ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.55
Committed: Tue Jun 3 16:15:30 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.54: +17 -8 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.54 our $VERSION = 4.12;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.10 and no read request is in the queue.
111 root 1.8
112     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113 root 1.40 method or access the C<$handle->{rbuf}> member directly.
114 root 1.8
115     When an EOF condition is detected then AnyEvent::Handle will first try to
116     feed all the remaining data to the queued callbacks and C<on_read> before
117     calling the C<on_eof> callback. If no progress can be made, then a fatal
118     error will be raised (with C<$!> set to C<EPIPE>).
119 elmex 1.1
120 root 1.40 =item on_drain => $cb->($handle)
121 elmex 1.1
122 root 1.8 This sets the callback that is called when the write buffer becomes empty
123     (or when the callback is set and the buffer is empty already).
124 elmex 1.1
125 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
126 elmex 1.2
127 root 1.43 =item timeout => $fractional_seconds
128    
129     If non-zero, then this enables an "inactivity" timeout: whenever this many
130     seconds pass without a successful read or write on the underlying file
131     handle, the C<on_timeout> callback will be invoked (and if that one is
132 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
133 root 1.43
134     Note that timeout processing is also active when you currently do not have
135     any outstanding read or write requests: If you plan to keep the connection
136     idle then you should disable the timout temporarily or ignore the timeout
137     in the C<on_timeout> callback.
138    
139     Zero (the default) disables this timeout.
140    
141     =item on_timeout => $cb->($handle)
142    
143     Called whenever the inactivity timeout passes. If you return from this
144     callback, then the timeout will be reset as if some activity had happened,
145     so this condition is not fatal in any way.
146    
147 root 1.8 =item rbuf_max => <bytes>
148 elmex 1.2
149 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150     when the read buffer ever (strictly) exceeds this size. This is useful to
151     avoid denial-of-service attacks.
152 elmex 1.2
153 root 1.8 For example, a server accepting connections from untrusted sources should
154     be configured to accept only so-and-so much data that it cannot act on
155     (for example, when expecting a line, an attacker could send an unlimited
156     amount of data without a callback ever being called as long as the line
157     isn't finished).
158 elmex 1.2
159 root 1.8 =item read_size => <bytes>
160 elmex 1.2
161 root 1.8 The default read block size (the amount of bytes this module will try to read
162 root 1.46 during each (loop iteration). Default: C<8192>.
163 root 1.8
164     =item low_water_mark => <bytes>
165    
166     Sets the amount of bytes (default: C<0>) that make up an "empty" write
167     buffer: If the write reaches this size or gets even samller it is
168     considered empty.
169 elmex 1.2
170 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
171    
172     When this parameter is given, it enables TLS (SSL) mode, that means it
173     will start making tls handshake and will transparently encrypt/decrypt
174     data.
175    
176 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
177     automatically when you try to create a TLS handle).
178    
179 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
180     connection, use C<connect> mode.
181    
182     You can also provide your own TLS connection object, but you have
183     to make sure that you call either C<Net::SSLeay::set_connect_state>
184     or C<Net::SSLeay::set_accept_state> on it before you pass it to
185     AnyEvent::Handle.
186    
187 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
188    
189 root 1.19 =item tls_ctx => $ssl_ctx
190    
191     Use the given Net::SSLeay::CTX object to create the new TLS connection
192     (unless a connection object was specified directly). If this parameter is
193     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194    
195 root 1.40 =item json => JSON or JSON::XS object
196    
197     This is the json coder object used by the C<json> read and write types.
198    
199 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
200     suitable one, which will write and expect UTF-8 encoded JSON texts.
201 root 1.40
202     Note that you are responsible to depend on the JSON module if you want to
203     use this functionality, as AnyEvent does not have a dependency itself.
