ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.81
Committed: Wed Aug 20 12:37:21 2008 UTC (15 years, 9 months ago) by root
Branch: MAIN
Changes since 1.80: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.81 our $VERSION = 4.231;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.8 NOTE: The filehandle will be set to non-blocking (using
76     AnyEvent::Util::fh_nonblocking).
77    
78 root 1.40 =item on_eof => $cb->($handle)
79 root 1.10
80 root 1.74 Set the callback to be called when an end-of-file condition is detected,
81 root 1.52 i.e. in the case of a socket, when the other side has closed the
82     connection cleanly.
83 root 1.8
84 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
85 root 1.16 otherwise you might end up with a closed socket while you are still
86     waiting for data.
87    
88 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
89     set, then a fatal error will be raised with C<$!> set to <0>.
90    
91 root 1.52 =item on_error => $cb->($handle, $fatal)
92 root 1.10
93 root 1.52 This is the error callback, which is called when, well, some error
94     occured, such as not being able to resolve the hostname, failure to
95     connect or a read error.
96    
97     Some errors are fatal (which is indicated by C<$fatal> being true). On
98     fatal errors the handle object will be shut down and will not be
99     usable. Non-fatal errors can be retried by simply returning, but it is
100     recommended to simply ignore this parameter and instead abondon the handle
101     object when this callback is invoked.
102 root 1.8
103 root 1.10 On callback entrance, the value of C<$!> contains the operating system
104 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
105 root 1.8
106 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
107     you will not be notified of errors otherwise. The default simply calls
108 root 1.52 C<croak>.
109 root 1.8
110 root 1.40 =item on_read => $cb->($handle)
111 root 1.8
112     This sets the default read callback, which is called when data arrives
113 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
114     callback will only be called when at least one octet of data is in the
115     read buffer).
116 root 1.8
117     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
118 root 1.40 method or access the C<$handle->{rbuf}> member directly.
119 root 1.8
120     When an EOF condition is detected then AnyEvent::Handle will first try to
121     feed all the remaining data to the queued callbacks and C<on_read> before
122     calling the C<on_eof> callback. If no progress can be made, then a fatal
123     error will be raised (with C<$!> set to C<EPIPE>).
124 elmex 1.1
125 root 1.40 =item on_drain => $cb->($handle)
126 elmex 1.1
127 root 1.8 This sets the callback that is called when the write buffer becomes empty
128     (or when the callback is set and the buffer is empty already).
129 elmex 1.1
130 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
131 elmex 1.2
132 root 1.69 This callback is useful when you don't want to put all of your write data
133     into the queue at once, for example, when you want to write the contents
134     of some file to the socket you might not want to read the whole file into
135     memory and push it into the queue, but instead only read more data from
136     the file when the write queue becomes empty.
137    
138 root 1.43 =item timeout => $fractional_seconds
139    
140     If non-zero, then this enables an "inactivity" timeout: whenever this many
141     seconds pass without a successful read or write on the underlying file
142     handle, the C<on_timeout> callback will be invoked (and if that one is
143 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
144 root 1.43
145     Note that timeout processing is also active when you currently do not have
146     any outstanding read or write requests: If you plan to keep the connection
147     idle then you should disable the timout temporarily or ignore the timeout
148     in the C<on_timeout> callback.
149    
150     Zero (the default) disables this timeout.
151    
152     =item on_timeout => $cb->($handle)
153    
154     Called whenever the inactivity timeout passes. If you return from this
155     callback, then the timeout will be reset as if some activity had happened,
156     so this condition is not fatal in any way.
157    
158 root 1.8 =item rbuf_max => <bytes>
159 elmex 1.2
160 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
161     when the read buffer ever (strictly) exceeds this size. This is useful to
162     avoid denial-of-service attacks.
163 elmex 1.2
164 root 1.8 For example, a server accepting connections from untrusted sources should
165     be configured to accept only so-and-so much data that it cannot act on
166     (for example, when expecting a line, an attacker could send an unlimited
167     amount of data without a callback ever being called as long as the line
168     isn't finished).
169 elmex 1.2
170 root 1.70 =item autocork => <boolean>
171    
172     When disabled (the default), then C<push_write> will try to immediately
173     write the data to the handle if possible. This avoids having to register
174     a write watcher and wait for the next event loop iteration, but can be
175     inefficient if you write multiple small chunks (this disadvantage is
176     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
177    
178     When enabled, then writes will always be queued till the next event loop
179     iteration. This is efficient when you do many small writes per iteration,
180     but less efficient when you do a single write only.
