ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.59
Committed: Thu Jun 5 16:53:11 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.58: +12 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.57 our $VERSION = 4.13;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.52 Set the callback to be called when an end-of-file condition is detcted,
81     i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.10 and no read request is in the queue.
111 root 1.8
112     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113 root 1.40 method or access the C<$handle->{rbuf}> member directly.
114 root 1.8
115     When an EOF condition is detected then AnyEvent::Handle will first try to
116     feed all the remaining data to the queued callbacks and C<on_read> before
117     calling the C<on_eof> callback. If no progress can be made, then a fatal
118     error will be raised (with C<$!> set to C<EPIPE>).
119 elmex 1.1
120 root 1.40 =item on_drain => $cb->($handle)
121 elmex 1.1
122 root 1.8 This sets the callback that is called when the write buffer becomes empty
123     (or when the callback is set and the buffer is empty already).
124 elmex 1.1
125 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
126 elmex 1.2
127 root 1.43 =item timeout => $fractional_seconds
128    
129     If non-zero, then this enables an "inactivity" timeout: whenever this many
130     seconds pass without a successful read or write on the underlying file
131     handle, the C<on_timeout> callback will be invoked (and if that one is
132 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
133 root 1.43
134     Note that timeout processing is also active when you currently do not have
135     any outstanding read or write requests: If you plan to keep the connection
136     idle then you should disable the timout temporarily or ignore the timeout
137     in the C<on_timeout> callback.
138    
139     Zero (the default) disables this timeout.
140    
141     =item on_timeout => $cb->($handle)
142    
143     Called whenever the inactivity timeout passes. If you return from this
144     callback, then the timeout will be reset as if some activity had happened,
145     so this condition is not fatal in any way.
146    
147 root 1.8 =item rbuf_max => <bytes>
148 elmex 1.2
149 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150     when the read buffer ever (strictly) exceeds this size. This is useful to
151     avoid denial-of-service attacks.
152 elmex 1.2
153 root 1.8 For example, a server accepting connections from untrusted sources should
154     be configured to accept only so-and-so much data that it cannot act on
155     (for example, when expecting a line, an attacker could send an unlimited
156     amount of data without a callback ever being called as long as the line
157     isn't finished).
158 elmex 1.2
159 root 1.8 =item read_size => <bytes>
160 elmex 1.2
161 root 1.8 The default read block size (the amount of bytes this module will try to read
162 root 1.46 during each (loop iteration). Default: C<8192>.
163 root 1.8
164     =item low_water_mark => <bytes>
165    
166     Sets the amount of bytes (default: C<0>) that make up an "empty" write
167     buffer: If the write reaches this size or gets even samller it is
168     considered empty.
169 elmex 1.2
170 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
171    
172     When this parameter is given, it enables TLS (SSL) mode, that means it
173     will start making tls handshake and will transparently encrypt/decrypt
174     data.
175    
176 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
177     automatically when you try to create a TLS handle).
178    
179 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
180     connection, use C<connect> mode.
181    
182     You can also provide your own TLS connection object, but you have
183     to make sure that you call either C<Net::SSLeay::set_connect_state>
184     or C<Net::SSLeay::set_accept_state> on it before you pass it to
185     AnyEvent::Handle.
186    
187 root 1.26 See the C<starttls> method if you need to start TLs negotiation later.
188    
189 root 1.19 =item tls_ctx => $ssl_ctx
190    
191     Use the given Net::SSLeay::CTX object to create the new TLS connection
192     (unless a connection object was specified directly). If this parameter is
193     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194    
195 root 1.40 =item json => JSON or JSON::XS object
196    
197     This is the json coder object used by the C<json> read and write types.
198    
199 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
200     suitable one, which will write and expect UTF-8 encoded JSON texts.
201 root 1.40
202     Note that you are responsible to depend on the JSON module if you want to
203     use this functionality, as AnyEvent does not have a dependency itself.
