ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.78
Committed: Sun Jul 27 07:34:07 2008 UTC (15 years, 9 months ago) by root
Branch: MAIN
Changes since 1.77: +0 -20 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 elmex 1.1 use strict;
5    
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.73 our $VERSION = 4.22;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.74 Set the callback to be called when an end-of-file condition is detected,
81 root 1.52 i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.16 While not mandatory, it is highly recommended to set an eof callback,
85     otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.52 =item on_error => $cb->($handle, $fatal)
89 root 1.10
90 root 1.52 This is the error callback, which is called when, well, some error
91     occured, such as not being able to resolve the hostname, failure to
92     connect or a read error.
93    
94     Some errors are fatal (which is indicated by C<$fatal> being true). On
95     fatal errors the handle object will be shut down and will not be
96     usable. Non-fatal errors can be retried by simply returning, but it is
97     recommended to simply ignore this parameter and instead abondon the handle
98     object when this callback is invoked.
99 root 1.8
100 root 1.10 On callback entrance, the value of C<$!> contains the operating system
101 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 root 1.8
103 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
104     you will not be notified of errors otherwise. The default simply calls
105 root 1.52 C<croak>.
106 root 1.8
107 root 1.40 =item on_read => $cb->($handle)
108 root 1.8
109     This sets the default read callback, which is called when data arrives
110 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
111     callback will only be called when at least one octet of data is in the
112     read buffer).
113 root 1.8
114     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 root 1.40 method or access the C<$handle->{rbuf}> member directly.
116 root 1.8
117     When an EOF condition is detected then AnyEvent::Handle will first try to
118     feed all the remaining data to the queued callbacks and C<on_read> before
119     calling the C<on_eof> callback. If no progress can be made, then a fatal
120     error will be raised (with C<$!> set to C<EPIPE>).
121 elmex 1.1
122 root 1.40 =item on_drain => $cb->($handle)
123 elmex 1.1
124 root 1.8 This sets the callback that is called when the write buffer becomes empty
125     (or when the callback is set and the buffer is empty already).
126 elmex 1.1
127 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
128 elmex 1.2
129 root 1.69 This callback is useful when you don't want to put all of your write data
130     into the queue at once, for example, when you want to write the contents
131     of some file to the socket you might not want to read the whole file into
132     memory and push it into the queue, but instead only read more data from
133     the file when the write queue becomes empty.
134    
135 root 1.43 =item timeout => $fractional_seconds
136    
137     If non-zero, then this enables an "inactivity" timeout: whenever this many
138     seconds pass without a successful read or write on the underlying file
139     handle, the C<on_timeout> callback will be invoked (and if that one is
140 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
141 root 1.43
142     Note that timeout processing is also active when you currently do not have
143     any outstanding read or write requests: If you plan to keep the connection
144     idle then you should disable the timout temporarily or ignore the timeout
145     in the C<on_timeout> callback.
146    
147     Zero (the default) disables this timeout.
148    
149     =item on_timeout => $cb->($handle)
150    
151     Called whenever the inactivity timeout passes. If you return from this
152     callback, then the timeout will be reset as if some activity had happened,
153     so this condition is not fatal in any way.
154    
155 root 1.8 =item rbuf_max => <bytes>
156 elmex 1.2
157 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158     when the read buffer ever (strictly) exceeds this size. This is useful to
159     avoid denial-of-service attacks.
160 elmex 1.2
161 root 1.8 For example, a server accepting connections from untrusted sources should
162     be configured to accept only so-and-so much data that it cannot act on
163     (for example, when expecting a line, an attacker could send an unlimited
164     amount of data without a callback ever being called as long as the line
165     isn't finished).
166 elmex 1.2
167 root 1.70 =item autocork => <boolean>
168    
169     When disabled (the default), then C<push_write> will try to immediately
170     write the data to the handle if possible. This avoids having to register
171     a write watcher and wait for the next event loop iteration, but can be
172     inefficient if you write multiple small chunks (this disadvantage is
173     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
174    
175     When enabled, then writes will always be queued till the next event loop
176     iteration. This is efficient when you do many small writes per iteration,
177     but less efficient when you do a single write only.
178    
179     =item no_delay => <boolean>
180    
181     When doing small writes on sockets, your operating system kernel might
182     wait a bit for more data before actually sending it out. This is called
183     the Nagle algorithm, and usually it is beneficial.
184    
185     In some situations you want as low a delay as possible, which cna be
186     accomplishd by setting this option to true.
187    
188     The default is your opertaing system's default behaviour, this option
189     explicitly enables or disables it, if possible.
190    
191 root 1.8 =item read_size => <bytes>
192 elmex 1.2
193 root 1.8 The default read block size (the amount of bytes this module will try to read
194 root 1.46 during each (loop iteration). Default: C<8192>.
195 root 1.8
196     =item low_water_mark => <bytes>
197    
198     Sets the amount of bytes (default: C<0>) that make up an "empty" write
199     buffer: If the write reaches this size or gets even samller it is
200     considered empty.
201 elmex 1.2
202 root 1.62 =item linger => <seconds>
203    
204     If non-zero (default: C<3600>), then the destructor of the
205     AnyEvent::Handle object will check wether there is still outstanding write
206     data and will install a watcher that will write out this data. No errors
207     will be reported (this mostly matches how the operating system treats
208     outstanding data at socket close time).
209    
210     This will not work for partial TLS data that could not yet been
211     encoded. This data will be lost.
