back
897    
898     =head2 WRITE QUEUE
899    
900     AnyEvent::Handle manages two queues per handle, one for writing and one
901     for reading.
902    
903     The write queue is very simple: you can add data to its end, and
904     AnyEvent::Handle will automatically try to get rid of it for you.
905    
906 elmex 1.20 When data could be written and the write buffer is shorter then the low
907 root 1.229 water mark, the C<on_drain> callback will be invoked once.
908 root 1.9
909     =over 4
910    
911 root 1.8 =item $handle->on_drain ($cb)
912    
913     Sets the C<on_drain> callback or clears it (see the description of
914     C<on_drain> in the constructor).
915    
916 root 1.193 This method may invoke callbacks (and therefore the handle might be
917     destroyed after it returns).
918    
919 root 1.8 =cut
920    
921     sub on_drain {
922 elmex 1.1 my ($self, $cb) = @_;
923    
924 root 1.8 $self->{on_drain} = $cb;
925    
926     $cb->($self)
927 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
928 root 1.8 }
929    
930     =item $handle->push_write ($data)
931    
932 root 1.209 Queues the given scalar to be written. You can push as much data as
933     you want (only limited by the available memory and C<wbuf_max>), as
934     C<AnyEvent::Handle> buffers it independently of the kernel.
935 root 1.8
936 root 1.193 This method may invoke callbacks (and therefore the handle might be
937     destroyed after it returns).
938    
939 root 1.8 =cut
940    
941 root 1.17 sub _drain_wbuf {
942     my ($self) = @_;
943 root 1.8
944 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
945 root 1.35
946 root 1.8 Scalar::Util::weaken $self;
947 root 1.35
948 root 1.8 my $cb = sub {
949     my $len = syswrite $self->{fh}, $self->{wbuf};
950    
951 root 1.146 if (defined $len) {
952 root 1.8 substr $self->{wbuf}, 0, $len, "";
953    
954 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
955 root 1.43
956 root 1.8 $self->{on_drain}($self)
957 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
958 root 1.8 && $self->{on_drain};
959    
960 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
961 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
962 root 1.52 $self->_error ($!, 1);
963 elmex 1.1 }
964 root 1.8 };
965    
966 root 1.35 # try to write data immediately
967 root 1.70 $cb->() unless $self->{autocork};
968 root 1.8
969 root 1.35 # if still data left in wbuf, we need to poll
970 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
971 root 1.35 if length $self->{wbuf};
972 root 1.209
973     if (
974     defined $self->{wbuf_max}
975     && $self->{wbuf_max} < length $self->{wbuf}
976     ) {
977     $self->_error (Errno::ENOSPC, 1), return;
978     }
979 root 1.8 };
980     }
981    
982 root 1.30 our %WH;
983    
984 root 1.185 # deprecated
985 root 1.30 sub register_write_type($$) {
986     $WH{$_[0]} = $_[1];
987     }
988    
989 root 1.17 sub push_write {
990     my $self = shift;
991    
992 root 1.29 if (@_ > 1) {
993     my $type = shift;
994    
995 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
996     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
997 root 1.29 ->($self, @_);
998     }
999    
1000 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1001     # and diagnose the problem earlier and better.
1002    
1003 root 1.93 if ($self->{tls}) {
1004 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1005 root 1.160 &_dotls ($self) if $self->{fh};
1006 root 1.17 } else {
1007 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1008 root 1.159 $self->_drain_wbuf if $self->{fh};
1009 root 1.17 }
1010     }
1011    
1012 root 1.29 =item $handle->push_write (type => @args)
1013    
1014 root 1.185 Instead of formatting your data yourself, you can also let this module
1015     do the job by specifying a type and type-specific arguments. You
1016     can also specify the (fully qualified) name of a package, in which
1017     case AnyEvent tries to load the package and then expects to find the
1018 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1019 root 1.29
1020 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1021     drop by and tell us):
1022 root 1.29
1023     =over 4
1024    
1025     =item netstring => $string
1026    
1027     Formats the given value as netstring
1028     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1029    
1030     =cut
1031    
1032     register_write_type netstring => sub {
1033     my ($self, $string) = @_;
1034    
1035 root 1.96 (length $string) . ":$string,"
1036 root 1.29 };
1037    
1038 root 1.61 =item packstring => $format, $data
1039    
1040     An octet string prefixed with an encoded length. The encoding C<$format>
1041     uses the same format as a Perl C<pack> format, but must specify a single
1042     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1043     optional C<!>, C<< < >> or C<< > >> modifier).
1044    
1045     =cut
1046    
1047     register_write_type packstring => sub {
1048     my ($self, $format, $string) = @_;
1049    
1050 root 1.65 pack "$format/a*", $string
1051 root 1.61 };
1052    
1053 root 1.39 =item json => $array_or_hashref
1054    
1055 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1056     provide your own JSON object, this means it will be encoded to JSON text
1057     in UTF-8.
1058    
1059 root 1.241 The default encoder might or might not handle every type of JSON value -
1060     it might be limited to arrays and objects for security reasons. See the
1061     C<json> constructor attribute for more details.
1062    
1063     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1064     and hashes, you can write JSON at one end of a handle and read them at the
1065     other end without using any additional framing.
1066    
1067     The JSON text generated by the default encoder is guaranteed not to
1068     contain any newlines: While this module doesn't need delimiters after or
1069     between JSON texts to be able to read them, many other languages depend on
1070     them.
1071 root 1.41
1072 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1073     to send JSON arrays (or objects, although arrays are usually the better
1074     choice as they mimic how function argument passing works) and a newline
1075     after each JSON text:
1076 root 1.41
1077     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1078     $handle->push_write ("\012");
1079    
1080     An AnyEvent::Handle receiver would simply use the C<json> read type and
1081     rely on the fact that the newline will be skipped as leading whitespace:
1082    
1083     $handle->push_read (json => sub { my $array = $_[1]; ... });
1084    
1085     Other languages could read single lines terminated by a newline and pass
1086     this line into their JSON decoder of choice.
1087    
1088 root 1.238 =item cbor => $perl_scalar
1089    
1090     Encodes the given scalar into a CBOR value. Unless you provide your own
1091     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1092     using any extensions, if possible.
1093    
1094     CBOR values are self-delimiting, so you can write CBOR at one end of
1095     a handle and read them at the other end without using any additional
1096     framing.
1097    
1098     A simple nd very very fast RPC protocol that interoperates with
1099     other languages is to send CBOR and receive CBOR values (arrays are
1100     recommended):
1101    
1102     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1103    
1104     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1105    
1106     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1107    
1108 root 1.40 =cut
1109    
1110 root 1.179 sub json_coder() {
1111     eval { require JSON::XS; JSON::XS->new->utf8 }
1112 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1113 root 1.179 }
1114    
1115 root 1.40 register_write_type json => sub {
1116     my ($self, $ref) = @_;
1117    
1118 root 1.238 ($self->{json} ||= json_coder)
1119     ->encode ($ref)
1120     };
1121    
1122     sub cbor_coder() {
1123     require CBOR::XS;
1124     CBOR::XS->new
1125     }
1126    
1127     register_write_type cbor => sub {
1128     my ($self, $scalar) = @_;
1129 root 1.40
1130 root 1.238 ($self->{cbor} ||= cbor_coder)
1131     ->encode ($scalar)
1132 root 1.40 };
1133    
1134 root 1.63 =item storable => $reference
1135    
1136     Freezes the given reference using L<Storable> and writes it to the
1137     handle. Uses the C<nfreeze> format.