204    
205 root 1.38 =item filter_r => $cb
206    
207     =item filter_w => $cb
208    
209     These exist, but are undocumented at this time.
210    
211 elmex 1.1 =back
212    
213     =cut
214    
215     sub new {
216 root 1.8 my $class = shift;
217    
218     my $self = bless { @_ }, $class;
219    
220     $self->{fh} or Carp::croak "mandatory argument fh is missing";
221    
222     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 elmex 1.1
224 root 1.19 if ($self->{tls}) {
225     require Net::SSLeay;
226     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227     }
228    
229 root 1.43 # $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230     # $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231     # $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 root 1.8 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 root 1.43
234 root 1.44 $self->{_activity} = AnyEvent->now;
235 root 1.43 $self->_timeout;
236 elmex 1.1
237 root 1.10 $self->start_read;
238    
239 root 1.8 $self
240     }
241 elmex 1.2
242 root 1.8 sub _shutdown {
243     my ($self) = @_;
244 elmex 1.2
245 root 1.46 delete $self->{_tw};
246 root 1.38 delete $self->{_rw};
247     delete $self->{_ww};
248 root 1.8 delete $self->{fh};
249 root 1.52
250     $self->stoptls;
251 root 1.8 }
252    
253 root 1.52 sub _error {
254     my ($self, $errno, $fatal) = @_;
255 root 1.8
256 root 1.52 $self->_shutdown
257     if $fatal;
258 elmex 1.1
259 root 1.52 $! = $errno;
260 root 1.37
261 root 1.52 if ($self->{on_error}) {
262     $self->{on_error}($self, $fatal);
263     } else {
264     Carp::croak "AnyEvent::Handle uncaught error: $!";
265     }
266 elmex 1.1 }
267    
268 root 1.8 =item $fh = $handle->fh
269 elmex 1.1
270 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
271 elmex 1.1
272     =cut
273    
274 root 1.38 sub fh { $_[0]{fh} }
275 elmex 1.1
276 root 1.8 =item $handle->on_error ($cb)
277 elmex 1.1
278 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
279 elmex 1.1
280 root 1.8 =cut
281    
282     sub on_error {
283     $_[0]{on_error} = $_[1];
284     }
285    
286     =item $handle->on_eof ($cb)
287    
288     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
289 elmex 1.1
290     =cut
291    
292 root 1.8 sub on_eof {
293     $_[0]{on_eof} = $_[1];
294     }
295    
296 root 1.43 =item $handle->on_timeout ($cb)
297    
298     Replace the current C<on_timeout> callback, or disables the callback
299     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
300     argument.
301    
302     =cut
303    
304     sub on_timeout {
305     $_[0]{on_timeout} = $_[1];
306     }
307    
308     #############################################################################
309    
310     =item $handle->timeout ($seconds)
311    
312     Configures (or disables) the inactivity timeout.
313    
314     =cut
315    
316     sub timeout {
317     my ($self, $timeout) = @_;
318    
319     $self->{timeout} = $timeout;
320     $self->_timeout;
321     }
322    
323     # reset the timeout watcher, as neccessary
324     # also check for time-outs
325     sub _timeout {
326     my ($self) = @_;
327    
328     if ($self->{timeout}) {
329 root 1.44 my $NOW = AnyEvent->now;
330 root 1.43
331     # when would the timeout trigger?
332     my $after = $self->{_activity} + $self->{timeout} - $NOW;
333    
334     # now or in the past already?
335     if ($after <= 0) {
336     $self->{_activity} = $NOW;
337    
338     if ($self->{on_timeout}) {
339 root 1.48 $self->{on_timeout}($self);
340 root 1.43 } else {
341 root 1.52 $self->_error (&Errno::ETIMEDOUT);
342 root 1.43 }
343    
344     # callbakx could have changed timeout value, optimise
345     return unless $self->{timeout};
346    
347     # calculate new after
348     $after = $self->{timeout};
349     }
350    
351     Scalar::Util::weaken $self;
352    
353     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354     delete $self->{_tw};
355     $self->_timeout;
356     });
357     } else {
358     delete $self->{_tw};
359     }
360     }
361    
362 root 1.9 #############################################################################
363    
364     =back
365    
366     =head2 WRITE QUEUE
367    
368     AnyEvent::Handle manages two queues per handle, one for writing and one
369     for reading.
370    
371     The write queue is very simple: you can add data to its end, and
372     AnyEvent::Handle will automatically try to get rid of it for you.
373    
374 elmex 1.20 When data could be written and the write buffer is shorter then the low
375 root 1.9 water mark, the C<on_drain> callback will be invoked.
376    
377     =over 4
378    
379 root 1.8 =item $handle->on_drain ($cb)
380    
381     Sets the C<on_drain> callback or clears it (see the description of
382     C<on_drain> in the constructor).
383    
384     =cut
385    
386     sub on_drain {
387 elmex 1.1 my ($self, $cb) = @_;
388    
389 root 1.8 $self->{on_drain} = $cb;
390    
391     $cb->($self)
392     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
393     }
394    
395     =item $handle->push_write ($data)
396    
397     Queues the given scalar to be written. You can push as much data as you
398     want (only limited by the available memory), as C<AnyEvent::Handle>
399     buffers it independently of the kernel.