181    
182     =item no_delay => <boolean>
183    
184     When doing small writes on sockets, your operating system kernel might
185     wait a bit for more data before actually sending it out. This is called
186     the Nagle algorithm, and usually it is beneficial.
187    
188     In some situations you want as low a delay as possible, which cna be
189     accomplishd by setting this option to true.
190    
191     The default is your opertaing system's default behaviour, this option
192     explicitly enables or disables it, if possible.
193    
194 root 1.8 =item read_size => <bytes>
195 elmex 1.2
196 root 1.8 The default read block size (the amount of bytes this module will try to read
197 root 1.46 during each (loop iteration). Default: C<8192>.
198 root 1.8
199     =item low_water_mark => <bytes>
200    
201     Sets the amount of bytes (default: C<0>) that make up an "empty" write
202     buffer: If the write reaches this size or gets even samller it is
203     considered empty.
204 elmex 1.2
205 root 1.62 =item linger => <seconds>
206    
207     If non-zero (default: C<3600>), then the destructor of the
208     AnyEvent::Handle object will check wether there is still outstanding write
209     data and will install a watcher that will write out this data. No errors
210     will be reported (this mostly matches how the operating system treats
211     outstanding data at socket close time).
212    
213     This will not work for partial TLS data that could not yet been
214     encoded. This data will be lost.
215    
216 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
217    
218     When this parameter is given, it enables TLS (SSL) mode, that means it
219     will start making tls handshake and will transparently encrypt/decrypt
220     data.
221    
222 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
223     automatically when you try to create a TLS handle).
224    
225 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
226     connection, use C<connect> mode.
227    
228     You can also provide your own TLS connection object, but you have
229     to make sure that you call either C<Net::SSLeay::set_connect_state>
230     or C<Net::SSLeay::set_accept_state> on it before you pass it to
231     AnyEvent::Handle.
232    
233 root 1.75 See the C<starttls> method if you need to start TLS negotiation later.
234 root 1.26
235 root 1.19 =item tls_ctx => $ssl_ctx
236    
237     Use the given Net::SSLeay::CTX object to create the new TLS connection
238     (unless a connection object was specified directly). If this parameter is
239     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
240    
241 root 1.40 =item json => JSON or JSON::XS object
242    
243     This is the json coder object used by the C<json> read and write types.
244    
245 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
246     suitable one, which will write and expect UTF-8 encoded JSON texts.
247 root 1.40
248     Note that you are responsible to depend on the JSON module if you want to
249     use this functionality, as AnyEvent does not have a dependency itself.
250    
251 root 1.38 =item filter_r => $cb
252    
253     =item filter_w => $cb
254    
255     These exist, but are undocumented at this time.
256    
257 elmex 1.1 =back
258    
259     =cut
260    
261     sub new {
262 root 1.8 my $class = shift;
263    
264     my $self = bless { @_ }, $class;
265    
266     $self->{fh} or Carp::croak "mandatory argument fh is missing";
267    
268     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
269 elmex 1.1
270 root 1.19 if ($self->{tls}) {
271     require Net::SSLeay;
272     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
273     }
274    
275 root 1.44 $self->{_activity} = AnyEvent->now;
276 root 1.43 $self->_timeout;
277 elmex 1.1
278 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
279     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
280 root 1.10
281 root 1.66 $self->start_read
282 root 1.67 if $self->{on_read};
283 root 1.66
284 root 1.8 $self
285     }
286 elmex 1.2
287 root 1.8 sub _shutdown {
288     my ($self) = @_;
289 elmex 1.2
290 root 1.46 delete $self->{_tw};
291 root 1.38 delete $self->{_rw};
292     delete $self->{_ww};
293 root 1.8 delete $self->{fh};
294 root 1.52
295     $self->stoptls;
296 root 1.8 }
297    
298 root 1.52 sub _error {
299     my ($self, $errno, $fatal) = @_;
300 root 1.8
301 root 1.52 $self->_shutdown
302     if $fatal;
303 elmex 1.1
304 root 1.52 $! = $errno;
305 root 1.37
306 root 1.52 if ($self->{on_error}) {
307     $self->{on_error}($self, $fatal);
308     } else {
309     Carp::croak "AnyEvent::Handle uncaught error: $!";
310     }
311 elmex 1.1 }
312    
313 root 1.8 =item $fh = $handle->fh
314 elmex 1.1
315 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
316 elmex 1.1
317     =cut
318    
319 root 1.38 sub fh { $_[0]{fh} }
320 elmex 1.1
321 root 1.8 =item $handle->on_error ($cb)
322 elmex 1.1
323 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
324 elmex 1.1
325 root 1.8 =cut
326    
327     sub on_error {
328     $_[0]{on_error} = $_[1];
329     }
330    
331     =item $handle->on_eof ($cb)
332    
333     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
334 elmex 1.1
335     =cut
336    
337 root 1.8 sub on_eof {
338     $_[0]{on_eof} = $_[1];
339     }
340    
341 root 1.43 =item $handle->on_timeout ($cb)
342    
343     Replace the current C<on_timeout> callback, or disables the callback
344     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
345     argument.