212    
213 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
214    
215     When this parameter is given, it enables TLS (SSL) mode, that means it
216     will start making tls handshake and will transparently encrypt/decrypt
217     data.
218    
219 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
220     automatically when you try to create a TLS handle).
221    
222 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
223     connection, use C<connect> mode.
224    
225     You can also provide your own TLS connection object, but you have
226     to make sure that you call either C<Net::SSLeay::set_connect_state>
227     or C<Net::SSLeay::set_accept_state> on it before you pass it to
228     AnyEvent::Handle.
229    
230 root 1.75 See the C<starttls> method if you need to start TLS negotiation later.
231 root 1.26
232 root 1.19 =item tls_ctx => $ssl_ctx
233    
234     Use the given Net::SSLeay::CTX object to create the new TLS connection
235     (unless a connection object was specified directly). If this parameter is
236     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237    
238 root 1.40 =item json => JSON or JSON::XS object
239    
240     This is the json coder object used by the C<json> read and write types.
241    
242 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
243     suitable one, which will write and expect UTF-8 encoded JSON texts.
244 root 1.40
245     Note that you are responsible to depend on the JSON module if you want to
246     use this functionality, as AnyEvent does not have a dependency itself.
247    
248 root 1.38 =item filter_r => $cb
249    
250     =item filter_w => $cb
251    
252     These exist, but are undocumented at this time.
253    
254 elmex 1.1 =back
255    
256     =cut
257    
258     sub new {
259 root 1.8 my $class = shift;
260    
261     my $self = bless { @_ }, $class;
262    
263     $self->{fh} or Carp::croak "mandatory argument fh is missing";
264    
265     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266 elmex 1.1
267 root 1.19 if ($self->{tls}) {
268     require Net::SSLeay;
269     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270     }
271    
272 root 1.44 $self->{_activity} = AnyEvent->now;
273 root 1.43 $self->_timeout;
274 elmex 1.1
275 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 root 1.10
278 root 1.66 $self->start_read
279 root 1.67 if $self->{on_read};
280 root 1.66
281 root 1.8 $self
282     }
283 elmex 1.2
284 root 1.8 sub _shutdown {
285     my ($self) = @_;
286 elmex 1.2
287 root 1.46 delete $self->{_tw};
288 root 1.38 delete $self->{_rw};
289     delete $self->{_ww};
290 root 1.8 delete $self->{fh};
291 root 1.52
292     $self->stoptls;
293 root 1.8 }
294    
295 root 1.52 sub _error {
296     my ($self, $errno, $fatal) = @_;
297 root 1.8
298 root 1.52 $self->_shutdown
299     if $fatal;
300 elmex 1.1
301 root 1.52 $! = $errno;
302 root 1.37
303 root 1.52 if ($self->{on_error}) {
304     $self->{on_error}($self, $fatal);
305     } else {
306     Carp::croak "AnyEvent::Handle uncaught error: $!";
307     }
308 elmex 1.1 }
309    
310 root 1.8 =item $fh = $handle->fh
311 elmex 1.1
312 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
313 elmex 1.1
314     =cut
315    
316 root 1.38 sub fh { $_[0]{fh} }
317 elmex 1.1
318 root 1.8 =item $handle->on_error ($cb)
319 elmex 1.1
320 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
321 elmex 1.1
322 root 1.8 =cut
323    
324     sub on_error {
325     $_[0]{on_error} = $_[1];
326     }
327    
328     =item $handle->on_eof ($cb)
329    
330     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
331 elmex 1.1
332     =cut
333    
334 root 1.8 sub on_eof {
335     $_[0]{on_eof} = $_[1];
336     }
337    
338 root 1.43 =item $handle->on_timeout ($cb)
339    
340     Replace the current C<on_timeout> callback, or disables the callback
341     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
342     argument.
343    
344     =cut
345    
346     sub on_timeout {
347     $_[0]{on_timeout} = $_[1];
348     }
349    
350 root 1.70 =item $handle->autocork ($boolean)
351    
352     Enables or disables the current autocork behaviour (see C<autocork>
353     constructor argument).
354    
355     =cut
356    
357     =item $handle->no_delay ($boolean)
358    
359     Enables or disables the C<no_delay> setting (see constructor argument of
360     the same name for details).
361    
362     =cut
363    
364     sub no_delay {
365     $_[0]{no_delay} = $_[1];
366    
367     eval {
368     local $SIG{__DIE__};
369     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
370     };
371     }
372    
373 root 1.43 #############################################################################
374    
375     =item $handle->timeout ($seconds)
376    
377     Configures (or disables) the inactivity timeout.
378    
379     =cut
380    
381     sub timeout {
382     my ($self, $timeout) = @_;
383    
384     $self->{timeout} = $timeout;
385     $self->_timeout;
386     }
387    
388     # reset the timeout watcher, as neccessary
389     # also check for time-outs
390     sub _timeout {
391     my ($self) = @_;
392    
393     if ($self->{timeout}) {
394 root 1.44 my $NOW = AnyEvent->now;
395 root 1.43
396     # when would the timeout trigger?
397     my $after = $self->{_activity} + $self->{timeout} - $NOW;
398    
399     # now or in the past already?