204    
205 root 1.38 =item filter_r => $cb
206    
207     =item filter_w => $cb
208    
209     These exist, but are undocumented at this time.
210    
211 elmex 1.1 =back
212    
213     =cut
214    
215     sub new {
216 root 1.8 my $class = shift;
217    
218     my $self = bless { @_ }, $class;
219    
220     $self->{fh} or Carp::croak "mandatory argument fh is missing";
221    
222     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223 elmex 1.1
224 root 1.19 if ($self->{tls}) {
225     require Net::SSLeay;
226     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227     }
228    
229 root 1.44 $self->{_activity} = AnyEvent->now;
230 root 1.43 $self->_timeout;
231 elmex 1.1
232 root 1.58 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233     $self->on_read (delete $self->{on_read} ) if $self->{on_read};
234 root 1.10
235 root 1.8 $self
236     }
237 elmex 1.2
238 root 1.8 sub _shutdown {
239     my ($self) = @_;
240 elmex 1.2
241 root 1.46 delete $self->{_tw};
242 root 1.38 delete $self->{_rw};
243     delete $self->{_ww};
244 root 1.8 delete $self->{fh};
245 root 1.52
246     $self->stoptls;
247 root 1.8 }
248    
249 root 1.52 sub _error {
250     my ($self, $errno, $fatal) = @_;
251 root 1.8
252 root 1.52 $self->_shutdown
253     if $fatal;
254 elmex 1.1
255 root 1.52 $! = $errno;
256 root 1.37
257 root 1.52 if ($self->{on_error}) {
258     $self->{on_error}($self, $fatal);
259     } else {
260     Carp::croak "AnyEvent::Handle uncaught error: $!";
261     }
262 elmex 1.1 }
263    
264 root 1.8 =item $fh = $handle->fh
265 elmex 1.1
266 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
267 elmex 1.1
268     =cut
269    
270 root 1.38 sub fh { $_[0]{fh} }
271 elmex 1.1
272 root 1.8 =item $handle->on_error ($cb)
273 elmex 1.1
274 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
275 elmex 1.1
276 root 1.8 =cut
277    
278     sub on_error {
279     $_[0]{on_error} = $_[1];
280     }
281    
282     =item $handle->on_eof ($cb)
283    
284     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
285 elmex 1.1
286     =cut
287    
288 root 1.8 sub on_eof {
289     $_[0]{on_eof} = $_[1];
290     }
291    
292 root 1.43 =item $handle->on_timeout ($cb)
293    
294     Replace the current C<on_timeout> callback, or disables the callback
295     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
296     argument.
297    
298     =cut
299    
300     sub on_timeout {
301     $_[0]{on_timeout} = $_[1];
302     }
303    
304     #############################################################################
305    
306     =item $handle->timeout ($seconds)
307    
308     Configures (or disables) the inactivity timeout.
309    
310     =cut
311    
312     sub timeout {
313     my ($self, $timeout) = @_;
314    
315     $self->{timeout} = $timeout;
316     $self->_timeout;
317     }
318    
319     # reset the timeout watcher, as neccessary
320     # also check for time-outs
321     sub _timeout {
322     my ($self) = @_;
323    
324     if ($self->{timeout}) {
325 root 1.44 my $NOW = AnyEvent->now;
326 root 1.43
327     # when would the timeout trigger?
328     my $after = $self->{_activity} + $self->{timeout} - $NOW;
329    
330     # now or in the past already?
331     if ($after <= 0) {
332     $self->{_activity} = $NOW;
333    
334     if ($self->{on_timeout}) {
335 root 1.48 $self->{on_timeout}($self);
336 root 1.43 } else {
337 root 1.52 $self->_error (&Errno::ETIMEDOUT);
338 root 1.43 }
339    
340 root 1.56 # callback could have changed timeout value, optimise
341 root 1.43 return unless $self->{timeout};
342    
343     # calculate new after
344     $after = $self->{timeout};
345     }
346    
347     Scalar::Util::weaken $self;
348 root 1.56 return unless $self; # ->error could have destroyed $self
349 root 1.43
350     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
351     delete $self->{_tw};
352     $self->_timeout;
353     });
354     } else {
355     delete $self->{_tw};
356     }
357     }
358    
359 root 1.9 #############################################################################
360    
361     =back
362    
363     =head2 WRITE QUEUE
364    
365     AnyEvent::Handle manages two queues per handle, one for writing and one
366     for reading.
367    
368     The write queue is very simple: you can add data to its end, and
369     AnyEvent::Handle will automatically try to get rid of it for you.
370    
371 elmex 1.20 When data could be written and the write buffer is shorter then the low
372 root 1.9 water mark, the C<on_drain> callback will be invoked.
373    
374     =over 4
375    
376 root 1.8 =item $handle->on_drain ($cb)
377    
378     Sets the C<on_drain> callback or clears it (see the description of
379     C<on_drain> in the constructor).
380    
381     =cut
382    
383     sub on_drain {
384 elmex 1.1 my ($self, $cb) = @_;
385    
386 root 1.8 $self->{on_drain} = $cb;
387    
388     $cb->($self)
389     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
390     }
391    
392     =item $handle->push_write ($data)
393    
394     Queues the given scalar to be written. You can push as much data as you
395     want (only limited by the available memory), as C<AnyEvent::Handle>
396     buffers it independently of the kernel.