400    
401     =cut
402    
403 root 1.17 sub _drain_wbuf {
404     my ($self) = @_;
405 root 1.8
406 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
407 root 1.35
408 root 1.8 Scalar::Util::weaken $self;
409 root 1.35
410 root 1.8 my $cb = sub {
411     my $len = syswrite $self->{fh}, $self->{wbuf};
412    
413 root 1.29 if ($len >= 0) {
414 root 1.8 substr $self->{wbuf}, 0, $len, "";
415    
416 root 1.44 $self->{_activity} = AnyEvent->now;
417 root 1.43
418 root 1.8 $self->{on_drain}($self)
419     if $self->{low_water_mark} >= length $self->{wbuf}
420     && $self->{on_drain};
421    
422 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
423 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 root 1.52 $self->_error ($!, 1);
425 elmex 1.1 }
426 root 1.8 };
427    
428 root 1.35 # try to write data immediately
429     $cb->();
430 root 1.8
431 root 1.35 # if still data left in wbuf, we need to poll
432 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
433 root 1.35 if length $self->{wbuf};
434 root 1.8 };
435     }
436    
437 root 1.30 our %WH;
438    
439     sub register_write_type($$) {
440     $WH{$_[0]} = $_[1];
441     }
442    
443 root 1.17 sub push_write {
444     my $self = shift;
445    
446 root 1.29 if (@_ > 1) {
447     my $type = shift;
448    
449     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450     ->($self, @_);
451     }
452    
453 root 1.17 if ($self->{filter_w}) {
454 root 1.48 $self->{filter_w}($self, \$_[0]);
455 root 1.17 } else {
456     $self->{wbuf} .= $_[0];
457     $self->_drain_wbuf;
458     }
459     }
460    
461 root 1.29 =item $handle->push_write (type => @args)
462    
463     Instead of formatting your data yourself, you can also let this module do
464     the job by specifying a type and type-specific arguments.
465    
466 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
467     drop by and tell us):
468 root 1.29
469     =over 4
470    
471     =item netstring => $string
472    
473     Formats the given value as netstring
474     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
475    
476     =cut
477    
478     register_write_type netstring => sub {
479     my ($self, $string) = @_;
480    
481     sprintf "%d:%s,", (length $string), $string
482     };
483    
484 root 1.39 =item json => $array_or_hashref
485    
486 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
487     provide your own JSON object, this means it will be encoded to JSON text
488     in UTF-8.
489    
490     JSON objects (and arrays) are self-delimiting, so you can write JSON at
491     one end of a handle and read them at the other end without using any
492     additional framing.
493    
494 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
495     this module doesn't need delimiters after or between JSON texts to be
496     able to read them, many other languages depend on that.
497    
498     A simple RPC protocol that interoperates easily with others is to send
499     JSON arrays (or objects, although arrays are usually the better choice as
500     they mimic how function argument passing works) and a newline after each
501     JSON text:
502    
503     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
504     $handle->push_write ("\012");
505    
506     An AnyEvent::Handle receiver would simply use the C<json> read type and
507     rely on the fact that the newline will be skipped as leading whitespace:
508    
509     $handle->push_read (json => sub { my $array = $_[1]; ... });
510    
511     Other languages could read single lines terminated by a newline and pass
512     this line into their JSON decoder of choice.
513    
514 root 1.40 =cut
515    
516     register_write_type json => sub {
517     my ($self, $ref) = @_;
518    
519     require JSON;
520    
521     $self->{json} ? $self->{json}->encode ($ref)
522     : JSON::encode_json ($ref)
523     };
524    
525 root 1.53 =back
526    
527 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
528 root 1.30
529     This function (not method) lets you add your own types to C<push_write>.
530     Whenever the given C<type> is used, C<push_write> will invoke the code
531     reference with the handle object and the remaining arguments.
532 root 1.29
533 root 1.30 The code reference is supposed to return a single octet string that will
534     be appended to the write buffer.
535 root 1.29
536 root 1.30 Note that this is a function, and all types registered this way will be
537     global, so try to use unique names.
538 root 1.29
539 root 1.30 =cut
540 root 1.29
541 root 1.8 #############################################################################
542    
543 root 1.9 =back
544    
545     =head2 READ QUEUE
546    
547     AnyEvent::Handle manages two queues per handle, one for writing and one
548     for reading.