1138    
1139     =cut
1140    
1141     register_write_type storable => sub {
1142     my ($self, $ref) = @_;
1143    
1144 root 1.224 require Storable unless $Storable::VERSION;
1145 root 1.63
1146 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1147 root 1.63 };
1148    
1149 root 1.53 =back
1150    
1151 root 1.133 =item $handle->push_shutdown
1152    
1153     Sometimes you know you want to close the socket after writing your data
1154     before it was actually written. One way to do that is to replace your
1155 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1156     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1157     replaces the C<on_drain> callback with:
1158 root 1.133
1159 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1160 root 1.133
1161     This simply shuts down the write side and signals an EOF condition to the
1162     the peer.
1163    
1164     You can rely on the normal read queue and C<on_eof> handling
1165     afterwards. This is the cleanest way to close a connection.
1166    
1167 root 1.193 This method may invoke callbacks (and therefore the handle might be
1168     destroyed after it returns).
1169    
1170 root 1.133 =cut
1171    
1172     sub push_shutdown {
1173 root 1.142 my ($self) = @_;
1174    
1175     delete $self->{low_water_mark};
1176     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1177 root 1.133 }
1178    
1179 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1180    
1181     Instead of one of the predefined types, you can also specify the name of
1182     a package. AnyEvent will try to load the package and then expects to find
1183     a function named C<anyevent_write_type> inside. If it isn't found, it
1184     progressively tries to load the parent package until it either finds the
1185     function (good) or runs out of packages (bad).
1186    
1187     Whenever the given C<type> is used, C<push_write> will the function with
1188     the handle object and the remaining arguments.
1189    
1190     The function is supposed to return a single octet string that will be
1191 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1192 root 1.185 "arguments to on-the-wire-format" converter.
1193 root 1.30
1194 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1195     arguments using the first one.
1196 root 1.29
1197 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1198 root 1.29
1199 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1200     # the "My" modules to be auto-loaded, or just about anywhere when the
1201     # My::Type::anyevent_write_type is defined before invoking it.
1202    
1203     package My::Type;
1204    
1205     sub anyevent_write_type {
1206     my ($handle, $delim, @args) = @_;
1207    
1208     join $delim, @args
1209     }
1210 root 1.29
1211 root 1.30 =cut
1212 root 1.29
1213 root 1.8 #############################################################################
1214    
1215 root 1.9 =back
1216    
1217     =head2 READ QUEUE
1218    
1219     AnyEvent::Handle manages two queues per handle, one for writing and one
1220     for reading.
1221    
1222     The read queue is more complex than the write queue. It can be used in two
1223     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1224     a queue.
1225    
1226     In the simple case, you just install an C<on_read> callback and whenever
1227     new data arrives, it will be called. You can then remove some data (if
1228 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1229 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1230 root 1.197 partial message has been received so far), or change the read queue with
1231     e.g. C<push_read>.
1232 root 1.9
1233     In the more complex case, you want to queue multiple callbacks. In this
1234     case, AnyEvent::Handle will call the first queued callback each time new
1235 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1236 root 1.61 done its job (see C<push_read>, below).
1237 root 1.9
1238     This way you can, for example, push three line-reads, followed by reading
1239     a chunk of data, and AnyEvent::Handle will execute them in order.
1240    
1241     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1242     the specified number of bytes which give an XML datagram.
1243    
1244     # in the default state, expect some header bytes
1245     $handle->on_read (sub {
1246     # some data is here, now queue the length-header-read (4 octets)
1247 root 1.52 shift->unshift_read (chunk => 4, sub {
1248 root 1.9 # header arrived, decode
1249     my $len = unpack "N", $_[1];
1250    
1251     # now read the payload
1252 root 1.52 shift->unshift_read (chunk => $len, sub {
1253 root 1.9 my $xml = $_[1];
1254     # handle xml
1255     });
1256     });
1257     });
1258    
1259 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1260     and another line or "ERROR" for the first request that is sent, and 64
1261     bytes for the second request. Due to the availability of a queue, we can
1262     just pipeline sending both requests and manipulate the queue as necessary
1263     in the callbacks.
1264    
1265     When the first callback is called and sees an "OK" response, it will
1266     C<unshift> another line-read. This line-read will be queued I<before> the
1267     64-byte chunk callback.
1268 root 1.9
1269 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1270 root 1.9 $handle->push_write ("request 1\015\012");
1271    
1272     # we expect "ERROR" or "OK" as response, so push a line read
1273 root 1.52 $handle->push_read (line => sub {
1274 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1275     # so it will be read before the second request reads its 64 bytes
1276     # which are already in the queue when this callback is called
1277     # we don't do this in case we got an error
1278     if ($_[1] eq "OK") {
1279 root 1.52 $_[0]->unshift_read (line => sub {
1280 root 1.9 my $response = $_[1];
1281     ...
1282     });
1283     }
1284     });
1285    
1286 root 1.69 # request two, simply returns 64 octets
1287 root 1.9 $handle->push_write ("request 2\015\012");
1288    
1289     # simply read 64 bytes, always
1290 root 1.52 $handle->push_read (chunk => 64, sub {
1291 root 1.9 my $response = $_[1];
1292     ...
1293     });
1294    
1295     =over 4
1296    
1297 root 1.10 =cut
1298    
1299 root 1.8 sub _drain_rbuf {
1300     my ($self) = @_;
1301 elmex 1.1
1302 root 1.159 # avoid recursion
1303 root 1.167 return if $self->{_skip_drain_rbuf};
1304 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1305 root 1.59
1306     while () {
1307 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1308     # we are draining the buffer, and this can only happen with TLS.