397    
398     =cut
399    
400 root 1.17 sub _drain_wbuf {
401     my ($self) = @_;
402 root 1.8
403 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
404 root 1.35
405 root 1.8 Scalar::Util::weaken $self;
406 root 1.35
407 root 1.8 my $cb = sub {
408     my $len = syswrite $self->{fh}, $self->{wbuf};
409    
410 root 1.29 if ($len >= 0) {
411 root 1.8 substr $self->{wbuf}, 0, $len, "";
412    
413 root 1.44 $self->{_activity} = AnyEvent->now;
414 root 1.43
415 root 1.8 $self->{on_drain}($self)
416     if $self->{low_water_mark} >= length $self->{wbuf}
417     && $self->{on_drain};
418    
419 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
420 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
421 root 1.52 $self->_error ($!, 1);
422 elmex 1.1 }
423 root 1.8 };
424    
425 root 1.35 # try to write data immediately
426     $cb->();
427 root 1.8
428 root 1.35 # if still data left in wbuf, we need to poll
429 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
430 root 1.35 if length $self->{wbuf};
431 root 1.8 };
432     }
433    
434 root 1.30 our %WH;
435    
436     sub register_write_type($$) {
437     $WH{$_[0]} = $_[1];
438     }
439    
440 root 1.17 sub push_write {
441     my $self = shift;
442    
443 root 1.29 if (@_ > 1) {
444     my $type = shift;
445    
446     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
447     ->($self, @_);
448     }
449    
450 root 1.17 if ($self->{filter_w}) {
451 root 1.48 $self->{filter_w}($self, \$_[0]);
452 root 1.17 } else {
453     $self->{wbuf} .= $_[0];
454     $self->_drain_wbuf;
455     }
456     }
457    
458 root 1.29 =item $handle->push_write (type => @args)
459    
460     Instead of formatting your data yourself, you can also let this module do
461     the job by specifying a type and type-specific arguments.
462    
463 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
464     drop by and tell us):
465 root 1.29
466     =over 4
467    
468     =item netstring => $string
469    
470     Formats the given value as netstring
471     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
472    
473     =cut
474    
475     register_write_type netstring => sub {
476     my ($self, $string) = @_;
477    
478     sprintf "%d:%s,", (length $string), $string
479     };
480    
481 root 1.39 =item json => $array_or_hashref
482    
483 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
484     provide your own JSON object, this means it will be encoded to JSON text
485     in UTF-8.
486    
487     JSON objects (and arrays) are self-delimiting, so you can write JSON at
488     one end of a handle and read them at the other end without using any
489     additional framing.
490    
491 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
492     this module doesn't need delimiters after or between JSON texts to be
493     able to read them, many other languages depend on that.
494    
495     A simple RPC protocol that interoperates easily with others is to send
496     JSON arrays (or objects, although arrays are usually the better choice as
497     they mimic how function argument passing works) and a newline after each
498     JSON text:
499    
500     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
501     $handle->push_write ("\012");
502    
503     An AnyEvent::Handle receiver would simply use the C<json> read type and
504     rely on the fact that the newline will be skipped as leading whitespace:
505    
506     $handle->push_read (json => sub { my $array = $_[1]; ... });
507    
508     Other languages could read single lines terminated by a newline and pass
509     this line into their JSON decoder of choice.
510    
511 root 1.40 =cut
512    
513     register_write_type json => sub {
514     my ($self, $ref) = @_;
515    
516     require JSON;
517    
518     $self->{json} ? $self->{json}->encode ($ref)
519     : JSON::encode_json ($ref)
520     };
521    
522 root 1.53 =back
523    
524 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
525 root 1.30
526     This function (not method) lets you add your own types to C<push_write>.
527     Whenever the given C<type> is used, C<push_write> will invoke the code
528     reference with the handle object and the remaining arguments.
529 root 1.29
530 root 1.30 The code reference is supposed to return a single octet string that will
531     be appended to the write buffer.
532 root 1.29
533 root 1.30 Note that this is a function, and all types registered this way will be
534     global, so try to use unique names.
535 root 1.29
536 root 1.30 =cut
537 root 1.29
538 root 1.8 #############################################################################
539    
540 root 1.9 =back
541    
542     =head2 READ QUEUE
543    
544     AnyEvent::Handle manages two queues per handle, one for writing and one
545     for reading.