346    
347     =cut
348    
349     sub on_timeout {
350     $_[0]{on_timeout} = $_[1];
351     }
352    
353 root 1.70 =item $handle->autocork ($boolean)
354    
355     Enables or disables the current autocork behaviour (see C<autocork>
356     constructor argument).
357    
358     =cut
359    
360     =item $handle->no_delay ($boolean)
361    
362     Enables or disables the C<no_delay> setting (see constructor argument of
363     the same name for details).
364    
365     =cut
366    
367     sub no_delay {
368     $_[0]{no_delay} = $_[1];
369    
370     eval {
371     local $SIG{__DIE__};
372     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
373     };
374     }
375    
376 root 1.43 #############################################################################
377    
378     =item $handle->timeout ($seconds)
379    
380     Configures (or disables) the inactivity timeout.
381    
382     =cut
383    
384     sub timeout {
385     my ($self, $timeout) = @_;
386    
387     $self->{timeout} = $timeout;
388     $self->_timeout;
389     }
390    
391     # reset the timeout watcher, as neccessary
392     # also check for time-outs
393     sub _timeout {
394     my ($self) = @_;
395    
396     if ($self->{timeout}) {
397 root 1.44 my $NOW = AnyEvent->now;
398 root 1.43
399     # when would the timeout trigger?
400     my $after = $self->{_activity} + $self->{timeout} - $NOW;
401    
402     # now or in the past already?
403     if ($after <= 0) {
404     $self->{_activity} = $NOW;
405    
406     if ($self->{on_timeout}) {
407 root 1.48 $self->{on_timeout}($self);
408 root 1.43 } else {
409 root 1.52 $self->_error (&Errno::ETIMEDOUT);
410 root 1.43 }
411    
412 root 1.56 # callback could have changed timeout value, optimise
413 root 1.43 return unless $self->{timeout};
414    
415     # calculate new after
416     $after = $self->{timeout};
417     }
418    
419     Scalar::Util::weaken $self;
420 root 1.56 return unless $self; # ->error could have destroyed $self
421 root 1.43
422     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
423     delete $self->{_tw};
424     $self->_timeout;
425     });
426     } else {
427     delete $self->{_tw};
428     }
429     }
430    
431 root 1.9 #############################################################################
432    
433     =back
434    
435     =head2 WRITE QUEUE
436    
437     AnyEvent::Handle manages two queues per handle, one for writing and one
438     for reading.
439    
440     The write queue is very simple: you can add data to its end, and
441     AnyEvent::Handle will automatically try to get rid of it for you.
442    
443 elmex 1.20 When data could be written and the write buffer is shorter then the low
444 root 1.9 water mark, the C<on_drain> callback will be invoked.
445    
446     =over 4
447    
448 root 1.8 =item $handle->on_drain ($cb)
449    
450     Sets the C<on_drain> callback or clears it (see the description of
451     C<on_drain> in the constructor).
452    
453     =cut
454    
455     sub on_drain {
456 elmex 1.1 my ($self, $cb) = @_;
457    
458 root 1.8 $self->{on_drain} = $cb;
459    
460     $cb->($self)
461     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
462     }
463    
464     =item $handle->push_write ($data)
465    
466     Queues the given scalar to be written. You can push as much data as you
467     want (only limited by the available memory), as C<AnyEvent::Handle>
468     buffers it independently of the kernel.