400     if ($after <= 0) {
401     $self->{_activity} = $NOW;
402    
403     if ($self->{on_timeout}) {
404 root 1.48 $self->{on_timeout}($self);
405 root 1.43 } else {
406 root 1.52 $self->_error (&Errno::ETIMEDOUT);
407 root 1.43 }
408    
409 root 1.56 # callback could have changed timeout value, optimise
410 root 1.43 return unless $self->{timeout};
411    
412     # calculate new after
413     $after = $self->{timeout};
414     }
415    
416     Scalar::Util::weaken $self;
417 root 1.56 return unless $self; # ->error could have destroyed $self
418 root 1.43
419     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
420     delete $self->{_tw};
421     $self->_timeout;
422     });
423     } else {
424     delete $self->{_tw};
425     }
426     }
427    
428 root 1.9 #############################################################################
429    
430     =back
431    
432     =head2 WRITE QUEUE
433    
434     AnyEvent::Handle manages two queues per handle, one for writing and one
435     for reading.
436    
437     The write queue is very simple: you can add data to its end, and
438     AnyEvent::Handle will automatically try to get rid of it for you.
439    
440 elmex 1.20 When data could be written and the write buffer is shorter then the low
441 root 1.9 water mark, the C<on_drain> callback will be invoked.
442    
443     =over 4
444    
445 root 1.8 =item $handle->on_drain ($cb)
446    
447     Sets the C<on_drain> callback or clears it (see the description of
448     C<on_drain> in the constructor).
449    
450     =cut
451    
452     sub on_drain {
453 elmex 1.1 my ($self, $cb) = @_;
454    
455 root 1.8 $self->{on_drain} = $cb;
456    
457     $cb->($self)
458     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
459     }
460    
461     =item $handle->push_write ($data)
462    
463     Queues the given scalar to be written. You can push as much data as you
464     want (only limited by the available memory), as C<AnyEvent::Handle>
465     buffers it independently of the kernel.
466    
467     =cut
468    
469 root 1.17 sub _drain_wbuf {
470     my ($self) = @_;
471 root 1.8
472 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
473 root 1.35
474 root 1.8 Scalar::Util::weaken $self;
475 root 1.35
476 root 1.8 my $cb = sub {
477     my $len = syswrite $self->{fh}, $self->{wbuf};
478    
479 root 1.29 if ($len >= 0) {
480 root 1.8 substr $self->{wbuf}, 0, $len, "";
481    
482 root 1.44 $self->{_activity} = AnyEvent->now;
483 root 1.43
484 root 1.8 $self->{on_drain}($self)
485     if $self->{low_water_mark} >= length $self->{wbuf}
486     && $self->{on_drain};
487    
488 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
489 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 root 1.52 $self->_error ($!, 1);
491 elmex 1.1 }
492 root 1.8 };
493    
494 root 1.35 # try to write data immediately
495 root 1.70 $cb->() unless $self->{autocork};
496 root 1.8
497 root 1.35 # if still data left in wbuf, we need to poll
498 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
499 root 1.35 if length $self->{wbuf};
500 root 1.8 };
501     }
502    
503 root 1.30 our %WH;
504    
505     sub register_write_type($$) {
506     $WH{$_[0]} = $_[1];
507     }
508    
509 root 1.17 sub push_write {
510     my $self = shift;
511    
512 root 1.29 if (@_ > 1) {
513     my $type = shift;
514    
515     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516     ->($self, @_);
517     }
518    
519 root 1.17 if ($self->{filter_w}) {
520 root 1.48 $self->{filter_w}($self, \$_[0]);
521 root 1.17 } else {
522     $self->{wbuf} .= $_[0];
523     $self->_drain_wbuf;
524     }
525     }
526    
527 root 1.29 =item $handle->push_write (type => @args)
528    
529     Instead of formatting your data yourself, you can also let this module do
530     the job by specifying a type and type-specific arguments.
531    
532 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
533     drop by and tell us):
534 root 1.29
535     =over 4
536    
537     =item netstring => $string
538    
539     Formats the given value as netstring
540     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
541    
542     =cut
543    
544     register_write_type netstring => sub {
545     my ($self, $string) = @_;
546    
547     sprintf "%d:%s,", (length $string), $string
548     };
549    
550 root 1.61 =item packstring => $format, $data
551    
552     An octet string prefixed with an encoded length. The encoding C<$format>
553     uses the same format as a Perl C<pack> format, but must specify a single
554     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
555     optional C<!>, C<< < >> or C<< > >> modifier).
556    
557     =cut
558    
559     register_write_type packstring => sub {
560     my ($self, $format, $string) = @_;
561    
562 root 1.65 pack "$format/a*", $string
563 root 1.61 };
564    
565 root 1.39 =item json => $array_or_hashref
566    
567 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
568     provide your own JSON object, this means it will be encoded to JSON text
569     in UTF-8.
570    
571     JSON objects (and arrays) are self-delimiting, so you can write JSON at
572     one end of a handle and read them at the other end without using any
573     additional framing.
574    
575 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
576     this module doesn't need delimiters after or between JSON texts to be
577     able to read them, many other languages depend on that.
578    
579     A simple RPC protocol that interoperates easily with others is to send
580     JSON arrays (or objects, although arrays are usually the better choice as
581     they mimic how function argument passing works) and a newline after each
582     JSON text:
583    
584     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
585     $handle->push_write ("\012");
586    
587     An AnyEvent::Handle receiver would simply use the C<json> read type and
588     rely on the fact that the newline will be skipped as leading whitespace:
589    
590     $handle->push_read (json => sub { my $array = $_[1]; ... });
591    
592     Other languages could read single lines terminated by a newline and pass
593     this line into their JSON decoder of choice.