1309 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1310     if exists $self->{_tls_rbuf};
1311 root 1.115
1312 root 1.59 my $len = length $self->{rbuf};
1313 elmex 1.1
1314 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1315 root 1.29 unless ($cb->($self)) {
1316 root 1.163 # no progress can be made
1317     # (not enough data and no data forthcoming)
1318     $self->_error (Errno::EPIPE, 1), return
1319     if $self->{_eof};
1320 root 1.10
1321 root 1.38 unshift @{ $self->{_queue} }, $cb;
1322 root 1.55 last;
1323 root 1.8 }
1324     } elsif ($self->{on_read}) {
1325 root 1.61 last unless $len;
1326    
1327 root 1.8 $self->{on_read}($self);
1328    
1329     if (
1330 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1331     && !@{ $self->{_queue} } # and the queue is still empty
1332     && $self->{on_read} # but we still have on_read
1333 root 1.8 ) {
1334 root 1.55 # no further data will arrive
1335     # so no progress can be made
1336 root 1.150 $self->_error (Errno::EPIPE, 1), return
1337 root 1.55 if $self->{_eof};
1338    
1339     last; # more data might arrive
1340 elmex 1.1 }
1341 root 1.8 } else {
1342     # read side becomes idle
1343 root 1.93 delete $self->{_rw} unless $self->{tls};
1344 root 1.55 last;
1345 root 1.8 }
1346     }
1347    
1348 root 1.80 if ($self->{_eof}) {
1349 root 1.163 $self->{on_eof}
1350     ? $self->{on_eof}($self)
1351     : $self->_error (0, 1, "Unexpected end-of-file");
1352    
1353     return;
1354 root 1.80 }
1355 root 1.55
1356 root 1.169 if (
1357     defined $self->{rbuf_max}
1358     && $self->{rbuf_max} < length $self->{rbuf}
1359     ) {
1360     $self->_error (Errno::ENOSPC, 1), return;
1361     }
1362    
1363 root 1.55 # may need to restart read watcher
1364     unless ($self->{_rw}) {
1365     $self->start_read
1366     if $self->{on_read} || @{ $self->{_queue} };
1367     }
1368 elmex 1.1 }
1369    
1370 root 1.8 =item $handle->on_read ($cb)
1371 elmex 1.1
1372 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1373     the new callback is C<undef>). See the description of C<on_read> in the
1374     constructor.
1375 elmex 1.1
1376 root 1.193 This method may invoke callbacks (and therefore the handle might be
1377     destroyed after it returns).
1378    
1379 root 1.8 =cut
1380    
1381     sub on_read {
1382     my ($self, $cb) = @_;
1383 elmex 1.1
1384 root 1.8 $self->{on_read} = $cb;
1385 root 1.159 $self->_drain_rbuf if $cb;
1386 elmex 1.1 }
1387    
1388 root 1.8 =item $handle->rbuf
1389    
1390 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1391     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1392     much faster, and no less clean).
1393    
1394     The only operation allowed on the read buffer (apart from looking at it)
1395     is removing data from its beginning. Otherwise modifying or appending to
1396     it is not allowed and will lead to hard-to-track-down bugs.
1397    
1398     NOTE: The read buffer should only be used or modified in the C<on_read>
1399     callback or when C<push_read> or C<unshift_read> are used with a single
1400     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1401     will manage the read buffer on their own.
1402 elmex 1.1
1403     =cut
1404    
1405 elmex 1.2 sub rbuf : lvalue {
1406 root 1.8 $_[0]{rbuf}
1407 elmex 1.2 }
1408 elmex 1.1
1409 root 1.8 =item $handle->push_read ($cb)
1410    
1411     =item $handle->unshift_read ($cb)
1412    
1413     Append the given callback to the end of the queue (C<push_read>) or
1414     prepend it (C<unshift_read>).
1415    
1416     The callback is called each time some additional read data arrives.
1417 elmex 1.1
1418 elmex 1.20 It must check whether enough data is in the read buffer already.
1419 elmex 1.1
1420 root 1.8 If not enough data is available, it must return the empty list or a false
1421     value, in which case it will be called repeatedly until enough data is
1422     available (or an error condition is detected).
1423    
1424     If enough data was available, then the callback must remove all data it is
1425     interested in (which can be none at all) and return a true value. After returning
1426     true, it will be removed from the queue.
1427 elmex 1.1
1428 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1429     destroyed after it returns).
1430    
1431 elmex 1.1 =cut
1432    
1433 root 1.30 our %RH;
1434    
1435     sub register_read_type($$) {
1436     $RH{$_[0]} = $_[1];
1437     }
1438    
1439 root 1.8 sub push_read {
1440 root 1.28 my $self = shift;
1441     my $cb = pop;
1442    
1443     if (@_) {
1444     my $type = shift;
1445    
1446 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1447     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1448 root 1.28 ->($self, $cb, @_);
1449     }
1450 elmex 1.1
1451 root 1.38 push @{ $self->{_queue} }, $cb;
1452 root 1.159 $self->_drain_rbuf;
1453 elmex 1.1 }
1454    
1455 root 1.8 sub unshift_read {
1456 root 1.28 my $self = shift;
1457     my $cb = pop;
1458    
1459     if (@_) {
1460     my $type = shift;
1461    
1462 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1463     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1464 root 1.28 ->($self, $cb, @_);
1465     }
1466    
1467 root 1.38 unshift @{ $self->{_queue} }, $cb;
1468 root 1.159 $self->_drain_rbuf;
1469 root 1.8 }
1470 elmex 1.1
1471 root 1.28 =item $handle->push_read (type => @args, $cb)
1472 elmex 1.1
1473 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1474 elmex 1.1
1475 root 1.28 Instead of providing a callback that parses the data itself you can chose
1476     between a number of predefined parsing formats, for chunks of data, lines
1477 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1478     which case AnyEvent tries to load the package and then expects to find the
1479     C<anyevent_read_type> function inside (see "custom read types", below).
1480 elmex 1.1
1481 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1482     drop by and tell us):
1483 root 1.28
1484     =over 4
1485    
1486 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1487 root 1.28
1488     Invoke the callback only once C<$octets> bytes have been read. Pass the
1489     data read to the callback. The callback will never be called with less
1490     data.
1491    
1492     Example: read 2 bytes.
1493    
1494     $handle->push_read (chunk => 2, sub {
1495 root 1.225 say "yay " . unpack "H*", $_[1];
1496 root 1.28 });
1497 elmex 1.1
1498     =cut
1499    
1500 root 1.28 register_read_type chunk => sub {
1501     my ($self, $cb, $len) = @_;
1502 elmex 1.1
1503 root 1.8 sub {
1504     $len <= length $_[0]{rbuf} or return;
1505 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1506 root 1.8 1
1507     }
1508 root 1.28 };
1509 root 1.8
1510 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1511 elmex 1.1
1512 root 1.8 The callback will be called only once a full line (including the end of
1513     line marker, C<$eol>) has been read. This line (excluding the end of line
1514     marker) will be passed to the callback as second argument (C<$line>), and
1515     the end of line marker as the third argument (C<$eol>).
1516 elmex 1.1
1517 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1518     will be interpreted as a fixed record end marker, or it can be a regex
1519     object (e.g. created by C<qr>), in which case it is interpreted as a
1520     regular expression.
1521 elmex 1.1
1522 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1523     undef), then C<qr|\015?\012|> is used (which is good for most internet
1524     protocols).
1525 elmex 1.1
1526 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1527     not marked by the end of line marker.