469    
470     =cut
471    
472 root 1.17 sub _drain_wbuf {
473     my ($self) = @_;
474 root 1.8
475 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
476 root 1.35
477 root 1.8 Scalar::Util::weaken $self;
478 root 1.35
479 root 1.8 my $cb = sub {
480     my $len = syswrite $self->{fh}, $self->{wbuf};
481    
482 root 1.29 if ($len >= 0) {
483 root 1.8 substr $self->{wbuf}, 0, $len, "";
484    
485 root 1.44 $self->{_activity} = AnyEvent->now;
486 root 1.43
487 root 1.8 $self->{on_drain}($self)
488     if $self->{low_water_mark} >= length $self->{wbuf}
489     && $self->{on_drain};
490    
491 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
492 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
493 root 1.52 $self->_error ($!, 1);
494 elmex 1.1 }
495 root 1.8 };
496    
497 root 1.35 # try to write data immediately
498 root 1.70 $cb->() unless $self->{autocork};
499 root 1.8
500 root 1.35 # if still data left in wbuf, we need to poll
501 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
502 root 1.35 if length $self->{wbuf};
503 root 1.8 };
504     }
505    
506 root 1.30 our %WH;
507    
508     sub register_write_type($$) {
509     $WH{$_[0]} = $_[1];
510     }
511    
512 root 1.17 sub push_write {
513     my $self = shift;
514    
515 root 1.29 if (@_ > 1) {
516     my $type = shift;
517    
518     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
519     ->($self, @_);
520     }
521    
522 root 1.17 if ($self->{filter_w}) {
523 root 1.48 $self->{filter_w}($self, \$_[0]);
524 root 1.17 } else {
525     $self->{wbuf} .= $_[0];
526     $self->_drain_wbuf;
527     }
528     }
529    
530 root 1.29 =item $handle->push_write (type => @args)
531    
532     Instead of formatting your data yourself, you can also let this module do
533     the job by specifying a type and type-specific arguments.
534    
535 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
536     drop by and tell us):
537 root 1.29
538     =over 4
539    
540     =item netstring => $string
541    
542     Formats the given value as netstring
543     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
544    
545     =cut
546    
547     register_write_type netstring => sub {
548     my ($self, $string) = @_;
549    
550     sprintf "%d:%s,", (length $string), $string
551     };
552    
553 root 1.61 =item packstring => $format, $data
554    
555     An octet string prefixed with an encoded length. The encoding C<$format>
556     uses the same format as a Perl C<pack> format, but must specify a single
557     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
558     optional C<!>, C<< < >> or C<< > >> modifier).
559    
560     =cut
561    
562     register_write_type packstring => sub {
563     my ($self, $format, $string) = @_;
564    
565 root 1.65 pack "$format/a*", $string
566 root 1.61 };
567    
568 root 1.39 =item json => $array_or_hashref
569    
570 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
571     provide your own JSON object, this means it will be encoded to JSON text
572     in UTF-8.
573    
574     JSON objects (and arrays) are self-delimiting, so you can write JSON at
575     one end of a handle and read them at the other end without using any
576     additional framing.
577    
578 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
579     this module doesn't need delimiters after or between JSON texts to be
580     able to read them, many other languages depend on that.
581    
582     A simple RPC protocol that interoperates easily with others is to send
583     JSON arrays (or objects, although arrays are usually the better choice as
584     they mimic how function argument passing works) and a newline after each
585     JSON text:
586    
587     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
588     $handle->push_write ("\012");
589    
590     An AnyEvent::Handle receiver would simply use the C<json> read type and
591     rely on the fact that the newline will be skipped as leading whitespace:
592    
593     $handle->push_read (json => sub { my $array = $_[1]; ... });
594    
595     Other languages could read single lines terminated by a newline and pass
596     this line into their JSON decoder of choice.
597    
598 root 1.40 =cut
599    
600     register_write_type json => sub {
601     my ($self, $ref) = @_;
602    
603     require JSON;
604    
605     $self->{json} ? $self->{json}->encode ($ref)
606     : JSON::encode_json ($ref)
607     };
608    
609 root 1.63 =item storable => $reference
610    
611     Freezes the given reference using L<Storable> and writes it to the
612     handle. Uses the C<nfreeze> format.