546    
547     The read queue is more complex than the write queue. It can be used in two
548     ways, the "simple" way, using only C<on_read> and the "complex" way, using
549     a queue.
550    
551     In the simple case, you just install an C<on_read> callback and whenever
552     new data arrives, it will be called. You can then remove some data (if
553     enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
554     or not.
555    
556     In the more complex case, you want to queue multiple callbacks. In this
557     case, AnyEvent::Handle will call the first queued callback each time new
558     data arrives and removes it when it has done its job (see C<push_read>,
559     below).
560    
561     This way you can, for example, push three line-reads, followed by reading
562     a chunk of data, and AnyEvent::Handle will execute them in order.
563    
564     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
565     the specified number of bytes which give an XML datagram.
566    
567     # in the default state, expect some header bytes
568     $handle->on_read (sub {
569     # some data is here, now queue the length-header-read (4 octets)
570 root 1.52 shift->unshift_read (chunk => 4, sub {
571 root 1.9 # header arrived, decode
572     my $len = unpack "N", $_[1];
573    
574     # now read the payload
575 root 1.52 shift->unshift_read (chunk => $len, sub {
576 root 1.9 my $xml = $_[1];
577     # handle xml
578     });
579     });
580     });
581    
582     Example 2: Implement a client for a protocol that replies either with
583     "OK" and another line or "ERROR" for one request, and 64 bytes for the
584     second request. Due tot he availability of a full queue, we can just
585     pipeline sending both requests and manipulate the queue as necessary in
586     the callbacks:
587    
588     # request one
589     $handle->push_write ("request 1\015\012");
590    
591     # we expect "ERROR" or "OK" as response, so push a line read
592 root 1.52 $handle->push_read (line => sub {
593 root 1.9 # if we got an "OK", we have to _prepend_ another line,
594     # so it will be read before the second request reads its 64 bytes
595     # which are already in the queue when this callback is called
596     # we don't do this in case we got an error
597     if ($_[1] eq "OK") {
598 root 1.52 $_[0]->unshift_read (line => sub {
599 root 1.9 my $response = $_[1];
600     ...
601     });
602     }
603     });
604    
605     # request two
606     $handle->push_write ("request 2\015\012");
607    
608     # simply read 64 bytes, always
609 root 1.52 $handle->push_read (chunk => 64, sub {
610 root 1.9 my $response = $_[1];
611     ...
612     });
613    
614     =over 4
615    
616 root 1.10 =cut
617    
618 root 1.8 sub _drain_rbuf {
619     my ($self) = @_;
620 elmex 1.1
621 root 1.59 local $self->{_in_drain} = 1;
622    
623 root 1.17 if (
624     defined $self->{rbuf_max}
625     && $self->{rbuf_max} < length $self->{rbuf}
626     ) {
627 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
628 root 1.17 }
629    
630 root 1.59 while () {
631     no strict 'refs';
632    
633     my $len = length $self->{rbuf};
634 elmex 1.1
635 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
636 root 1.29 unless ($cb->($self)) {
637 root 1.38 if ($self->{_eof}) {
638 root 1.10 # no progress can be made (not enough data and no data forthcoming)
639 root 1.52 return $self->_error (&Errno::EPIPE, 1);
640 root 1.10 }
641    
642 root 1.38 unshift @{ $self->{_queue} }, $cb;
643 root 1.55 last;
644 root 1.8 }
645     } elsif ($self->{on_read}) {
646     $self->{on_read}($self);
647    
648     if (
649 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
650     && !@{ $self->{_queue} } # and the queue is still empty
651     && $self->{on_read} # but we still have on_read
652 root 1.8 ) {
653 root 1.55 # no further data will arrive
654     # so no progress can be made
655     return $self->_error (&Errno::EPIPE, 1)
656     if $self->{_eof};
657    
658     last; # more data might arrive
659 elmex 1.1 }
660 root 1.8 } else {
661     # read side becomes idle
662 root 1.38 delete $self->{_rw};
663 root 1.55 last;
664 root 1.8 }
665     }
666    
667 root 1.48 $self->{on_eof}($self)
668     if $self->{_eof} && $self->{on_eof};
669 root 1.55
670     # may need to restart read watcher
671     unless ($self->{_rw}) {
672     $self->start_read
673     if $self->{on_read} || @{ $self->{_queue} };
674     }
675 elmex 1.1 }
676    
677 root 1.8 =item $handle->on_read ($cb)
678 elmex 1.1
679 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
680     the new callback is C<undef>). See the description of C<on_read> in the
681     constructor.