594    
595 root 1.40 =cut
596    
597     register_write_type json => sub {
598     my ($self, $ref) = @_;
599    
600     require JSON;
601    
602     $self->{json} ? $self->{json}->encode ($ref)
603     : JSON::encode_json ($ref)
604     };
605    
606 root 1.63 =item storable => $reference
607    
608     Freezes the given reference using L<Storable> and writes it to the
609     handle. Uses the C<nfreeze> format.
610    
611     =cut
612    
613     register_write_type storable => sub {
614     my ($self, $ref) = @_;
615    
616     require Storable;
617    
618 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
619 root 1.63 };
620    
621 root 1.53 =back
622    
623 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 root 1.30
625     This function (not method) lets you add your own types to C<push_write>.
626     Whenever the given C<type> is used, C<push_write> will invoke the code
627     reference with the handle object and the remaining arguments.
628 root 1.29
629 root 1.30 The code reference is supposed to return a single octet string that will
630     be appended to the write buffer.
631 root 1.29
632 root 1.30 Note that this is a function, and all types registered this way will be
633     global, so try to use unique names.
634 root 1.29
635 root 1.30 =cut
636 root 1.29
637 root 1.8 #############################################################################
638    
639 root 1.9 =back
640    
641     =head2 READ QUEUE
642    
643     AnyEvent::Handle manages two queues per handle, one for writing and one
644     for reading.
645    
646     The read queue is more complex than the write queue. It can be used in two
647     ways, the "simple" way, using only C<on_read> and the "complex" way, using
648     a queue.
649    
650     In the simple case, you just install an C<on_read> callback and whenever
651     new data arrives, it will be called. You can then remove some data (if
652 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
653     leave the data there if you want to accumulate more (e.g. when only a
654     partial message has been received so far).
655 root 1.9
656     In the more complex case, you want to queue multiple callbacks. In this
657     case, AnyEvent::Handle will call the first queued callback each time new
658 root 1.61 data arrives (also the first time it is queued) and removes it when it has
659     done its job (see C<push_read>, below).
660 root 1.9
661     This way you can, for example, push three line-reads, followed by reading
662     a chunk of data, and AnyEvent::Handle will execute them in order.
663    
664     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
665     the specified number of bytes which give an XML datagram.
666    
667     # in the default state, expect some header bytes
668     $handle->on_read (sub {
669     # some data is here, now queue the length-header-read (4 octets)
670 root 1.52 shift->unshift_read (chunk => 4, sub {
671 root 1.9 # header arrived, decode
672     my $len = unpack "N", $_[1];
673    
674     # now read the payload
675 root 1.52 shift->unshift_read (chunk => $len, sub {
676 root 1.9 my $xml = $_[1];
677     # handle xml
678     });
679     });
680     });
681    
682 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
683     and another line or "ERROR" for the first request that is sent, and 64
684     bytes for the second request. Due to the availability of a queue, we can
685     just pipeline sending both requests and manipulate the queue as necessary
686     in the callbacks.
687    
688     When the first callback is called and sees an "OK" response, it will
689     C<unshift> another line-read. This line-read will be queued I<before> the
690     64-byte chunk callback.
691 root 1.9
692 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
693 root 1.9 $handle->push_write ("request 1\015\012");
694    
695     # we expect "ERROR" or "OK" as response, so push a line read
696 root 1.52 $handle->push_read (line => sub {
697 root 1.9 # if we got an "OK", we have to _prepend_ another line,
698     # so it will be read before the second request reads its 64 bytes
699     # which are already in the queue when this callback is called
700     # we don't do this in case we got an error
701     if ($_[1] eq "OK") {
702 root 1.52 $_[0]->unshift_read (line => sub {
703 root 1.9 my $response = $_[1];
704     ...
705     });
706     }
707     });
708    
709 root 1.69 # request two, simply returns 64 octets
710 root 1.9 $handle->push_write ("request 2\015\012");
711    
712     # simply read 64 bytes, always
713 root 1.52 $handle->push_read (chunk => 64, sub {
714 root 1.9 my $response = $_[1];
715     ...
716     });
717    
718     =over 4
719    
720 root 1.10 =cut
721    
722 root 1.8 sub _drain_rbuf {
723     my ($self) = @_;
724 elmex 1.1
725 root 1.59 local $self->{_in_drain} = 1;
726    
727 root 1.17 if (
728     defined $self->{rbuf_max}
729     && $self->{rbuf_max} < length $self->{rbuf}
730     ) {
731 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
732 root 1.17 }
733    
734 root 1.59 while () {
735     no strict 'refs';
736    
737     my $len = length $self->{rbuf};
738 elmex 1.1
739 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
740 root 1.29 unless ($cb->($self)) {
741 root 1.38 if ($self->{_eof}) {
742 root 1.10 # no progress can be made (not enough data and no data forthcoming)
743 root 1.61 $self->_error (&Errno::EPIPE, 1), last;
744 root 1.10 }
745    
746 root 1.38 unshift @{ $self->{_queue} }, $cb;
747 root 1.55 last;
748 root 1.8 }
749     } elsif ($self->{on_read}) {
750 root 1.61 last unless $len;
751    
752 root 1.8 $self->{on_read}($self);
753    
754     if (
755 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
756     && !@{ $self->{_queue} } # and the queue is still empty
757     && $self->{on_read} # but we still have on_read
758 root 1.8 ) {
759 root 1.55 # no further data will arrive
760     # so no progress can be made
761 root 1.61 $self->_error (&Errno::EPIPE, 1), last
762 root 1.55 if $self->{_eof};
763    
764     last; # more data might arrive
765 elmex 1.1 }
766 root 1.8 } else {
767     # read side becomes idle
768 root 1.38 delete $self->{_rw};
769 root 1.55 last;
770 root 1.8 }
771     }
772    
773 root 1.48 $self->{on_eof}($self)
774     if $self->{_eof} && $self->{on_eof};
775 root 1.55
776     # may need to restart read watcher
777     unless ($self->{_rw}) {
778     $self->start_read
779     if $self->{on_read} || @{ $self->{_queue} };
780     }
781 elmex 1.1 }
782    
783 root 1.8 =item $handle->on_read ($cb)
784 elmex 1.1
785 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
786     the new callback is C<undef>). See the description of C<on_read> in the
787     constructor.