613    
614     =cut
615    
616     register_write_type storable => sub {
617     my ($self, $ref) = @_;
618    
619     require Storable;
620    
621 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
622 root 1.63 };
623    
624 root 1.53 =back
625    
626 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
627 root 1.30
628     This function (not method) lets you add your own types to C<push_write>.
629     Whenever the given C<type> is used, C<push_write> will invoke the code
630     reference with the handle object and the remaining arguments.
631 root 1.29
632 root 1.30 The code reference is supposed to return a single octet string that will
633     be appended to the write buffer.
634 root 1.29
635 root 1.30 Note that this is a function, and all types registered this way will be
636     global, so try to use unique names.
637 root 1.29
638 root 1.30 =cut
639 root 1.29
640 root 1.8 #############################################################################
641    
642 root 1.9 =back
643    
644     =head2 READ QUEUE
645    
646     AnyEvent::Handle manages two queues per handle, one for writing and one
647     for reading.
648    
649     The read queue is more complex than the write queue. It can be used in two
650     ways, the "simple" way, using only C<on_read> and the "complex" way, using
651     a queue.
652    
653     In the simple case, you just install an C<on_read> callback and whenever
654     new data arrives, it will be called. You can then remove some data (if
655 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
656     leave the data there if you want to accumulate more (e.g. when only a
657     partial message has been received so far).
658 root 1.9
659     In the more complex case, you want to queue multiple callbacks. In this
660     case, AnyEvent::Handle will call the first queued callback each time new
661 root 1.61 data arrives (also the first time it is queued) and removes it when it has
662     done its job (see C<push_read>, below).
663 root 1.9
664     This way you can, for example, push three line-reads, followed by reading
665     a chunk of data, and AnyEvent::Handle will execute them in order.
666    
667     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
668     the specified number of bytes which give an XML datagram.
669    
670     # in the default state, expect some header bytes
671     $handle->on_read (sub {
672     # some data is here, now queue the length-header-read (4 octets)
673 root 1.52 shift->unshift_read (chunk => 4, sub {
674 root 1.9 # header arrived, decode
675     my $len = unpack "N", $_[1];
676    
677     # now read the payload
678 root 1.52 shift->unshift_read (chunk => $len, sub {
679 root 1.9 my $xml = $_[1];
680     # handle xml
681     });
682     });
683     });
684    
685 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
686     and another line or "ERROR" for the first request that is sent, and 64
687     bytes for the second request. Due to the availability of a queue, we can
688     just pipeline sending both requests and manipulate the queue as necessary
689     in the callbacks.
690    
691     When the first callback is called and sees an "OK" response, it will
692     C<unshift> another line-read. This line-read will be queued I<before> the
693     64-byte chunk callback.
694 root 1.9
695 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
696 root 1.9 $handle->push_write ("request 1\015\012");
697    
698     # we expect "ERROR" or "OK" as response, so push a line read
699 root 1.52 $handle->push_read (line => sub {
700 root 1.9 # if we got an "OK", we have to _prepend_ another line,
701     # so it will be read before the second request reads its 64 bytes
702     # which are already in the queue when this callback is called
703     # we don't do this in case we got an error
704     if ($_[1] eq "OK") {
705 root 1.52 $_[0]->unshift_read (line => sub {
706 root 1.9 my $response = $_[1];
707     ...
708     });
709     }
710     });
711    
712 root 1.69 # request two, simply returns 64 octets
713 root 1.9 $handle->push_write ("request 2\015\012");
714    
715     # simply read 64 bytes, always
716 root 1.52 $handle->push_read (chunk => 64, sub {
717 root 1.9 my $response = $_[1];
718     ...