682 elmex 1.1
683 root 1.8 =cut
684    
685     sub on_read {
686     my ($self, $cb) = @_;
687 elmex 1.1
688 root 1.8 $self->{on_read} = $cb;
689 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
690 elmex 1.1 }
691    
692 root 1.8 =item $handle->rbuf
693    
694     Returns the read buffer (as a modifiable lvalue).
695 elmex 1.1
696 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
697     you want.
698 elmex 1.1
699 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
700     C<push_read> or C<unshift_read> methods are used. The other read methods
701     automatically manage the read buffer.
702 elmex 1.1
703     =cut
704    
705 elmex 1.2 sub rbuf : lvalue {
706 root 1.8 $_[0]{rbuf}
707 elmex 1.2 }
708 elmex 1.1
709 root 1.8 =item $handle->push_read ($cb)
710    
711     =item $handle->unshift_read ($cb)
712    
713     Append the given callback to the end of the queue (C<push_read>) or
714     prepend it (C<unshift_read>).
715    
716     The callback is called each time some additional read data arrives.
717 elmex 1.1
718 elmex 1.20 It must check whether enough data is in the read buffer already.
719 elmex 1.1
720 root 1.8 If not enough data is available, it must return the empty list or a false
721     value, in which case it will be called repeatedly until enough data is
722     available (or an error condition is detected).
723    
724     If enough data was available, then the callback must remove all data it is
725     interested in (which can be none at all) and return a true value. After returning
726     true, it will be removed from the queue.
727 elmex 1.1
728     =cut
729    
730 root 1.30 our %RH;
731    
732     sub register_read_type($$) {
733     $RH{$_[0]} = $_[1];
734     }
735    
736 root 1.8 sub push_read {
737 root 1.28 my $self = shift;
738     my $cb = pop;
739    
740     if (@_) {
741     my $type = shift;
742    
743     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
744     ->($self, $cb, @_);
745     }
746 elmex 1.1
747 root 1.38 push @{ $self->{_queue} }, $cb;
748 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
749 elmex 1.1 }
750    
751 root 1.8 sub unshift_read {
752 root 1.28 my $self = shift;
753     my $cb = pop;
754    
755     if (@_) {
756     my $type = shift;
757    
758     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
759     ->($self, $cb, @_);
760     }
761    
762 root 1.8
763 root 1.38 unshift @{ $self->{_queue} }, $cb;
764 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
765 root 1.8 }
766 elmex 1.1
767 root 1.28 =item $handle->push_read (type => @args, $cb)
768 elmex 1.1
769 root 1.28 =item $handle->unshift_read (type => @args, $cb)
770 elmex 1.1
771 root 1.28 Instead of providing a callback that parses the data itself you can chose
772     between a number of predefined parsing formats, for chunks of data, lines
773     etc.
774 elmex 1.1
775 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
776     drop by and tell us):
777 root 1.28
778     =over 4
779    
780 root 1.40 =item chunk => $octets, $cb->($handle, $data)
781 root 1.28
782     Invoke the callback only once C<$octets> bytes have been read. Pass the
783     data read to the callback. The callback will never be called with less
784     data.
785    
786     Example: read 2 bytes.
787    
788     $handle->push_read (chunk => 2, sub {
789     warn "yay ", unpack "H*", $_[1];
790     });
791 elmex 1.1
792     =cut
793    
794 root 1.28 register_read_type chunk => sub {
795     my ($self, $cb, $len) = @_;
796 elmex 1.1
797 root 1.8 sub {
798     $len <= length $_[0]{rbuf} or return;
799 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
800 root 1.8 1
801     }
802 root 1.28 };
803 root 1.8
804 root 1.28 # compatibility with older API
805 root 1.8 sub push_read_chunk {
806 root 1.28 $_[0]->push_read (chunk => $_[1], $_[2]);
807 root 1.8 }
808 elmex 1.1
809 root 1.8 sub unshift_read_chunk {
810 root 1.28 $_[0]->unshift_read (chunk => $_[1], $_[2]);
811 elmex 1.1 }
812    
813 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
814 elmex 1.1
815 root 1.8 The callback will be called only once a full line (including the end of
816     line marker, C<$eol>) has been read. This line (excluding the end of line
817     marker) will be passed to the callback as second argument (C<$line>), and
818     the end of line marker as the third argument (C<$eol>).
819 elmex 1.1
820 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
821     will be interpreted as a fixed record end marker, or it can be a regex
822     object (e.g. created by C<qr>), in which case it is interpreted as a
823     regular expression.