549    
550     The read queue is more complex than the write queue. It can be used in two
551     ways, the "simple" way, using only C<on_read> and the "complex" way, using
552     a queue.
553    
554     In the simple case, you just install an C<on_read> callback and whenever
555     new data arrives, it will be called. You can then remove some data (if
556     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
557     or not.
558    
559     In the more complex case, you want to queue multiple callbacks. In this
560     case, AnyEvent::Handle will call the first queued callback each time new
561     data arrives and removes it when it has done its job (see C<push_read>,
562     below).
563    
564     This way you can, for example, push three line-reads, followed by reading
565     a chunk of data, and AnyEvent::Handle will execute them in order.
566    
567     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
568     the specified number of bytes which give an XML datagram.
569    
570     # in the default state, expect some header bytes
571     $handle->on_read (sub {
572     # some data is here, now queue the length-header-read (4 octets)
573 root 1.52 shift->unshift_read (chunk => 4, sub {
574 root 1.9 # header arrived, decode
575     my $len = unpack "N", $_[1];
576    
577     # now read the payload
578 root 1.52 shift->unshift_read (chunk => $len, sub {
579 root 1.9 my $xml = $_[1];
580     # handle xml
581     });
582     });
583     });
584    
585     Example 2: Implement a client for a protocol that replies either with
586     "OK" and another line or "ERROR" for one request, and 64 bytes for the
587     second request. Due tot he availability of a full queue, we can just
588     pipeline sending both requests and manipulate the queue as necessary in
589     the callbacks:
590    
591     # request one
592     $handle->push_write ("request 1\015\012");
593    
594     # we expect "ERROR" or "OK" as response, so push a line read
595 root 1.52 $handle->push_read (line => sub {
596 root 1.9 # if we got an "OK", we have to _prepend_ another line,
597     # so it will be read before the second request reads its 64 bytes
598     # which are already in the queue when this callback is called
599     # we don't do this in case we got an error
600     if ($_[1] eq "OK") {
601 root 1.52 $_[0]->unshift_read (line => sub {
602 root 1.9 my $response = $_[1];
603     ...
604     });
605     }
606     });
607    
608     # request two
609     $handle->push_write ("request 2\015\012");
610    
611     # simply read 64 bytes, always
612 root 1.52 $handle->push_read (chunk => 64, sub {
613 root 1.9 my $response = $_[1];
614     ...
615     });
616    
617     =over 4
618    
619 root 1.10 =cut
620    
621 root 1.8 sub _drain_rbuf {
622     my ($self) = @_;
623 elmex 1.1
624 root 1.17 if (
625     defined $self->{rbuf_max}
626     && $self->{rbuf_max} < length $self->{rbuf}
627     ) {
628 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
629 root 1.17 }
630    
631 root 1.11 return if $self->{in_drain};
632 root 1.8 local $self->{in_drain} = 1;
633 elmex 1.1
634 root 1.8 while (my $len = length $self->{rbuf}) {
635     no strict 'refs';
636 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
637 root 1.29 unless ($cb->($self)) {
638 root 1.38 if ($self->{_eof}) {
639 root 1.10 # no progress can be made (not enough data and no data forthcoming)
640 root 1.52 return $self->_error (&Errno::EPIPE, 1);
641 root 1.10 }
642    
643 root 1.38 unshift @{ $self->{_queue} }, $cb;
644 root 1.55 last;
645 root 1.8 }
646     } elsif ($self->{on_read}) {
647     $self->{on_read}($self);
648    
649     if (
650 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
651     && !@{ $self->{_queue} } # and the queue is still empty
652     && $self->{on_read} # but we still have on_read
653 root 1.8 ) {
654 root 1.55 # no further data will arrive
655     # so no progress can be made
656     return $self->_error (&Errno::EPIPE, 1)
657     if $self->{_eof};
658    
659     last; # more data might arrive
660 elmex 1.1 }
661 root 1.8 } else {
662     # read side becomes idle
663 root 1.38 delete $self->{_rw};
664 root 1.55 last;
665 root 1.8 }
666     }
667    
668 root 1.48 $self->{on_eof}($self)
669     if $self->{_eof} && $self->{on_eof};
670 root 1.55
671     # may need to restart read watcher
672     unless ($self->{_rw}) {
673     $self->start_read
674     if $self->{on_read} || @{ $self->{_queue} };
675     }
676 elmex 1.1 }
677    
678 root 1.8 =item $handle->on_read ($cb)
679 elmex 1.1
680 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
681     the new callback is C<undef>). See the description of C<on_read> in the
682     constructor.