788 elmex 1.1
789 root 1.8 =cut
790    
791     sub on_read {
792     my ($self, $cb) = @_;
793 elmex 1.1
794 root 1.8 $self->{on_read} = $cb;
795 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
796 elmex 1.1 }
797    
798 root 1.8 =item $handle->rbuf
799    
800     Returns the read buffer (as a modifiable lvalue).
801 elmex 1.1
802 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
803     you want.
804 elmex 1.1
805 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
806     C<push_read> or C<unshift_read> methods are used. The other read methods
807     automatically manage the read buffer.
808 elmex 1.1
809     =cut
810    
811 elmex 1.2 sub rbuf : lvalue {
812 root 1.8 $_[0]{rbuf}
813 elmex 1.2 }
814 elmex 1.1
815 root 1.8 =item $handle->push_read ($cb)
816    
817     =item $handle->unshift_read ($cb)
818    
819     Append the given callback to the end of the queue (C<push_read>) or
820     prepend it (C<unshift_read>).
821    
822     The callback is called each time some additional read data arrives.
823 elmex 1.1
824 elmex 1.20 It must check whether enough data is in the read buffer already.
825 elmex 1.1
826 root 1.8 If not enough data is available, it must return the empty list or a false
827     value, in which case it will be called repeatedly until enough data is
828     available (or an error condition is detected).
829    
830     If enough data was available, then the callback must remove all data it is
831     interested in (which can be none at all) and return a true value. After returning
832     true, it will be removed from the queue.
833 elmex 1.1
834     =cut
835    
836 root 1.30 our %RH;
837    
838     sub register_read_type($$) {
839     $RH{$_[0]} = $_[1];
840     }
841    
842 root 1.8 sub push_read {
843 root 1.28 my $self = shift;
844     my $cb = pop;
845    
846     if (@_) {
847     my $type = shift;
848    
849     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
850     ->($self, $cb, @_);
851     }
852 elmex 1.1
853 root 1.38 push @{ $self->{_queue} }, $cb;
854 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
855 elmex 1.1 }
856    
857 root 1.8 sub unshift_read {
858 root 1.28 my $self = shift;
859     my $cb = pop;
860    
861     if (@_) {
862     my $type = shift;
863    
864     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
865     ->($self, $cb, @_);
866     }
867    
868 root 1.8
869 root 1.38 unshift @{ $self->{_queue} }, $cb;
870 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
871 root 1.8 }
872 elmex 1.1
873 root 1.28 =item $handle->push_read (type => @args, $cb)
874 elmex 1.1
875 root 1.28 =item $handle->unshift_read (type => @args, $cb)
876 elmex 1.1
877 root 1.28 Instead of providing a callback that parses the data itself you can chose
878     between a number of predefined parsing formats, for chunks of data, lines
879     etc.
880 elmex 1.1
881 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
882     drop by and tell us):
883 root 1.28
884     =over 4
885    
886 root 1.40 =item chunk => $octets, $cb->($handle, $data)
887 root 1.28
888     Invoke the callback only once C<$octets> bytes have been read. Pass the
889     data read to the callback. The callback will never be called with less
890     data.
891    
892     Example: read 2 bytes.
893    
894     $handle->push_read (chunk => 2, sub {
895     warn "yay ", unpack "H*", $_[1];
896     });
897 elmex 1.1
898     =cut
899    
900 root 1.28 register_read_type chunk => sub {
901     my ($self, $cb, $len) = @_;
902 elmex 1.1
903 root 1.8 sub {
904     $len <= length $_[0]{rbuf} or return;
905 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 root 1.8 1
907     }
908 root 1.28 };
909 root 1.8
910 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
911 elmex 1.1
912 root 1.8 The callback will be called only once a full line (including the end of
913     line marker, C<$eol>) has been read. This line (excluding the end of line
914     marker) will be passed to the callback as second argument (C<$line>), and
915     the end of line marker as the third argument (C<$eol>).
916 elmex 1.1
917 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
918     will be interpreted as a fixed record end marker, or it can be a regex
919     object (e.g. created by C<qr>), in which case it is interpreted as a
920     regular expression.
921 elmex 1.1
922 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
923     undef), then C<qr|\015?\012|> is used (which is good for most internet
924     protocols).
925 elmex 1.1
926 root 1.8 Partial lines at the end of the stream will never be returned, as they are
927     not marked by the end of line marker.