1528 elmex 1.1
1529 root 1.8 =cut
1530 elmex 1.1
1531 root 1.28 register_read_type line => sub {
1532     my ($self, $cb, $eol) = @_;
1533 elmex 1.1
1534 root 1.76 if (@_ < 3) {
1535 root 1.237 # this is faster then the generic code below
1536 root 1.76 sub {
1537 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1538     or return;
1539 elmex 1.1
1540 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1541     $cb->($_[0], $str, "$1");
1542 root 1.76 1
1543     }
1544     } else {
1545     $eol = quotemeta $eol unless ref $eol;
1546     $eol = qr|^(.*?)($eol)|s;
1547    
1548     sub {
1549     $_[0]{rbuf} =~ s/$eol// or return;
1550 elmex 1.1
1551 root 1.227 $cb->($_[0], "$1", "$2");
1552 root 1.76 1
1553     }
1554 root 1.8 }
1555 root 1.28 };
1556 elmex 1.1
1557 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1558 root 1.36
1559     Makes a regex match against the regex object C<$accept> and returns
1560 root 1.244 everything up to and including the match. All the usual regex variables
1561     ($1, %+ etc.) from the regex match are available in the callback.
1562 root 1.36
1563     Example: read a single line terminated by '\n'.
1564    
1565     $handle->push_read (regex => qr<\n>, sub { ... });
1566    
1567     If C<$reject> is given and not undef, then it determines when the data is
1568     to be rejected: it is matched against the data when the C<$accept> regex
1569     does not match and generates an C<EBADMSG> error when it matches. This is
1570     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1571     receive buffer overflow).
1572    
1573     Example: expect a single decimal number followed by whitespace, reject
1574     anything else (not the use of an anchor).
1575    
1576     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1577    
1578     If C<$skip> is given and not C<undef>, then it will be matched against
1579     the receive buffer when neither C<$accept> nor C<$reject> match,
1580     and everything preceding and including the match will be accepted
1581     unconditionally. This is useful to skip large amounts of data that you
1582     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1583     have to start matching from the beginning. This is purely an optimisation
1584 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1585 root 1.36
1586     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1587 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1588 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1589     it only accepts something not ending in either \015 or \012, as these are
1590     required for the accept regex.
1591    
1592     $handle->push_read (regex =>
1593     qr<\015\012\015\012>,
1594     undef, # no reject
1595     qr<^.*[^\015\012]>,
1596     sub { ... });
1597    
1598     =cut
1599    
1600     register_read_type regex => sub {
1601     my ($self, $cb, $accept, $reject, $skip) = @_;
1602    
1603     my $data;
1604     my $rbuf = \$self->{rbuf};
1605    
1606     sub {
1607     # accept
1608     if ($$rbuf =~ $accept) {
1609     $data .= substr $$rbuf, 0, $+[0], "";
1610 root 1.220 $cb->($_[0], $data);
1611 root 1.36 return 1;
1612     }
1613    
1614     # reject
1615     if ($reject && $$rbuf =~ $reject) {
1616 root 1.220 $_[0]->_error (Errno::EBADMSG);
1617 root 1.36 }
1618    
1619     # skip
1620     if ($skip && $$rbuf =~ $skip) {
1621     $data .= substr $$rbuf, 0, $+[0], "";
1622     }
1623    
1624     ()
1625     }
1626     };
1627    
1628 root 1.61 =item netstring => $cb->($handle, $string)
1629    
1630     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1631    
1632     Throws an error with C<$!> set to EBADMSG on format violations.
1633    
1634     =cut
1635    
1636     register_read_type netstring => sub {
1637     my ($self, $cb) = @_;
1638    
1639     sub {
1640     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1641     if ($_[0]{rbuf} =~ /[^0-9]/) {
1642 root 1.220 $_[0]->_error (Errno::EBADMSG);
1643 root 1.61 }
1644     return;
1645     }
1646    
1647     my $len = $1;
1648    
1649 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1650 root 1.61 my $string = $_[1];
1651     $_[0]->unshift_read (chunk => 1, sub {
1652     if ($_[1] eq ",") {
1653     $cb->($_[0], $string);
1654     } else {
1655 root 1.220 $_[0]->_error (Errno::EBADMSG);
1656 root 1.61 }
1657     });
1658     });
1659    
1660     1
1661     }
1662     };
1663    
1664     =item packstring => $format, $cb->($handle, $string)
1665    
1666     An octet string prefixed with an encoded length. The encoding C<$format>
1667     uses the same format as a Perl C<pack> format, but must specify a single
1668     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1669     optional C<!>, C<< < >> or C<< > >> modifier).
1670    
1671 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1672     EPP uses a prefix of C<N> (4 octtes).
1673 root 1.61
1674     Example: read a block of data prefixed by its length in BER-encoded
1675     format (very efficient).
1676    
1677     $handle->push_read (packstring => "w", sub {
1678     my ($handle, $data) = @_;
1679     });
1680    
1681     =cut
1682    
1683     register_read_type packstring => sub {
1684     my ($self, $cb, $format) = @_;
1685    
1686     sub {
1687     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1688 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1689 root 1.61 or return;
1690    
1691 root 1.77 $format = length pack $format, $len;
1692 root 1.61
1693 root 1.77 # bypass unshift if we already have the remaining chunk
1694     if ($format + $len <= length $_[0]{rbuf}) {
1695     my $data = substr $_[0]{rbuf}, $format, $len;
1696     substr $_[0]{rbuf}, 0, $format + $len, "";
1697     $cb->($_[0], $data);
1698     } else {
1699     # remove prefix
1700     substr $_[0]{rbuf}, 0, $format, "";
1701    
1702     # read remaining chunk
1703     $_[0]->unshift_read (chunk => $len, $cb);
1704     }
1705 root 1.61
1706     1
1707     }
1708     };
1709    
1710 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1711    
1712 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1713     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1714 root 1.40
1715 root 1.240 If a C<json> object was passed to the constructor, then that will be
1716     used for the final decode, otherwise it will create a L<JSON::XS> or
1717     L<JSON::PP> coder object expecting UTF-8.
1718 root 1.40
1719     This read type uses the incremental parser available with JSON version
1720 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1721 root 1.40
1722     Since JSON texts are fully self-delimiting, the C<json> read and write
1723 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1724     the C<json> write type description, above, for an actual example.
1725 root 1.40
1726     =cut
1727    
1728     register_read_type json => sub {
1729 root 1.63 my ($self, $cb) = @_;
1730 root 1.40
1731 root 1.179 my $json = $self->{json} ||= json_coder;
1732 root 1.40
1733     my $data;
1734    
1735     sub {
1736 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1737 root 1.110
1738 root 1.113 if ($ref) {
1739 root 1.220 $_[0]{rbuf} = $json->incr_text;
1740 root 1.113 $json->incr_text = "";
1741 root 1.220 $cb->($_[0], $ref);
1742 root 1.110
1743     1
1744 root 1.113 } elsif ($@) {
1745 root 1.111 # error case
1746 root 1.110 $json->incr_skip;
1747 root 1.40
1748 root 1.220 $_[0]{rbuf} = $json->incr_text;
1749 root 1.40 $json->incr_text = "";
1750    
1751 root 1.220 $_[0]->_error (Errno::EBADMSG);
1752 root 1.114
1753 root 1.113 ()
1754     } else {
1755 root 1.220 $_[0]{rbuf} = "";
1756 root 1.114
1757 root 1.113 ()
1758     }
1759 root 1.40 }
1760     };
1761    
1762 root 1.238 =item cbor => $cb->($handle, $scalar)
1763    
1764     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1765     error occurs, an C<EBADMSG> error will be raised.