824 elmex 1.1
825 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
826     undef), then C<qr|\015?\012|> is used (which is good for most internet
827     protocols).
828 elmex 1.1
829 root 1.8 Partial lines at the end of the stream will never be returned, as they are
830     not marked by the end of line marker.
831 elmex 1.1
832 root 1.8 =cut
833 elmex 1.1
834 root 1.28 register_read_type line => sub {
835     my ($self, $cb, $eol) = @_;
836 elmex 1.1
837 root 1.28 $eol = qr|(\015?\012)| if @_ < 3;
838 root 1.14 $eol = quotemeta $eol unless ref $eol;
839     $eol = qr|^(.*?)($eol)|s;
840 elmex 1.1
841 root 1.8 sub {
842     $_[0]{rbuf} =~ s/$eol// or return;
843 elmex 1.1
844 elmex 1.12 $cb->($_[0], $1, $2);
845 root 1.8 1
846     }
847 root 1.28 };
848 elmex 1.1
849 root 1.28 # compatibility with older API
850 root 1.8 sub push_read_line {
851 root 1.28 my $self = shift;
852     $self->push_read (line => @_);
853 root 1.10 }
854    
855     sub unshift_read_line {
856 root 1.28 my $self = shift;
857     $self->unshift_read (line => @_);
858 root 1.10 }
859    
860 root 1.40 =item netstring => $cb->($handle, $string)
861 root 1.29
862     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
863    
864     Throws an error with C<$!> set to EBADMSG on format violations.
865    
866     =cut
867    
868     register_read_type netstring => sub {
869     my ($self, $cb) = @_;
870    
871     sub {
872     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
873     if ($_[0]{rbuf} =~ /[^0-9]/) {
874 root 1.52 $self->_error (&Errno::EBADMSG);
875 root 1.29 }
876     return;
877     }
878    
879     my $len = $1;
880    
881     $self->unshift_read (chunk => $len, sub {
882     my $string = $_[1];
883     $_[0]->unshift_read (chunk => 1, sub {
884     if ($_[1] eq ",") {
885     $cb->($_[0], $string);
886     } else {
887 root 1.52 $self->_error (&Errno::EBADMSG);
888 root 1.29 }
889     });
890     });
891    
892     1
893     }
894     };
895    
896 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 root 1.36
898     Makes a regex match against the regex object C<$accept> and returns
899     everything up to and including the match.
900    
901     Example: read a single line terminated by '\n'.
902    
903     $handle->push_read (regex => qr<\n>, sub { ... });
904    
905     If C<$reject> is given and not undef, then it determines when the data is
906     to be rejected: it is matched against the data when the C<$accept> regex
907     does not match and generates an C<EBADMSG> error when it matches. This is
908     useful to quickly reject wrong data (to avoid waiting for a timeout or a
909     receive buffer overflow).
910    
911     Example: expect a single decimal number followed by whitespace, reject
912     anything else (not the use of an anchor).
913    
914     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
915    
916     If C<$skip> is given and not C<undef>, then it will be matched against
917     the receive buffer when neither C<$accept> nor C<$reject> match,
918     and everything preceding and including the match will be accepted
919     unconditionally. This is useful to skip large amounts of data that you
920     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
921     have to start matching from the beginning. This is purely an optimisation
922     and is usually worth only when you expect more than a few kilobytes.
923    
924     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
925     expect the header to be very large (it isn't in practise, but...), we use
926     a skip regex to skip initial portions. The skip regex is tricky in that
927     it only accepts something not ending in either \015 or \012, as these are
928     required for the accept regex.
929    
930     $handle->push_read (regex =>
931     qr<\015\012\015\012>,
932     undef, # no reject
933     qr<^.*[^\015\012]>,
934     sub { ... });
935    
936     =cut
937    
938     register_read_type regex => sub {
939     my ($self, $cb, $accept, $reject, $skip) = @_;
940    
941     my $data;
942     my $rbuf = \$self->{rbuf};
943    
944     sub {
945     # accept
946     if ($$rbuf =~ $accept) {
947     $data .= substr $$rbuf, 0, $+[0], "";
948     $cb->($self, $data);
949     return 1;
950     }
951    
952     # reject
953     if ($reject && $$rbuf =~ $reject) {
954 root 1.52 $self->_error (&Errno::EBADMSG);
955 root 1.36 }
956    
957     # skip
958     if ($skip && $$rbuf =~ $skip) {
959     $data .= substr $$rbuf, 0, $+[0], "";
960     }
961    
962     ()
963     }
964     };
965    
966 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
967    
968     Reads a JSON object or array, decodes it and passes it to the callback.
969    
970     If a C<json> object was passed to the constructor, then that will be used
971     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
972    
973     This read type uses the incremental parser available with JSON version
974     2.09 (and JSON::XS version 2.2) and above. You have to provide a
975     dependency on your own: this module will load the JSON module, but
976     AnyEvent does not depend on it itself.
977    
978     Since JSON texts are fully self-delimiting, the C<json> read and write
979 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
980     the C<json> write type description, above, for an actual example.