683 elmex 1.1
684 root 1.8 =cut
685    
686     sub on_read {
687     my ($self, $cb) = @_;
688 elmex 1.1
689 root 1.8 $self->{on_read} = $cb;
690 elmex 1.1 }
691    
692 root 1.8 =item $handle->rbuf
693    
694     Returns the read buffer (as a modifiable lvalue).
695 elmex 1.1
696 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
697     you want.
698 elmex 1.1
699 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
700     C<push_read> or C<unshift_read> methods are used. The other read methods
701     automatically manage the read buffer.
702 elmex 1.1
703     =cut
704    
705 elmex 1.2 sub rbuf : lvalue {
706 root 1.8 $_[0]{rbuf}
707 elmex 1.2 }
708 elmex 1.1
709 root 1.8 =item $handle->push_read ($cb)
710    
711     =item $handle->unshift_read ($cb)
712    
713     Append the given callback to the end of the queue (C<push_read>) or
714     prepend it (C<unshift_read>).
715    
716     The callback is called each time some additional read data arrives.
717 elmex 1.1
718 elmex 1.20 It must check whether enough data is in the read buffer already.
719 elmex 1.1
720 root 1.8 If not enough data is available, it must return the empty list or a false
721     value, in which case it will be called repeatedly until enough data is
722     available (or an error condition is detected).
723    
724     If enough data was available, then the callback must remove all data it is
725     interested in (which can be none at all) and return a true value. After returning
726     true, it will be removed from the queue.
727 elmex 1.1
728     =cut
729    
730 root 1.30 our %RH;
731    
732     sub register_read_type($$) {
733     $RH{$_[0]} = $_[1];
734     }
735    
736 root 1.8 sub push_read {
737 root 1.28 my $self = shift;
738     my $cb = pop;
739    
740     if (@_) {
741     my $type = shift;
742    
743     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
744     ->($self, $cb, @_);
745     }
746 elmex 1.1
747 root 1.38 push @{ $self->{_queue} }, $cb;
748 root 1.8 $self->_drain_rbuf;
749 elmex 1.1 }
750    
751 root 1.8 sub unshift_read {
752 root 1.28 my $self = shift;
753     my $cb = pop;
754    
755     if (@_) {
756     my $type = shift;
757    
758     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
759     ->($self, $cb, @_);
760     }
761    
762 root 1.8
763 root 1.38 unshift @{ $self->{_queue} }, $cb;
764 root 1.8 $self->_drain_rbuf;
765     }
766 elmex 1.1
767 root 1.28 =item $handle->push_read (type => @args, $cb)
768 elmex 1.1
769 root 1.28 =item $handle->unshift_read (type => @args, $cb)
770 elmex 1.1
771 root 1.28 Instead of providing a callback that parses the data itself you can chose
772     between a number of predefined parsing formats, for chunks of data, lines
773     etc.
774 elmex 1.1
775 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
776     drop by and tell us):
777 root 1.28
778     =over 4
779    
780 root 1.40 =item chunk => $octets, $cb->($handle, $data)
781 root 1.28
782     Invoke the callback only once C<$octets> bytes have been read. Pass the
783     data read to the callback. The callback will never be called with less
784     data.
785    
786     Example: read 2 bytes.
787    
788     $handle->push_read (chunk => 2, sub {
789     warn "yay ", unpack "H*", $_[1];
790     });
791 elmex 1.1
792     =cut
793    
794 root 1.28 register_read_type chunk => sub {
795     my ($self, $cb, $len) = @_;
796 elmex 1.1
797 root 1.8 sub {
798     $len <= length $_[0]{rbuf} or return;
799 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 root 1.8 1
801     }
802 root 1.28 };
803 root 1.8
804 root 1.28 # compatibility with older API
805 root 1.8 sub push_read_chunk {
806 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
807 root 1.8 }
808 elmex 1.1
809 root 1.8 sub unshift_read_chunk {
810 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811 elmex 1.1 }
812    
813 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
814 elmex 1.1
815 root 1.8 The callback will be called only once a full line (including the end of
816     line marker, C<$eol>) has been read. This line (excluding the end of line
817     marker) will be passed to the callback as second argument (C<$line>), and
818     the end of line marker as the third argument (C<$eol>).