1766    
1767     If a L<CBOR::XS> object was passed to the constructor, then that will be
1768     used for the final decode, otherwise it will create a CBOR coder without
1769     enabling any options.
1770    
1771     You have to provide a dependency to L<CBOR::XS> on your own: this module
1772     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1773     itself.
1774    
1775     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1776     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1777     the C<cbor> write type description, above, for an actual example.
1778    
1779     =cut
1780    
1781     register_read_type cbor => sub {
1782     my ($self, $cb) = @_;
1783    
1784     my $cbor = $self->{cbor} ||= cbor_coder;
1785    
1786     my $data;
1787    
1788     sub {
1789     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1790    
1791     if (@value) {
1792     $cb->($_[0], @value);
1793    
1794     1
1795     } elsif ($@) {
1796     # error case
1797     $cbor->incr_reset;
1798    
1799     $_[0]->_error (Errno::EBADMSG);
1800    
1801     ()
1802     } else {
1803     ()
1804     }
1805     }
1806     };
1807    
1808 root 1.63 =item storable => $cb->($handle, $ref)
1809    
1810     Deserialises a L<Storable> frozen representation as written by the
1811     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1812     data).
1813    
1814     Raises C<EBADMSG> error if the data could not be decoded.
1815    
1816     =cut
1817    
1818     register_read_type storable => sub {
1819     my ($self, $cb) = @_;
1820    
1821 root 1.224 require Storable unless $Storable::VERSION;
1822 root 1.63
1823     sub {
1824     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1825 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1826 root 1.63 or return;
1827    
1828 root 1.77 my $format = length pack "w", $len;
1829 root 1.63
1830 root 1.77 # bypass unshift if we already have the remaining chunk
1831     if ($format + $len <= length $_[0]{rbuf}) {
1832     my $data = substr $_[0]{rbuf}, $format, $len;
1833     substr $_[0]{rbuf}, 0, $format + $len, "";
1834 root 1.232
1835     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1836     or return $_[0]->_error (Errno::EBADMSG);
1837 root 1.77 } else {
1838     # remove prefix
1839     substr $_[0]{rbuf}, 0, $format, "";
1840    
1841     # read remaining chunk
1842     $_[0]->unshift_read (chunk => $len, sub {
1843 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1844     or $_[0]->_error (Errno::EBADMSG);
1845 root 1.77 });
1846     }
1847    
1848     1
1849 root 1.63 }
1850     };
1851    
1852 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1853    
1854     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1855     record without consuming anything. Only SSL version 3 or higher
1856     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1857     SSL2-compatible framing is supported).
1858    
1859     If it detects that the input data is likely TLS, it calls the callback
1860     with a true value for C<$detect> and the (on-wire) TLS version as second
1861     and third argument (C<$major> is C<3>, and C<$minor> is 0..3 for SSL
1862     3.0, TLS 1.0, 1.1 and 1.2, respectively). If it detects the input to
1863     be definitely not TLS, it calls the callback with a false value for
1864     C<$detect>.
1865    
1866     The callback could use this information to decide whether or not to start
1867     TLS negotiation.
1868    
1869     In all cases the data read so far is passed to the following read
1870     handlers.
1871    
1872     Usually you want to use the C<tls_autostart> read type instead.
1873    
1874     If you want to design a protocol that works in the presence of TLS
1875     dtection, make sure that any non-TLS data doesn't start with the octet 22
1876     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1877     read type does are a bit more strict, but might losen in the future to
1878     accomodate protocol changes.
1879    
1880     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1881     L<Net::SSLeay>).
1882    
1883 root 1.247 =item tls_autostart => [$tls_ctx, ]$tls
1884 root 1.236
1885     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1886     to start tls by calling C<starttls> with the given arguments.
1887    
1888     In practise, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1889     been configured to accept, as servers do not normally send a handshake on
1890     their own and ths cannot be detected in this way.
1891    
1892     See C<tls_detect> above for more details.
1893    
1894     Example: give the client a chance to start TLS before accepting a text
1895     line.
1896    
1897 root 1.247 $hdl->push_read (tls_autostart => "accept");
1898 root 1.236 $hdl->push_read (line => sub {
1899     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1900     });
1901    
1902     =cut
1903    
1904     register_read_type tls_detect => sub {
1905     my ($self, $cb) = @_;
1906    
1907     sub {
1908     # this regex matches a full or partial tls record
1909     if (
1910     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1911     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1912     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1913     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1914     ) {
1915     return if 3 != length $1; # partial match, can't decide yet
1916    
1917     # full match, valid TLS record
1918     my ($major, $minor) = unpack "CC", $1;
1919 root 1.250 $cb->($self, "accept", $major, $minor);
1920 root 1.236 } else {
1921     # mismatch == guaranteed not TLS
1922     $cb->($self, undef);
1923     }
1924    
1925     1
1926     }
1927     };
1928    
1929     register_read_type tls_autostart => sub {
1930     my ($self, @tls) = @_;
1931    
1932     $RH{tls_detect}($self, sub {
1933     return unless $_[1];
1934     $_[0]->starttls (@tls);
1935     })
1936     };
1937    
1938 root 1.28 =back
1939    
1940 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1941 root 1.30
1942 root 1.185 Instead of one of the predefined types, you can also specify the name
1943     of a package. AnyEvent will try to load the package and then expects to
1944     find a function named C<anyevent_read_type> inside. If it isn't found, it
1945     progressively tries to load the parent package until it either finds the
1946     function (good) or runs out of packages (bad).
1947    
1948     Whenever this type is used, C<push_read> will invoke the function with the
1949     handle object, the original callback and the remaining arguments.
1950    
1951     The function is supposed to return a callback (usually a closure) that
1952     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1953     mentally treat the function as a "configurable read type to read callback"
1954     converter.
1955    
1956     It should invoke the original callback when it is done reading (remember
1957     to pass C<$handle> as first argument as all other callbacks do that,
1958     although there is no strict requirement on this).
1959 root 1.30
1960 root 1.185 For examples, see the source of this module (F<perldoc -m
1961     AnyEvent::Handle>, search for C<register_read_type>)).
1962 root 1.30
1963 root 1.10 =item $handle->stop_read
1964    
1965     =item $handle->start_read
1966    
1967 root 1.18 In rare cases you actually do not want to read anything from the
1968 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1969 root 1.22 any queued callbacks will be executed then. To start reading again, call
1970 root 1.10 C<start_read>.
1971    
1972 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1973     you change the C<on_read> callback or push/unshift a read callback, and it
1974     will automatically C<stop_read> for you when neither C<on_read> is set nor
1975     there are any read requests in the queue.
1976    
1977 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1978     as TLS does not support half-duplex connections. In current versions they
1979     work as expected, as this behaviour is required to avoid certain resource
1980     attacks, where the program would be forced to read (and buffer) arbitrary
1981     amounts of data before being able to send some data. The drawback is that
1982     some readings of the the SSL/TLS specifications basically require this
1983     attack to be working, as SSL/TLS implementations might stall sending data
1984     during a rehandshake.