719     });
720    
721     =over 4
722    
723 root 1.10 =cut
724    
725 root 1.8 sub _drain_rbuf {
726     my ($self) = @_;
727 elmex 1.1
728 root 1.59 local $self->{_in_drain} = 1;
729    
730 root 1.17 if (
731     defined $self->{rbuf_max}
732     && $self->{rbuf_max} < length $self->{rbuf}
733     ) {
734 root 1.52 return $self->_error (&Errno::ENOSPC, 1);
735 root 1.17 }
736    
737 root 1.59 while () {
738     my $len = length $self->{rbuf};
739 elmex 1.1
740 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
741 root 1.29 unless ($cb->($self)) {
742 root 1.38 if ($self->{_eof}) {
743 root 1.10 # no progress can be made (not enough data and no data forthcoming)
744 root 1.61 $self->_error (&Errno::EPIPE, 1), last;
745 root 1.10 }
746    
747 root 1.38 unshift @{ $self->{_queue} }, $cb;
748 root 1.55 last;
749 root 1.8 }
750     } elsif ($self->{on_read}) {
751 root 1.61 last unless $len;
752    
753 root 1.8 $self->{on_read}($self);
754    
755     if (
756 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
757     && !@{ $self->{_queue} } # and the queue is still empty
758     && $self->{on_read} # but we still have on_read
759 root 1.8 ) {
760 root 1.55 # no further data will arrive
761     # so no progress can be made
762 root 1.61 $self->_error (&Errno::EPIPE, 1), last
763 root 1.55 if $self->{_eof};
764    
765     last; # more data might arrive
766 elmex 1.1 }
767 root 1.8 } else {
768     # read side becomes idle
769 root 1.38 delete $self->{_rw};
770 root 1.55 last;
771 root 1.8 }
772     }
773    
774 root 1.80 if ($self->{_eof}) {
775     if ($self->{on_eof}) {
776     $self->{on_eof}($self)
777     } else {
778     $self->_error (0, 1);
779     }
780     }
781 root 1.55
782     # may need to restart read watcher
783     unless ($self->{_rw}) {
784     $self->start_read
785     if $self->{on_read} || @{ $self->{_queue} };
786     }
787 elmex 1.1 }
788    
789 root 1.8 =item $handle->on_read ($cb)
790 elmex 1.1
791 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
792     the new callback is C<undef>). See the description of C<on_read> in the
793     constructor.
794 elmex 1.1
795 root 1.8 =cut
796    
797     sub on_read {
798     my ($self, $cb) = @_;
799 elmex 1.1
800 root 1.8 $self->{on_read} = $cb;
801 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
802 elmex 1.1 }
803    
804 root 1.8 =item $handle->rbuf
805    
806     Returns the read buffer (as a modifiable lvalue).
807 elmex 1.1
808 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
809     you want.
810 elmex 1.1
811 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
812     C<push_read> or C<unshift_read> methods are used. The other read methods
813     automatically manage the read buffer.
814 elmex 1.1
815     =cut
816    
817 elmex 1.2 sub rbuf : lvalue {
818 root 1.8 $_[0]{rbuf}
819 elmex 1.2 }
820 elmex 1.1
821 root 1.8 =item $handle->push_read ($cb)
822    
823     =item $handle->unshift_read ($cb)
824    
825     Append the given callback to the end of the queue (C<push_read>) or
826     prepend it (C<unshift_read>).
827    
828     The callback is called each time some additional read data arrives.
829 elmex 1.1
830 elmex 1.20 It must check whether enough data is in the read buffer already.
831 elmex 1.1
832 root 1.8 If not enough data is available, it must return the empty list or a false
833     value, in which case it will be called repeatedly until enough data is
834     available (or an error condition is detected).
835    
836     If enough data was available, then the callback must remove all data it is
837     interested in (which can be none at all) and return a true value. After returning
838     true, it will be removed from the queue.
839 elmex 1.1
840     =cut
841    
842 root 1.30 our %RH;
843    
844     sub register_read_type($$) {
845     $RH{$_[0]} = $_[1];
846     }
847    
848 root 1.8 sub push_read {
849 root 1.28 my $self = shift;
850     my $cb = pop;
851    
852     if (@_) {
853     my $type = shift;
854    
855     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
856     ->($self, $cb, @_);
857     }
858 elmex 1.1
859 root 1.38 push @{ $self->{_queue} }, $cb;
860 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
861 elmex 1.1 }
862    
863 root 1.8 sub unshift_read {
864 root 1.28 my $self = shift;
865     my $cb = pop;
866    
867     if (@_) {
868     my $type = shift;
869    
870     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
871     ->($self, $cb, @_);
872     }
873    
874 root 1.8
875 root 1.38 unshift @{ $self->{_queue} }, $cb;
876 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
877 root 1.8 }
878 elmex 1.1
879 root 1.28 =item $handle->push_read (type => @args, $cb)
880 elmex 1.1
881 root 1.28 =item $handle->unshift_read (type => @args, $cb)
882 elmex 1.1
883 root 1.28 Instead of providing a callback that parses the data itself you can chose
884     between a number of predefined parsing formats, for chunks of data, lines
885     etc.