819 elmex 1.1
820 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
821     will be interpreted as a fixed record end marker, or it can be a regex
822     object (e.g. created by C<qr>), in which case it is interpreted as a
823     regular expression.
824 elmex 1.1
825 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
826     undef), then C<qr|\015?\012|> is used (which is good for most internet
827     protocols).
828 elmex 1.1
829 root 1.8 Partial lines at the end of the stream will never be returned, as they are
830     not marked by the end of line marker.
831 elmex 1.1
832 root 1.8 =cut
833 elmex 1.1
834 root 1.28 register_read_type line => sub {
835     my ($self, $cb, $eol) = @_;
836 elmex 1.1
837 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
838 root 1.14 $eol = quotemeta $eol unless ref $eol;
839     $eol = qr|^(.*?)($eol)|s;
840 elmex 1.1
841 root 1.8 sub {
842     $_[0]{rbuf} =~ s/$eol// or return;
843 elmex 1.1
844 elmex 1.12 $cb->($_[0], $1, $2);
845 root 1.8 1
846     }
847 root 1.28 };
848 elmex 1.1
849 root 1.28 # compatibility with older API
850 root 1.8 sub push_read_line {
851 root 1.28 my $self = shift;
852     $self->push_read (line => @_);
853 root 1.10 }
854    
855     sub unshift_read_line {
856 root 1.28 my $self = shift;
857     $self->unshift_read (line => @_);
858 root 1.10 }
859    
860 root 1.40 =item netstring => $cb->($handle, $string)
861 root 1.29
862     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863    
864     Throws an error with C<$!> set to EBADMSG on format violations.
865    
866     =cut
867    
868     register_read_type netstring => sub {
869     my ($self, $cb) = @_;
870    
871     sub {
872     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873     if ($_[0]{rbuf} =~ /[^0-9]/) {
874 root 1.52 $self->_error (&Errno::EBADMSG);
875 root 1.29 }
876     return;
877     }
878    
879     my $len = $1;
880    
881     $self->unshift_read (chunk => $len, sub {
882     my $string = $_[1];
883     $_[0]->unshift_read (chunk => 1, sub {
884     if ($_[1] eq ",") {
885     $cb->($_[0], $string);
886     } else {
887 root 1.52 $self->_error (&Errno::EBADMSG);
888 root 1.29 }
889     });
890     });
891    
892     1
893     }
894     };
895    
896 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 root 1.36
898     Makes a regex match against the regex object C<$accept> and returns
899     everything up to and including the match.
900    
901     Example: read a single line terminated by '\n'.
902    
903     $handle->push_read (regex => qr<\n>, sub { ... });
904    
905     If C<$reject> is given and not undef, then it determines when the data is
906     to be rejected: it is matched against the data when the C<$accept> regex
907     does not match and generates an C<EBADMSG> error when it matches. This is
908     useful to quickly reject wrong data (to avoid waiting for a timeout or a
909     receive buffer overflow).
910    
911     Example: expect a single decimal number followed by whitespace, reject
912     anything else (not the use of an anchor).
913    
914     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
915    
916     If C<$skip> is given and not C<undef>, then it will be matched against
917     the receive buffer when neither C<$accept> nor C<$reject> match,
918     and everything preceding and including the match will be accepted
919     unconditionally. This is useful to skip large amounts of data that you
920     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
921     have to start matching from the beginning. This is purely an optimisation
922     and is usually worth only when you expect more than a few kilobytes.
923    
924     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
925     expect the header to be very large (it isn't in practise, but...), we use
926     a skip regex to skip initial portions. The skip regex is tricky in that
927     it only accepts something not ending in either \015 or \012, as these are
928     required for the accept regex.
929    
930     $handle->push_read (regex =>
931     qr<\015\012\015\012>,
932     undef, # no reject
933     qr<^.*[^\015\012]>,
934     sub { ... });
935    
936     =cut
937    
938     register_read_type regex => sub {
939     my ($self, $cb, $accept, $reject, $skip) = @_;
940    
941     my $data;
942     my $rbuf = \$self->{rbuf};
943    
944     sub {
945     # accept
946     if ($$rbuf =~ $accept) {
947     $data .= substr $$rbuf, 0, $+[0], "";
948     $cb->($self, $data);
949     return 1;
950     }
951    
952     # reject
953     if ($reject && $$rbuf =~ $reject) {
954 root 1.52 $self->_error (&Errno::EBADMSG);
955 root 1.36 }
956    
957     # skip
958     if ($skip && $$rbuf =~ $skip) {
959     $data .= substr $$rbuf, 0, $+[0], "";
960     }
961    
962     ()
963     }
964     };