981 root 1.40
982     =cut
983    
984     register_read_type json => sub {
985     my ($self, $cb, $accept, $reject, $skip) = @_;
986    
987     require JSON;
988    
989     my $data;
990     my $rbuf = \$self->{rbuf};
991    
992 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
993 root 1.40
994     sub {
995     my $ref = $json->incr_parse ($self->{rbuf});
996    
997     if ($ref) {
998     $self->{rbuf} = $json->incr_text;
999     $json->incr_text = "";
1000     $cb->($self, $ref);
1001    
1002     1
1003     } else {
1004     $self->{rbuf} = "";
1005     ()
1006     }
1007     }
1008     };
1009    
1010 root 1.28 =back
1011    
1012 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1013 root 1.30
1014     This function (not method) lets you add your own types to C<push_read>.
1015    
1016     Whenever the given C<type> is used, C<push_read> will invoke the code
1017     reference with the handle object, the callback and the remaining
1018     arguments.
1019    
1020     The code reference is supposed to return a callback (usually a closure)
1021     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1022    
1023     It should invoke the passed callback when it is done reading (remember to
1024 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1025 root 1.30
1026     Note that this is a function, and all types registered this way will be
1027     global, so try to use unique names.
1028    
1029     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1030     search for C<register_read_type>)).
1031    
1032 root 1.10 =item $handle->stop_read
1033    
1034     =item $handle->start_read
1035    
1036 root 1.18 In rare cases you actually do not want to read anything from the
1037 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1038 root 1.22 any queued callbacks will be executed then. To start reading again, call
1039 root 1.10 C<start_read>.
1040    
1041 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1042     you change the C<on_read> callback or push/unshift a read callback, and it
1043     will automatically C<stop_read> for you when neither C<on_read> is set nor
1044     there are any read requests in the queue.
1045    
1046 root 1.10 =cut
1047    
1048     sub stop_read {
1049     my ($self) = @_;
1050 elmex 1.1
1051 root 1.38 delete $self->{_rw};
1052 root 1.8 }
1053 elmex 1.1
1054 root 1.10 sub start_read {
1055     my ($self) = @_;
1056    
1057 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1058 root 1.10 Scalar::Util::weaken $self;
1059    
1060 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1061 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1062     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1063 root 1.10
1064     if ($len > 0) {
1065 root 1.44 $self->{_activity} = AnyEvent->now;
1066 root 1.43
1067 root 1.17 $self->{filter_r}
1068 root 1.48 ? $self->{filter_r}($self, $rbuf)
1069 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1070 root 1.10
1071     } elsif (defined $len) {
1072 root 1.38 delete $self->{_rw};
1073     $self->{_eof} = 1;
1074 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1075 root 1.10
1076 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1077 root 1.52 return $self->_error ($!, 1);
1078 root 1.10 }
1079     });
1080     }
1081 elmex 1.1 }
1082    
1083 root 1.19 sub _dotls {
1084     my ($self) = @_;
1085    
1086 root 1.56 my $buf;
1087    
1088 root 1.38 if (length $self->{_tls_wbuf}) {
1089     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1090     substr $self->{_tls_wbuf}, 0, $len, "";
1091 root 1.22 }
1092 root 1.19 }
1093    
1094 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1095 root 1.19 $self->{wbuf} .= $buf;
1096     $self->_drain_wbuf;
1097     }
1098    
1099 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1100     if (length $buf) {
1101     $self->{rbuf} .= $buf;
1102 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1103 root 1.56 } else {
1104     # let's treat SSL-eof as we treat normal EOF
1105     $self->{_eof} = 1;
1106     $self->_shutdown;
1107     return;
1108     }
1109 root 1.23 }
1110    
1111 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1112    
1113     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1114 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1115 root 1.52 return $self->_error ($!, 1);
1116 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1117 root 1.52 return $self->_error (&Errno::EIO, 1);
1118 root 1.19 }
1119 root 1.23
1120     # all others are fine for our purposes
1121 root 1.19 }
1122     }
1123    
1124 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1125    
1126     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1127     object is created, you can also do that at a later time by calling
1128     C<starttls>.
1129    
1130     The first argument is the same as the C<tls> constructor argument (either
1131     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1132    
1133     The second argument is the optional C<Net::SSLeay::CTX> object that is
1134     used when AnyEvent::Handle has to create its own TLS connection object.