928 elmex 1.1
929 root 1.8 =cut
930 elmex 1.1
931 root 1.28 register_read_type line => sub {
932     my ($self, $cb, $eol) = @_;
933 elmex 1.1
934 root 1.76 if (@_ < 3) {
935     # this is more than twice as fast as the generic code below
936     sub {
937     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
938 elmex 1.1
939 root 1.76 $cb->($_[0], $1, $2);
940     1
941     }
942     } else {
943     $eol = quotemeta $eol unless ref $eol;
944     $eol = qr|^(.*?)($eol)|s;
945    
946     sub {
947     $_[0]{rbuf} =~ s/$eol// or return;
948 elmex 1.1
949 root 1.76 $cb->($_[0], $1, $2);
950     1
951     }
952 root 1.8 }
953 root 1.28 };
954 elmex 1.1
955 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
956 root 1.36
957     Makes a regex match against the regex object C<$accept> and returns
958     everything up to and including the match.
959    
960     Example: read a single line terminated by '\n'.
961    
962     $handle->push_read (regex => qr<\n>, sub { ... });
963    
964     If C<$reject> is given and not undef, then it determines when the data is
965     to be rejected: it is matched against the data when the C<$accept> regex
966     does not match and generates an C<EBADMSG> error when it matches. This is
967     useful to quickly reject wrong data (to avoid waiting for a timeout or a
968     receive buffer overflow).
969    
970     Example: expect a single decimal number followed by whitespace, reject
971     anything else (not the use of an anchor).
972    
973     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
974    
975     If C<$skip> is given and not C<undef>, then it will be matched against
976     the receive buffer when neither C<$accept> nor C<$reject> match,
977     and everything preceding and including the match will be accepted
978     unconditionally. This is useful to skip large amounts of data that you
979     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
980     have to start matching from the beginning. This is purely an optimisation
981     and is usually worth only when you expect more than a few kilobytes.
982    
983     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
984     expect the header to be very large (it isn't in practise, but...), we use
985     a skip regex to skip initial portions. The skip regex is tricky in that
986     it only accepts something not ending in either \015 or \012, as these are
987     required for the accept regex.
988    
989     $handle->push_read (regex =>
990     qr<\015\012\015\012>,
991     undef, # no reject
992     qr<^.*[^\015\012]>,
993     sub { ... });
994    
995     =cut
996    
997     register_read_type regex => sub {
998     my ($self, $cb, $accept, $reject, $skip) = @_;
999    
1000     my $data;
1001     my $rbuf = \$self->{rbuf};
1002    
1003     sub {
1004     # accept
1005     if ($$rbuf =~ $accept) {
1006     $data .= substr $$rbuf, 0, $+[0], "";
1007     $cb->($self, $data);
1008     return 1;
1009     }
1010    
1011     # reject
1012     if ($reject && $$rbuf =~ $reject) {
1013 root 1.52 $self->_error (&Errno::EBADMSG);
1014 root 1.36 }
1015    
1016     # skip
1017     if ($skip && $$rbuf =~ $skip) {
1018     $data .= substr $$rbuf, 0, $+[0], "";
1019     }
1020    
1021     ()
1022     }
1023     };
1024    
1025 root 1.61 =item netstring => $cb->($handle, $string)
1026    
1027     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1028    
1029     Throws an error with C<$!> set to EBADMSG on format violations.
1030    
1031     =cut
1032    
1033     register_read_type netstring => sub {
1034     my ($self, $cb) = @_;
1035    
1036     sub {
1037     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1038     if ($_[0]{rbuf} =~ /[^0-9]/) {
1039     $self->_error (&Errno::EBADMSG);
1040     }
1041     return;
1042     }
1043    
1044     my $len = $1;
1045    
1046     $self->unshift_read (chunk => $len, sub {
1047     my $string = $_[1];
1048     $_[0]->unshift_read (chunk => 1, sub {
1049     if ($_[1] eq ",") {
1050     $cb->($_[0], $string);
1051     } else {
1052     $self->_error (&Errno::EBADMSG);
1053     }
1054     });
1055     });
1056    
1057     1
1058     }
1059     };
1060    
1061     =item packstring => $format, $cb->($handle, $string)
1062    
1063     An octet string prefixed with an encoded length. The encoding C<$format>
1064     uses the same format as a Perl C<pack> format, but must specify a single
1065     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1066     optional C<!>, C<< < >> or C<< > >> modifier).
1067    
1068     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1069    
1070     Example: read a block of data prefixed by its length in BER-encoded
1071     format (very efficient).
1072    
1073     $handle->push_read (packstring => "w", sub {
1074     my ($handle, $data) = @_;
1075     });
1076    
1077     =cut
1078    
1079     register_read_type packstring => sub {
1080     my ($self, $cb, $format) = @_;
1081    
1082     sub {
1083     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1084 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1085 root 1.61 or return;
1086    
1087 root 1.77 $format = length pack $format, $len;
1088 root 1.61
1089 root 1.77 # bypass unshift if we already have the remaining chunk
1090     if ($format + $len <= length $_[0]{rbuf}) {
1091     my $data = substr $_[0]{rbuf}, $format, $len;
1092     substr $_[0]{rbuf}, 0, $format + $len, "";
1093     $cb->($_[0], $data);
1094     } else {
1095     # remove prefix
1096     substr $_[0]{rbuf}, 0, $format, "";
1097    
1098     # read remaining chunk
1099     $_[0]->unshift_read (chunk => $len, $cb);
1100     }
1101 root 1.61
1102     1
1103     }
1104     };
1105    
1106 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1107    
1108     Reads a JSON object or array, decodes it and passes it to the callback.
1109    
1110     If a C<json> object was passed to the constructor, then that will be used
1111     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1112    
1113     This read type uses the incremental parser available with JSON version
1114     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1115     dependency on your own: this module will load the JSON module, but
1116     AnyEvent does not depend on it itself.
1117    
1118     Since JSON texts are fully self-delimiting, the C<json> read and write
1119 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1120     the C<json> write type description, above, for an actual example.