965    
966 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
967    
968     Reads a JSON object or array, decodes it and passes it to the callback.
969    
970     If a C<json> object was passed to the constructor, then that will be used
971     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972    
973     This read type uses the incremental parser available with JSON version
974     2.09 (and JSON::XS version 2.2) and above. You have to provide a
975     dependency on your own: this module will load the JSON module, but
976     AnyEvent does not depend on it itself.
977    
978     Since JSON texts are fully self-delimiting, the C<json> read and write
979 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
980     the C<json> write type description, above, for an actual example.
981 root 1.40
982     =cut
983    
984     register_read_type json => sub {
985     my ($self, $cb, $accept, $reject, $skip) = @_;
986    
987     require JSON;
988    
989     my $data;
990     my $rbuf = \$self->{rbuf};
991    
992 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
993 root 1.40
994     sub {
995     my $ref = $json->incr_parse ($self->{rbuf});
996    
997     if ($ref) {
998     $self->{rbuf} = $json->incr_text;
999     $json->incr_text = "";
1000     $cb->($self, $ref);
1001    
1002     1
1003     } else {
1004     $self->{rbuf} = "";
1005     ()
1006     }
1007     }
1008     };
1009    
1010 root 1.28 =back
1011    
1012 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1013 root 1.30
1014     This function (not method) lets you add your own types to C<push_read>.
1015    
1016     Whenever the given C<type> is used, C<push_read> will invoke the code
1017     reference with the handle object, the callback and the remaining
1018     arguments.
1019    
1020     The code reference is supposed to return a callback (usually a closure)
1021     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1022    
1023     It should invoke the passed callback when it is done reading (remember to
1024 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1025 root 1.30
1026     Note that this is a function, and all types registered this way will be
1027     global, so try to use unique names.
1028    
1029     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1030     search for C<register_read_type>)).
1031    
1032 root 1.10 =item $handle->stop_read
1033    
1034     =item $handle->start_read
1035    
1036 root 1.18 In rare cases you actually do not want to read anything from the
1037 root 1.10 socket. In this case you can call C<stop_read>. Neither C<on_read> no
1038 root 1.22 any queued callbacks will be executed then. To start reading again, call
1039 root 1.10 C<start_read>.
1040    
1041     =cut
1042    
1043     sub stop_read {
1044     my ($self) = @_;
1045 elmex 1.1
1046 root 1.38 delete $self->{_rw};
1047 root 1.8 }
1048 elmex 1.1
1049 root 1.10 sub start_read {
1050     my ($self) = @_;
1051    
1052 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1053 root 1.10 Scalar::Util::weaken $self;
1054    
1055 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1056 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1057     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1058 root 1.10
1059     if ($len > 0) {
1060 root 1.44 $self->{_activity} = AnyEvent->now;
1061 root 1.43
1062 root 1.17 $self->{filter_r}
1063 root 1.48 ? $self->{filter_r}($self, $rbuf)
1064 root 1.17 : $self->_drain_rbuf;
1065 root 1.10
1066     } elsif (defined $len) {
1067 root 1.38 delete $self->{_rw};
1068     $self->{_eof} = 1;
1069 root 1.17 $self->_drain_rbuf;
1070 root 1.10
1071 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1072 root 1.52 return $self->_error ($!, 1);
1073 root 1.10 }
1074     });
1075     }
1076 elmex 1.1 }
1077    
1078 root 1.19 sub _dotls {
1079     my ($self) = @_;
1080    
1081 root 1.38 if (length $self->{_tls_wbuf}) {
1082     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1083     substr $self->{_tls_wbuf}, 0, $len, "";
1084 root 1.22 }
1085 root 1.19 }
1086    
1087 root 1.38 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1088 root 1.19 $self->{wbuf} .= $buf;
1089     $self->_drain_wbuf;
1090     }
1091    
1092 root 1.23 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1093     $self->{rbuf} .= $buf;
1094     $self->_drain_rbuf;
1095     }
1096    
1097 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1098    
1099     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1100 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1101 root 1.52 return $self->_error ($!, 1);
1102 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1103 root 1.52 return $self->_error (&Errno::EIO, 1);
1104 root 1.19 }
1105 root 1.23
1106     # all others are fine for our purposes
1107 root 1.19 }
1108     }
1109    
1110 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1111    
1112     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1113     object is created, you can also do that at a later time by calling
1114     C<starttls>.
1115    
1116     The first argument is the same as the C<tls> constructor argument (either
1117     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1118    
1119     The second argument is the optional C<Net::SSLeay::CTX> object that is
1120     used when AnyEvent::Handle has to create its own TLS connection object.