1135    
1136 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1137     call and can be used or changed to your liking. Note that the handshake
1138     might have already started when this function returns.
1139    
1140 root 1.25 =cut
1141    
1142 root 1.19 sub starttls {
1143     my ($self, $ssl, $ctx) = @_;
1144    
1145 root 1.25 $self->stoptls;
1146    
1147 root 1.19 if ($ssl eq "accept") {
1148     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1149     Net::SSLeay::set_accept_state ($ssl);
1150     } elsif ($ssl eq "connect") {
1151     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1152     Net::SSLeay::set_connect_state ($ssl);
1153     }
1154    
1155     $self->{tls} = $ssl;
1156    
1157 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1158     # but the openssl maintainers basically said: "trust us, it just works".
1159     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1160     # and mismaintained ssleay-module doesn't even offer them).
1161 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1162 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1163 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1164     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1165 root 1.21
1166 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1167     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 root 1.19
1169 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1170 root 1.19
1171     $self->{filter_w} = sub {
1172 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1173 root 1.19 &_dotls;
1174     };
1175     $self->{filter_r} = sub {
1176 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1177 root 1.19 &_dotls;
1178     };
1179     }
1180    
1181 root 1.25 =item $handle->stoptls
1182    
1183     Destroys the SSL connection, if any. Partial read or write data will be
1184     lost.
1185    
1186     =cut
1187    
1188     sub stoptls {
1189     my ($self) = @_;
1190    
1191     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1192 root 1.38
1193     delete $self->{_rbio};
1194     delete $self->{_wbio};
1195     delete $self->{_tls_wbuf};
1196 root 1.25 delete $self->{filter_r};
1197     delete $self->{filter_w};
1198     }
1199    
1200 root 1.19 sub DESTROY {
1201     my $self = shift;
1202    
1203 root 1.25 $self->stoptls;
1204 root 1.19 }
1205    
1206     =item AnyEvent::Handle::TLS_CTX
1207    
1208     This function creates and returns the Net::SSLeay::CTX object used by
1209     default for TLS mode.
1210    
1211     The context is created like this:
1212    
1213     Net::SSLeay::load_error_strings;
1214     Net::SSLeay::SSLeay_add_ssl_algorithms;
1215     Net::SSLeay::randomize;
1216    
1217     my $CTX = Net::SSLeay::CTX_new;
1218    
1219     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1220    
1221     =cut
1222    
1223     our $TLS_CTX;
1224    
1225     sub TLS_CTX() {
1226     $TLS_CTX || do {
1227     require Net::SSLeay;
1228    
1229     Net::SSLeay::load_error_strings ();
1230     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1231     Net::SSLeay::randomize ();
1232    
1233     $TLS_CTX = Net::SSLeay::CTX_new ();
1234    
1235     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1236    
1237     $TLS_CTX
1238     }
1239     }
1240    
1241 elmex 1.1 =back
1242    
1243 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1244    
1245     In many cases, you might want to subclass AnyEvent::Handle.
1246    
1247     To make this easier, a given version of AnyEvent::Handle uses these
1248     conventions:
1249    
1250     =over 4
1251    
1252     =item * all constructor arguments become object members.
1253    
1254     At least initially, when you pass a C<tls>-argument to the constructor it
1255     will end up in C<< $handle->{tls} >>. Those members might be changes or
1256     mutated later on (for example C<tls> will hold the TLS connection object).
1257    
1258     =item * other object member names are prefixed with an C<_>.
1259    
1260     All object members not explicitly documented (internal use) are prefixed
1261     with an underscore character, so the remaining non-C<_>-namespace is free
1262     for use for subclasses.
1263    
1264     =item * all members not documented here and not prefixed with an underscore
1265     are free to use in subclasses.
1266    
1267     Of course, new versions of AnyEvent::Handle may introduce more "public"
1268     member variables, but thats just life, at least it is documented.
1269    
1270     =back
1271    
1272 elmex 1.1 =head1 AUTHOR
1273    
1274 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1275 elmex 1.1
1276     =cut
1277    
1278     1; # End of AnyEvent::Handle