1985    
1986     As a guideline, during the initial handshake, you should not stop reading,
1987 root 1.226 and as a client, it might cause problems, depending on your application.
1988 root 1.93
1989 root 1.10 =cut
1990    
1991     sub stop_read {
1992     my ($self) = @_;
1993 elmex 1.1
1994 root 1.213 delete $self->{_rw};
1995 root 1.8 }
1996 elmex 1.1
1997 root 1.10 sub start_read {
1998     my ($self) = @_;
1999    
2000 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2001 root 1.10 Scalar::Util::weaken $self;
2002    
2003 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2004 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2005 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2006 root 1.10
2007     if ($len > 0) {
2008 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2009 root 1.43
2010 root 1.93 if ($self->{tls}) {
2011     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2012 root 1.97
2013 root 1.93 &_dotls ($self);
2014     } else {
2015 root 1.159 $self->_drain_rbuf;
2016 root 1.93 }
2017 root 1.10
2018 root 1.203 if ($len == $self->{read_size}) {
2019     $self->{read_size} *= 2;
2020     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2021     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2022     }
2023    
2024 root 1.10 } elsif (defined $len) {
2025 root 1.38 delete $self->{_rw};
2026     $self->{_eof} = 1;
2027 root 1.159 $self->_drain_rbuf;
2028 root 1.10
2029 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
2030 root 1.52 return $self->_error ($!, 1);
2031 root 1.10 }
2032 root 1.175 };
2033 root 1.10 }
2034 elmex 1.1 }
2035    
2036 root 1.133 our $ERROR_SYSCALL;
2037     our $ERROR_WANT_READ;
2038    
2039     sub _tls_error {
2040     my ($self, $err) = @_;
2041    
2042     return $self->_error ($!, 1)
2043     if $err == Net::SSLeay::ERROR_SYSCALL ();
2044    
2045 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2046 root 1.137
2047     # reduce error string to look less scary
2048     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2049    
2050 root 1.143 if ($self->{_on_starttls}) {
2051     (delete $self->{_on_starttls})->($self, undef, $err);
2052     &_freetls;
2053     } else {
2054     &_freetls;
2055 root 1.150 $self->_error (Errno::EPROTO, 1, $err);
2056 root 1.143 }
2057 root 1.133 }
2058    
2059 root 1.97 # poll the write BIO and send the data if applicable
2060 root 1.133 # also decode read data if possible
2061     # this is basiclaly our TLS state machine
2062     # more efficient implementations are possible with openssl,
2063     # but not with the buggy and incomplete Net::SSLeay.
2064 root 1.19 sub _dotls {
2065     my ($self) = @_;
2066    
2067 root 1.97 my $tmp;
2068 root 1.56
2069 root 1.239 while (length $self->{_tls_wbuf}) {
2070     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2071     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2072    
2073     return $self->_tls_error ($tmp)
2074     if $tmp != $ERROR_WANT_READ
2075     && ($tmp != $ERROR_SYSCALL || $!);
2076    
2077     last;
2078 root 1.22 }
2079 root 1.133
2080 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2081 root 1.19 }
2082    
2083 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2084     unless (length $tmp) {
2085 root 1.143 $self->{_on_starttls}
2086     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2087 root 1.92 &_freetls;
2088 root 1.143
2089 root 1.142 if ($self->{on_stoptls}) {
2090     $self->{on_stoptls}($self);
2091     return;
2092     } else {
2093     # let's treat SSL-eof as we treat normal EOF
2094     delete $self->{_rw};
2095     $self->{_eof} = 1;
2096     }
2097 root 1.56 }
2098 root 1.91
2099 root 1.116 $self->{_tls_rbuf} .= $tmp;
2100 root 1.159 $self->_drain_rbuf;
2101 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2102 root 1.23 }
2103    
2104 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2105 root 1.133 return $self->_tls_error ($tmp)
2106     if $tmp != $ERROR_WANT_READ
2107 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2108 root 1.91
2109 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2110     $self->{wbuf} .= $tmp;
2111 root 1.91 $self->_drain_wbuf;
2112 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2113 root 1.91 }
2114 root 1.142
2115     $self->{_on_starttls}
2116     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2117 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2118 root 1.19 }
2119    
2120 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2121    
2122     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2123     object is created, you can also do that at a later time by calling
2124 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2125 root 1.25
2126 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2127     write data and then call C<< ->starttls >> then TLS negotiation will start
2128 root 1.234 immediately, after which the queued write data is then sent. This might
2129     change in future versions, so best make sure you have no outstanding write
2130     data when calling this method.
2131 root 1.157
2132 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2133     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2134    
2135 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2136     when AnyEvent::Handle has to create its own TLS connection object, or
2137     a hash reference with C<< key => value >> pairs that will be used to
2138     construct a new context.
2139    
2140     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2141     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2142     changed to your liking. Note that the handshake might have already started
2143     when this function returns.
2144 root 1.38
2145 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2146 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2147     stream after stopping TLS.
2148 root 1.92
2149 root 1.193 This method may invoke callbacks (and therefore the handle might be
2150     destroyed after it returns).
2151    
2152 root 1.25 =cut
2153    
2154 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2155    
2156 root 1.19 sub starttls {
2157 root 1.160 my ($self, $tls, $ctx) = @_;
2158    
2159     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2160     if $self->{tls};
2161    
2162 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2163     eval {
2164     require Net::SSLeay;
2165     require AnyEvent::TLS;
2166     1
2167     } or return $self->_error (Errno::EPROTO, 1, "TLS support not available on this system");
2168     }
2169    
2170 root 1.160 $self->{tls} = $tls;
2171     $self->{tls_ctx} = $ctx if @_ > 2;
2172    
2173     return unless $self->{fh};
2174 root 1.19
2175 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2176     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2177 root 1.133
2178 root 1.180 $tls = delete $self->{tls};
2179 root 1.160 $ctx = $self->{tls_ctx};
2180 root 1.131
2181 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2182    
2183 root 1.131 if ("HASH" eq ref $ctx) {
2184 root 1.137 if ($ctx->{cache}) {
2185     my $key = $ctx+0;
2186     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2187     } else {
2188     $ctx = new AnyEvent::TLS %$ctx;
2189     }
2190 root 1.131 }
2191 root 1.92
2192 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2193 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2194 root 1.19
2195 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2196     # but the openssl maintainers basically said: "trust us, it just works".
2197     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2198 root 1.249 # and mismaintained ssleay-module didn't offer them for a decade or so).
2199 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2200 root 1.87 #
2201     # in short: this is a mess.
2202 root 1.249 #
2203 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2204 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2205 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2206     # have identity issues in that area.
2207 root 1.249 # Net::SSLeay::set_mode ($ssl,
2208 root 1.131 # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2209     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2210 root 1.249 Net::SSLeay::set_mode ($tls, 1|2);
2211 root 1.21
2212 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2213     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2214 root 1.19
2215 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2216     $self->{rbuf} = "";
2217 root 1.172
2218 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2219 root 1.19
2220 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2221 root 1.143 if $self->{on_starttls};
2222 root 1.142
2223 root 1.93 &_dotls; # need to trigger the initial handshake
2224     $self->start_read; # make sure we actually do read
2225 root 1.19 }
2226    
2227 root 1.25 =item $handle->stoptls
2228    
2229 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2230     sending a close notify to the other side, but since OpenSSL doesn't
2231 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2232 root 1.160 the stream afterwards.