1121    
1122 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1123     call and can be used or changed to your liking. Note that the handshake
1124     might have already started when this function returns.
1125    
1126 root 1.25 =cut
1127    
1128 root 1.19 sub starttls {
1129     my ($self, $ssl, $ctx) = @_;
1130    
1131 root 1.25 $self->stoptls;
1132    
1133 root 1.19 if ($ssl eq "accept") {
1134     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1135     Net::SSLeay::set_accept_state ($ssl);
1136     } elsif ($ssl eq "connect") {
1137     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1138     Net::SSLeay::set_connect_state ($ssl);
1139     }
1140    
1141     $self->{tls} = $ssl;
1142    
1143 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1144     # but the openssl maintainers basically said: "trust us, it just works".
1145     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1146     # and mismaintained ssleay-module doesn't even offer them).
1147 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1148 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1149 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1150     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1151 root 1.21
1152 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1153     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1154 root 1.19
1155 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1156 root 1.19
1157     $self->{filter_w} = sub {
1158 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1159 root 1.19 &_dotls;
1160     };
1161     $self->{filter_r} = sub {
1162 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1163 root 1.19 &_dotls;
1164     };
1165     }
1166    
1167 root 1.25 =item $handle->stoptls
1168    
1169     Destroys the SSL connection, if any. Partial read or write data will be
1170     lost.
1171    
1172     =cut
1173    
1174     sub stoptls {
1175     my ($self) = @_;
1176    
1177     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1178 root 1.38
1179     delete $self->{_rbio};
1180     delete $self->{_wbio};
1181     delete $self->{_tls_wbuf};
1182 root 1.25 delete $self->{filter_r};
1183     delete $self->{filter_w};
1184     }
1185    
1186 root 1.19 sub DESTROY {
1187     my $self = shift;
1188    
1189 root 1.25 $self->stoptls;
1190 root 1.19 }
1191    
1192     =item AnyEvent::Handle::TLS_CTX
1193    
1194     This function creates and returns the Net::SSLeay::CTX object used by
1195     default for TLS mode.
1196    
1197     The context is created like this:
1198    
1199     Net::SSLeay::load_error_strings;
1200     Net::SSLeay::SSLeay_add_ssl_algorithms;
1201     Net::SSLeay::randomize;
1202    
1203     my $CTX = Net::SSLeay::CTX_new;
1204    
1205     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1206    
1207     =cut
1208    
1209     our $TLS_CTX;
1210    
1211     sub TLS_CTX() {
1212     $TLS_CTX || do {
1213     require Net::SSLeay;
1214    
1215     Net::SSLeay::load_error_strings ();
1216     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1217     Net::SSLeay::randomize ();
1218    
1219     $TLS_CTX = Net::SSLeay::CTX_new ();
1220    
1221     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1222    
1223     $TLS_CTX
1224     }
1225     }
1226    
1227 elmex 1.1 =back
1228    
1229 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1230    
1231     In many cases, you might want to subclass AnyEvent::Handle.
1232    
1233     To make this easier, a given version of AnyEvent::Handle uses these
1234     conventions:
1235    
1236     =over 4
1237    
1238     =item * all constructor arguments become object members.
1239    
1240     At least initially, when you pass a C<tls>-argument to the constructor it
1241     will end up in C<< $handle->{tls} >>. Those members might be changes or
1242     mutated later on (for example C<tls> will hold the TLS connection object).
1243    
1244     =item * other object member names are prefixed with an C<_>.
1245    
1246     All object members not explicitly documented (internal use) are prefixed
1247     with an underscore character, so the remaining non-C<_>-namespace is free
1248     for use for subclasses.
1249    
1250     =item * all members not documented here and not prefixed with an underscore
1251     are free to use in subclasses.
1252    
1253     Of course, new versions of AnyEvent::Handle may introduce more "public"
1254     member variables, but thats just life, at least it is documented.
1255    
1256     =back
1257    
1258 elmex 1.1 =head1 AUTHOR
1259    
1260 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1261 elmex 1.1
1262     =cut
1263    
1264     1; # End of AnyEvent::Handle