886 elmex 1.1
887 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
888     drop by and tell us):
889 root 1.28
890     =over 4
891    
892 root 1.40 =item chunk => $octets, $cb->($handle, $data)
893 root 1.28
894     Invoke the callback only once C<$octets> bytes have been read. Pass the
895     data read to the callback. The callback will never be called with less
896     data.
897    
898     Example: read 2 bytes.
899    
900     $handle->push_read (chunk => 2, sub {
901     warn "yay ", unpack "H*", $_[1];
902     });
903 elmex 1.1
904     =cut
905    
906 root 1.28 register_read_type chunk => sub {
907     my ($self, $cb, $len) = @_;
908 elmex 1.1
909 root 1.8 sub {
910     $len <= length $_[0]{rbuf} or return;
911 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
912 root 1.8 1
913     }
914 root 1.28 };
915 root 1.8
916 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
917 elmex 1.1
918 root 1.8 The callback will be called only once a full line (including the end of
919     line marker, C<$eol>) has been read. This line (excluding the end of line
920     marker) will be passed to the callback as second argument (C<$line>), and
921     the end of line marker as the third argument (C<$eol>).
922 elmex 1.1
923 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
924     will be interpreted as a fixed record end marker, or it can be a regex
925     object (e.g. created by C<qr>), in which case it is interpreted as a
926     regular expression.
927 elmex 1.1
928 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
929     undef), then C<qr|\015?\012|> is used (which is good for most internet
930     protocols).
931 elmex 1.1
932 root 1.8 Partial lines at the end of the stream will never be returned, as they are
933     not marked by the end of line marker.
934 elmex 1.1
935 root 1.8 =cut
936 elmex 1.1
937 root 1.28 register_read_type line => sub {
938     my ($self, $cb, $eol) = @_;
939 elmex 1.1
940 root 1.76 if (@_ < 3) {
941     # this is more than twice as fast as the generic code below
942     sub {
943     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
944 elmex 1.1
945 root 1.76 $cb->($_[0], $1, $2);
946     1
947     }
948     } else {
949     $eol = quotemeta $eol unless ref $eol;
950     $eol = qr|^(.*?)($eol)|s;
951    
952     sub {
953     $_[0]{rbuf} =~ s/$eol// or return;
954 elmex 1.1
955 root 1.76 $cb->($_[0], $1, $2);
956     1
957     }
958 root 1.8 }
959 root 1.28 };
960 elmex 1.1
961 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
962 root 1.36
963     Makes a regex match against the regex object C<$accept> and returns
964     everything up to and including the match.
965    
966     Example: read a single line terminated by '\n'.
967    
968     $handle->push_read (regex => qr<\n>, sub { ... });
969    
970     If C<$reject> is given and not undef, then it determines when the data is
971     to be rejected: it is matched against the data when the C<$accept> regex
972     does not match and generates an C<EBADMSG> error when it matches. This is
973     useful to quickly reject wrong data (to avoid waiting for a timeout or a
974     receive buffer overflow).
975    
976     Example: expect a single decimal number followed by whitespace, reject
977     anything else (not the use of an anchor).
978    
979     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
980    
981     If C<$skip> is given and not C<undef>, then it will be matched against
982     the receive buffer when neither C<$accept> nor C<$reject> match,
983     and everything preceding and including the match will be accepted
984     unconditionally. This is useful to skip large amounts of data that you
985     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
986     have to start matching from the beginning. This is purely an optimisation
987     and is usually worth only when you expect more than a few kilobytes.
988    
989     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
990     expect the header to be very large (it isn't in practise, but...), we use
991     a skip regex to skip initial portions. The skip regex is tricky in that
992     it only accepts something not ending in either \015 or \012, as these are
993     required for the accept regex.