1121 root 1.40
1122     =cut
1123    
1124     register_read_type json => sub {
1125 root 1.63 my ($self, $cb) = @_;
1126 root 1.40
1127     require JSON;
1128    
1129     my $data;
1130     my $rbuf = \$self->{rbuf};
1131    
1132 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1133 root 1.40
1134     sub {
1135     my $ref = $json->incr_parse ($self->{rbuf});
1136    
1137     if ($ref) {
1138     $self->{rbuf} = $json->incr_text;
1139     $json->incr_text = "";
1140     $cb->($self, $ref);
1141    
1142     1
1143     } else {
1144     $self->{rbuf} = "";
1145     ()
1146     }
1147     }
1148     };
1149    
1150 root 1.63 =item storable => $cb->($handle, $ref)
1151    
1152     Deserialises a L<Storable> frozen representation as written by the
1153     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1154     data).
1155    
1156     Raises C<EBADMSG> error if the data could not be decoded.
1157    
1158     =cut
1159    
1160     register_read_type storable => sub {
1161     my ($self, $cb) = @_;
1162    
1163     require Storable;
1164    
1165     sub {
1166     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1167 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1168 root 1.63 or return;
1169    
1170 root 1.77 my $format = length pack "w", $len;
1171 root 1.63
1172 root 1.77 # bypass unshift if we already have the remaining chunk
1173     if ($format + $len <= length $_[0]{rbuf}) {
1174     my $data = substr $_[0]{rbuf}, $format, $len;
1175     substr $_[0]{rbuf}, 0, $format + $len, "";
1176     $cb->($_[0], Storable::thaw ($data));
1177     } else {
1178     # remove prefix
1179     substr $_[0]{rbuf}, 0, $format, "";
1180    
1181     # read remaining chunk
1182     $_[0]->unshift_read (chunk => $len, sub {
1183     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1184     $cb->($_[0], $ref);
1185     } else {
1186     $self->_error (&Errno::EBADMSG);
1187     }
1188     });
1189     }
1190    
1191     1
1192 root 1.63 }
1193     };
1194    
1195 root 1.28 =back
1196    
1197 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1198 root 1.30
1199     This function (not method) lets you add your own types to C<push_read>.
1200    
1201     Whenever the given C<type> is used, C<push_read> will invoke the code
1202     reference with the handle object, the callback and the remaining
1203     arguments.
1204    
1205     The code reference is supposed to return a callback (usually a closure)
1206     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1207    
1208     It should invoke the passed callback when it is done reading (remember to
1209 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1210 root 1.30
1211     Note that this is a function, and all types registered this way will be
1212     global, so try to use unique names.
1213    
1214     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1215     search for C<register_read_type>)).
1216    
1217 root 1.10 =item $handle->stop_read
1218    
1219     =item $handle->start_read
1220    
1221 root 1.18 In rare cases you actually do not want to read anything from the
1222 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1223 root 1.22 any queued callbacks will be executed then. To start reading again, call
1224 root 1.10 C<start_read>.
1225    
1226 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1227     you change the C<on_read> callback or push/unshift a read callback, and it
1228     will automatically C<stop_read> for you when neither C<on_read> is set nor
1229     there are any read requests in the queue.
1230    
1231 root 1.10 =cut
1232    
1233     sub stop_read {
1234     my ($self) = @_;
1235 elmex 1.1
1236 root 1.38 delete $self->{_rw};
1237 root 1.8 }
1238 elmex 1.1
1239 root 1.10 sub start_read {
1240     my ($self) = @_;
1241    
1242 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1243 root 1.10 Scalar::Util::weaken $self;
1244    
1245 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1246 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1247     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1248 root 1.10
1249     if ($len > 0) {
1250 root 1.44 $self->{_activity} = AnyEvent->now;
1251 root 1.43
1252 root 1.17 $self->{filter_r}
1253 root 1.48 ? $self->{filter_r}($self, $rbuf)
1254 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1255 root 1.10
1256     } elsif (defined $len) {
1257 root 1.38 delete $self->{_rw};
1258     $self->{_eof} = 1;
1259 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1260 root 1.10
1261 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1262 root 1.52 return $self->_error ($!, 1);
1263 root 1.10 }
1264     });
1265     }
1266 elmex 1.1 }
1267    
1268 root 1.19 sub _dotls {
1269     my ($self) = @_;
1270    
1271 root 1.56 my $buf;
1272    
1273 root 1.38 if (length $self->{_tls_wbuf}) {
1274     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1275     substr $self->{_tls_wbuf}, 0, $len, "";
1276 root 1.22 }
1277 root 1.19 }
1278    
1279 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1280 root 1.19 $self->{wbuf} .= $buf;
1281     $self->_drain_wbuf;
1282     }
1283    
1284 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1285     if (length $buf) {
1286     $self->{rbuf} .= $buf;
1287 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1288 root 1.56 } else {
1289     # let's treat SSL-eof as we treat normal EOF
1290     $self->{_eof} = 1;
1291     $self->_shutdown;
1292     return;
1293     }
1294 root 1.23 }
1295    
1296 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1297    
1298     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1299 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1300 root 1.52 return $self->_error ($!, 1);
1301 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1302 root 1.52 return $self->_error (&Errno::EIO, 1);
1303 root 1.19 }
1304 root 1.23
1305     # all others are fine for our purposes
1306 root 1.19 }
1307     }
1308    
1309 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1310    
1311     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1312     object is created, you can also do that at a later time by calling