2233 root 1.25
2234 root 1.193 This method may invoke callbacks (and therefore the handle might be
2235     destroyed after it returns).
2236    
2237 root 1.25 =cut
2238    
2239     sub stoptls {
2240     my ($self) = @_;
2241    
2242 root 1.192 if ($self->{tls} && $self->{fh}) {
2243 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2244 root 1.92
2245     &_dotls;
2246    
2247 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2248     # # we, we... have to use openssl :/#d#
2249     # &_freetls;#d#
2250 root 1.92 }
2251     }
2252    
2253     sub _freetls {
2254     my ($self) = @_;
2255    
2256     return unless $self->{tls};
2257 root 1.38
2258 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2259 root 1.171 if $self->{tls} > 0;
2260 root 1.92
2261 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2262 root 1.25 }
2263    
2264 root 1.216 =item $handle->resettls
2265    
2266     This rarely-used method simply resets and TLS state on the handle, usually
2267     causing data loss.
2268    
2269     One case where it may be useful is when you want to skip over the data in
2270     the stream but you are not interested in interpreting it, so data loss is
2271     no concern.
2272    
2273     =cut
2274    
2275     *resettls = \&_freetls;
2276    
2277 root 1.19 sub DESTROY {
2278 root 1.120 my ($self) = @_;
2279 root 1.19
2280 root 1.92 &_freetls;
2281 root 1.62
2282     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2283    
2284 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2285 root 1.62 my $fh = delete $self->{fh};
2286     my $wbuf = delete $self->{wbuf};
2287    
2288     my @linger;
2289    
2290 root 1.175 push @linger, AE::io $fh, 1, sub {
2291 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2292    
2293     if ($len > 0) {
2294     substr $wbuf, 0, $len, "";
2295 root 1.243 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2296 root 1.62 @linger = (); # end
2297     }
2298 root 1.175 };
2299     push @linger, AE::timer $linger, 0, sub {
2300 root 1.62 @linger = ();
2301 root 1.175 };
2302 root 1.62 }
2303 root 1.19 }
2304    
2305 root 1.99 =item $handle->destroy
2306    
2307 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2308 root 1.141 no further callbacks will be invoked and as many resources as possible
2309 root 1.165 will be freed. Any method you will call on the handle object after
2310     destroying it in this way will be silently ignored (and it will return the
2311     empty list).
2312 root 1.99
2313 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2314     object and it will simply shut down. This works in fatal error and EOF
2315     callbacks, as well as code outside. It does I<NOT> work in a read or write
2316     callback, so when you want to destroy the AnyEvent::Handle object from
2317     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2318     that case.
2319    
2320 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2321     will be removed as well, so if those are the only reference holders (as
2322     is common), then one doesn't need to do anything special to break any
2323     reference cycles.
2324    
2325 root 1.99 The handle might still linger in the background and write out remaining
2326     data, as specified by the C<linger> option, however.
2327    
2328     =cut
2329    
2330     sub destroy {
2331     my ($self) = @_;
2332    
2333     $self->DESTROY;
2334     %$self = ();
2335 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2336     }
2337    
2338 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2339     #nop
2340 root 1.99 }
2341    
2342 root 1.192 =item $handle->destroyed
2343    
2344     Returns false as long as the handle hasn't been destroyed by a call to C<<
2345     ->destroy >>, true otherwise.
2346    
2347     Can be useful to decide whether the handle is still valid after some
2348     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2349     C<< ->starttls >> and other methods can call user callbacks, which in turn
2350     can destroy the handle, so work can be avoided by checking sometimes:
2351    
2352     $hdl->starttls ("accept");
2353     return if $hdl->destroyed;
2354     $hdl->push_write (...
2355    
2356     Note that the call to C<push_write> will silently be ignored if the handle
2357     has been destroyed, so often you can just ignore the possibility of the
2358     handle being destroyed.
2359    
2360     =cut
2361    
2362     sub destroyed { 0 }
2363     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2364    
2365 root 1.19 =item AnyEvent::Handle::TLS_CTX
2366    
2367 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2368     for TLS mode.
2369 root 1.19
2370 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2371 root 1.19
2372     =cut
2373    
2374     our $TLS_CTX;
2375    
2376     sub TLS_CTX() {
2377 root 1.131 $TLS_CTX ||= do {
2378     require AnyEvent::TLS;
2379 root 1.19
2380 root 1.131 new AnyEvent::TLS
2381 root 1.19 }
2382     }
2383    
2384 elmex 1.1 =back
2385    
2386 root 1.95
2387     =head1 NONFREQUENTLY ASKED QUESTIONS
2388    
2389     =over 4
2390    
2391 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2392     still get further invocations!
2393    
2394     That's because AnyEvent::Handle keeps a reference to itself when handling
2395     read or write callbacks.
2396    
2397     It is only safe to "forget" the reference inside EOF or error callbacks,
2398     from within all other callbacks, you need to explicitly call the C<<
2399     ->destroy >> method.
2400    
2401 root 1.208 =item Why is my C<on_eof> callback never called?
2402    
2403     Probably because your C<on_error> callback is being called instead: When
2404     you have outstanding requests in your read queue, then an EOF is
2405     considered an error as you clearly expected some data.
2406    
2407     To avoid this, make sure you have an empty read queue whenever your handle
2408 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2409 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2410     queue.
2411    
2412     See also the next question, which explains this in a bit more detail.
2413    
2414     =item How can I serve requests in a loop?
2415    
2416     Most protocols consist of some setup phase (authentication for example)
2417     followed by a request handling phase, where the server waits for requests
2418     and handles them, in a loop.
2419    
2420     There are two important variants: The first (traditional, better) variant
2421     handles requests until the server gets some QUIT command, causing it to
2422     close the connection first (highly desirable for a busy TCP server). A
2423     client dropping the connection is an error, which means this variant can
2424     detect an unexpected detection close.
2425    
2426 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2427 root 1.208 pushing the "read request start" handler on it:
2428    
2429     # we assume a request starts with a single line
2430     my @start_request; @start_request = (line => sub {
2431     my ($hdl, $line) = @_;
2432    
2433     ... handle request
2434    
2435     # push next request read, possibly from a nested callback
2436     $hdl->push_read (@start_request);
2437     });
2438    
2439     # auth done, now go into request handling loop
2440     # now push the first @start_request
2441     $hdl->push_read (@start_request);
2442    
2443     By always having an outstanding C<push_read>, the handle always expects
2444     some data and raises the C<EPIPE> error when the connction is dropped
2445     unexpectedly.
2446    
2447     The second variant is a protocol where the client can drop the connection
2448     at any time. For TCP, this means that the server machine may run out of
2449 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2450 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2451     kinds of protocols are common (and sometimes even the best solution to the
2452     problem).