1313     C<starttls>.
1314    
1315     The first argument is the same as the C<tls> constructor argument (either
1316     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1317    
1318     The second argument is the optional C<Net::SSLeay::CTX> object that is
1319     used when AnyEvent::Handle has to create its own TLS connection object.
1320    
1321 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1322     call and can be used or changed to your liking. Note that the handshake
1323     might have already started when this function returns.
1324    
1325 root 1.25 =cut
1326    
1327 root 1.19 sub starttls {
1328     my ($self, $ssl, $ctx) = @_;
1329    
1330 root 1.25 $self->stoptls;
1331    
1332 root 1.19 if ($ssl eq "accept") {
1333     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1334     Net::SSLeay::set_accept_state ($ssl);
1335     } elsif ($ssl eq "connect") {
1336     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1337     Net::SSLeay::set_connect_state ($ssl);
1338     }
1339    
1340     $self->{tls} = $ssl;
1341    
1342 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1343     # but the openssl maintainers basically said: "trust us, it just works".
1344     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1345     # and mismaintained ssleay-module doesn't even offer them).
1346 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1347 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1348 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1349     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1350 root 1.21
1351 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1352     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1353 root 1.19
1354 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1355 root 1.19
1356     $self->{filter_w} = sub {
1357 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1358 root 1.19 &_dotls;
1359     };
1360     $self->{filter_r} = sub {
1361 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1362 root 1.19 &_dotls;
1363     };
1364     }
1365    
1366 root 1.25 =item $handle->stoptls
1367    
1368     Destroys the SSL connection, if any. Partial read or write data will be
1369     lost.
1370    
1371     =cut
1372    
1373     sub stoptls {
1374     my ($self) = @_;
1375    
1376     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1377 root 1.38
1378     delete $self->{_rbio};
1379     delete $self->{_wbio};
1380     delete $self->{_tls_wbuf};
1381 root 1.25 delete $self->{filter_r};
1382     delete $self->{filter_w};
1383     }
1384    
1385 root 1.19 sub DESTROY {
1386     my $self = shift;
1387    
1388 root 1.25 $self->stoptls;
1389 root 1.62
1390     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1391    
1392     if ($linger && length $self->{wbuf}) {
1393     my $fh = delete $self->{fh};
1394     my $wbuf = delete $self->{wbuf};
1395    
1396     my @linger;
1397    
1398     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1399     my $len = syswrite $fh, $wbuf, length $wbuf;
1400    
1401     if ($len > 0) {
1402     substr $wbuf, 0, $len, "";
1403     } else {
1404     @linger = (); # end
1405     }
1406     });
1407     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1408     @linger = ();
1409     });
1410     }
1411 root 1.19 }
1412    
1413     =item AnyEvent::Handle::TLS_CTX
1414    
1415     This function creates and returns the Net::SSLeay::CTX object used by
1416     default for TLS mode.
1417    
1418     The context is created like this:
1419    
1420     Net::SSLeay::load_error_strings;
1421     Net::SSLeay::SSLeay_add_ssl_algorithms;
1422     Net::SSLeay::randomize;
1423    
1424     my $CTX = Net::SSLeay::CTX_new;
1425    
1426     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1427    
1428     =cut
1429    
1430     our $TLS_CTX;
1431    
1432     sub TLS_CTX() {
1433     $TLS_CTX || do {
1434     require Net::SSLeay;
1435    
1436     Net::SSLeay::load_error_strings ();
1437     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1438     Net::SSLeay::randomize ();
1439    
1440     $TLS_CTX = Net::SSLeay::CTX_new ();
1441    
1442     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1443    
1444     $TLS_CTX
1445     }
1446     }
1447    
1448 elmex 1.1 =back
1449    
1450 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1451    
1452     In many cases, you might want to subclass AnyEvent::Handle.
1453    
1454     To make this easier, a given version of AnyEvent::Handle uses these
1455     conventions:
1456    
1457     =over 4
1458    
1459     =item * all constructor arguments become object members.
1460    
1461     At least initially, when you pass a C<tls>-argument to the constructor it
1462 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1463 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1464    
1465     =item * other object member names are prefixed with an C<_>.
1466    
1467     All object members not explicitly documented (internal use) are prefixed
1468     with an underscore character, so the remaining non-C<_>-namespace is free
1469     for use for subclasses.
1470    
1471     =item * all members not documented here and not prefixed with an underscore
1472     are free to use in subclasses.
1473    
1474     Of course, new versions of AnyEvent::Handle may introduce more "public"
1475     member variables, but thats just life, at least it is documented.
1476    
1477     =back
1478    
1479 elmex 1.1 =head1 AUTHOR
1480    
1481 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1482 elmex 1.1
1483     =cut
1484    
1485     1; # End of AnyEvent::Handle