2453    
2454     Having an outstanding read request at all times is possible if you ignore
2455     C<EPIPE> errors, but this doesn't help with when the client drops the
2456     connection during a request, which would still be an error.
2457    
2458     A better solution is to push the initial request read in an C<on_read>
2459     callback. This avoids an error, as when the server doesn't expect data
2460     (i.e. is idly waiting for the next request, an EOF will not raise an
2461     error, but simply result in an C<on_eof> callback. It is also a bit slower
2462     and simpler:
2463    
2464     # auth done, now go into request handling loop
2465     $hdl->on_read (sub {
2466     my ($hdl) = @_;
2467    
2468     # called each time we receive data but the read queue is empty
2469     # simply start read the request
2470    
2471     $hdl->push_read (line => sub {
2472     my ($hdl, $line) = @_;
2473    
2474     ... handle request
2475    
2476     # do nothing special when the request has been handled, just
2477     # let the request queue go empty.
2478     });
2479     });
2480    
2481 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2482     reading?
2483    
2484     Unlike, say, TCP, TLS connections do not consist of two independent
2485 root 1.198 communication channels, one for each direction. Or put differently, the
2486 root 1.101 read and write directions are not independent of each other: you cannot
2487     write data unless you are also prepared to read, and vice versa.
2488    
2489 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2490 root 1.101 callback invocations when you are not expecting any read data - the reason
2491     is that AnyEvent::Handle always reads in TLS mode.
2492    
2493     During the connection, you have to make sure that you always have a
2494     non-empty read-queue, or an C<on_read> watcher. At the end of the
2495     connection (or when you no longer want to use it) you can call the
2496     C<destroy> method.
2497    
2498 root 1.95 =item How do I read data until the other side closes the connection?
2499    
2500 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2501     to achieve this is by setting an C<on_read> callback that does nothing,
2502     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2503     will be in C<$_[0]{rbuf}>:
2504 root 1.95
2505     $handle->on_read (sub { });
2506     $handle->on_eof (undef);
2507     $handle->on_error (sub {
2508     my $data = delete $_[0]{rbuf};
2509     });
2510    
2511 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2512     which is not normally allowed by the API. It is expressly permitted in
2513     this case only, as the handle object needs to be destroyed afterwards.
2514    
2515 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2516     and packets loss, might get closed quite violently with an error, when in
2517 root 1.198 fact all data has been received.
2518 root 1.95
2519 root 1.101 It is usually better to use acknowledgements when transferring data,
2520 root 1.95 to make sure the other side hasn't just died and you got the data
2521     intact. This is also one reason why so many internet protocols have an
2522     explicit QUIT command.
2523    
2524 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2525     all data has been written?
2526 root 1.95
2527     After writing your last bits of data, set the C<on_drain> callback
2528     and destroy the handle in there - with the default setting of
2529     C<low_water_mark> this will be called precisely when all data has been
2530     written to the socket:
2531    
2532     $handle->push_write (...);
2533     $handle->on_drain (sub {
2534 root 1.231 AE::log debug => "All data submitted to the kernel.";
2535 root 1.95 undef $handle;
2536     });
2537    
2538 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2539     consider using C<< ->push_shutdown >> instead.
2540    
2541     =item I want to contact a TLS/SSL server, I don't care about security.
2542    
2543     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2544 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2545 root 1.143 parameter:
2546    
2547 root 1.144 tcp_connect $host, $port, sub {
2548     my ($fh) = @_;
2549 root 1.143
2550 root 1.144 my $handle = new AnyEvent::Handle
2551     fh => $fh,
2552     tls => "connect",
2553     on_error => sub { ... };
2554    
2555     $handle->push_write (...);
2556     };
2557 root 1.143
2558     =item I want to contact a TLS/SSL server, I do care about security.
2559    
2560 root 1.144 Then you should additionally enable certificate verification, including
2561     peername verification, if the protocol you use supports it (see
2562     L<AnyEvent::TLS>, C<verify_peername>).
2563    
2564     E.g. for HTTPS:
2565    
2566     tcp_connect $host, $port, sub {
2567     my ($fh) = @_;
2568    
2569     my $handle = new AnyEvent::Handle
2570     fh => $fh,
2571     peername => $host,
2572     tls => "connect",
2573     tls_ctx => { verify => 1, verify_peername => "https" },
2574     ...
2575    
2576     Note that you must specify the hostname you connected to (or whatever
2577     "peername" the protocol needs) as the C<peername> argument, otherwise no
2578     peername verification will be done.
2579    
2580     The above will use the system-dependent default set of trusted CA
2581     certificates. If you want to check against a specific CA, add the
2582     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2583    
2584     tls_ctx => {
2585     verify => 1,
2586     verify_peername => "https",
2587     ca_file => "my-ca-cert.pem",
2588     },
2589    
2590     =item I want to create a TLS/SSL server, how do I do that?
2591    
2592     Well, you first need to get a server certificate and key. You have
2593     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2594     self-signed certificate (cheap. check the search engine of your choice,
2595     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2596     nice program for that purpose).
2597    
2598     Then create a file with your private key (in PEM format, see
2599     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2600     file should then look like this:
2601    
2602     -----BEGIN RSA PRIVATE KEY-----
2603     ...header data
2604     ... lots of base64'y-stuff
2605     -----END RSA PRIVATE KEY-----
2606    
2607     -----BEGIN CERTIFICATE-----
2608     ... lots of base64'y-stuff
2609     -----END CERTIFICATE-----
2610    
2611     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2612     specify this file as C<cert_file>:
2613    
2614     tcp_server undef, $port, sub {
2615     my ($fh) = @_;
2616    
2617     my $handle = new AnyEvent::Handle
2618     fh => $fh,
2619     tls => "accept",
2620     tls_ctx => { cert_file => "my-server-keycert.pem" },
2621     ...
2622 root 1.143
2623 root 1.144 When you have intermediate CA certificates that your clients might not
2624     know about, just append them to the C<cert_file>.
2625 root 1.143
2626 root 1.95 =back
2627    
2628 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2629    
2630     In many cases, you might want to subclass AnyEvent::Handle.
2631    
2632     To make this easier, a given version of AnyEvent::Handle uses these
2633     conventions:
2634    
2635     =over 4
2636    
2637     =item * all constructor arguments become object members.
2638    
2639     At least initially, when you pass a C<tls>-argument to the constructor it
2640 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2641 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2642    
2643     =item * other object member names are prefixed with an C<_>.
2644    
2645     All object members not explicitly documented (internal use) are prefixed
2646     with an underscore character, so the remaining non-C<_>-namespace is free
2647     for use for subclasses.
2648    
2649     =item * all members not documented here and not prefixed with an underscore
2650     are free to use in subclasses.
2651    
2652     Of course, new versions of AnyEvent::Handle may introduce more "public"
2653 root 1.198 member variables, but that's just life. At least it is documented.
2654 root 1.38
2655     =back
2656    
2657 elmex 1.1 =head1 AUTHOR
2658    
2659 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2660 elmex 1.1
2661     =cut
2662    
2663 root 1.230 1
2664