994    
995     $handle->push_read (regex =>
996     qr<\015\012\015\012>,
997     undef, # no reject
998     qr<^.*[^\015\012]>,
999     sub { ... });
1000    
1001     =cut
1002    
1003     register_read_type regex => sub {
1004     my ($self, $cb, $accept, $reject, $skip) = @_;
1005    
1006     my $data;
1007     my $rbuf = \$self->{rbuf};
1008    
1009     sub {
1010     # accept
1011     if ($$rbuf =~ $accept) {
1012     $data .= substr $$rbuf, 0, $+[0], "";
1013     $cb->($self, $data);
1014     return 1;
1015     }
1016    
1017     # reject
1018     if ($reject && $$rbuf =~ $reject) {
1019 root 1.52 $self->_error (&Errno::EBADMSG);
1020 root 1.36 }
1021    
1022     # skip
1023     if ($skip && $$rbuf =~ $skip) {
1024     $data .= substr $$rbuf, 0, $+[0], "";
1025     }
1026    
1027     ()
1028     }
1029     };
1030    
1031 root 1.61 =item netstring => $cb->($handle, $string)
1032    
1033     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1034    
1035     Throws an error with C<$!> set to EBADMSG on format violations.
1036    
1037     =cut
1038    
1039     register_read_type netstring => sub {
1040     my ($self, $cb) = @_;
1041    
1042     sub {
1043     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1044     if ($_[0]{rbuf} =~ /[^0-9]/) {
1045     $self->_error (&Errno::EBADMSG);
1046     }
1047     return;
1048     }
1049    
1050     my $len = $1;
1051    
1052     $self->unshift_read (chunk => $len, sub {
1053     my $string = $_[1];
1054     $_[0]->unshift_read (chunk => 1, sub {
1055     if ($_[1] eq ",") {
1056     $cb->($_[0], $string);
1057     } else {
1058     $self->_error (&Errno::EBADMSG);
1059     }
1060     });
1061     });
1062    
1063     1
1064     }
1065     };
1066    
1067     =item packstring => $format, $cb->($handle, $string)
1068    
1069     An octet string prefixed with an encoded length. The encoding C<$format>
1070     uses the same format as a Perl C<pack> format, but must specify a single
1071     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1072     optional C<!>, C<< < >> or C<< > >> modifier).
1073    
1074     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1075    
1076     Example: read a block of data prefixed by its length in BER-encoded
1077     format (very efficient).
1078    
1079     $handle->push_read (packstring => "w", sub {
1080     my ($handle, $data) = @_;
1081     });
1082    
1083     =cut
1084    
1085     register_read_type packstring => sub {
1086     my ($self, $cb, $format) = @_;
1087    
1088     sub {
1089     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1090 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1091 root 1.61 or return;
1092    
1093 root 1.77 $format = length pack $format, $len;
1094 root 1.61
1095 root 1.77 # bypass unshift if we already have the remaining chunk
1096     if ($format + $len <= length $_[0]{rbuf}) {
1097     my $data = substr $_[0]{rbuf}, $format, $len;
1098     substr $_[0]{rbuf}, 0, $format + $len, "";
1099     $cb->($_[0], $data);
1100     } else {
1101     # remove prefix
1102     substr $_[0]{rbuf}, 0, $format, "";
1103    
1104     # read remaining chunk
1105     $_[0]->unshift_read (chunk => $len, $cb);
1106     }
1107 root 1.61
1108     1
1109     }
1110     };
1111    
1112 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1113    
1114     Reads a JSON object or array, decodes it and passes it to the callback.
1115    
1116     If a C<json> object was passed to the constructor, then that will be used
1117     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1118    
1119     This read type uses the incremental parser available with JSON version
1120     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1121     dependency on your own: this module will load the JSON module, but
1122     AnyEvent does not depend on it itself.
1123    
1124     Since JSON texts are fully self-delimiting, the C<json> read and write
1125 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1126     the C<json> write type description, above, for an actual example.
1127 root 1.40
1128     =cut
1129    
1130     register_read_type json => sub {
1131 root 1.63 my ($self, $cb) = @_;
1132 root 1.40
1133     require JSON;
1134    
1135     my $data;
1136     my $rbuf = \$self->{rbuf};
1137    
1138 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1139 root 1.40
1140     sub {
1141     my $ref = $json->incr_parse ($self->{rbuf});
1142    
1143     if ($ref) {
1144     $self->{rbuf} = $json->incr_text;
1145     $json->incr_text = "";
1146     $cb->($self, $ref);
1147    
1148     1
1149     } else {
1150     $self->{rbuf} = "";
1151     ()
1152     }
1153     }
1154     };
1155    
1156 root 1.63 =item storable => $cb->($handle, $ref)
1157    
1158     Deserialises a L<Storable> frozen representation as written by the
1159     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1160     data).
1161    
1162     Raises C<EBADMSG> error if the data could not be decoded.
1163    
1164     =cut
1165    
1166     register_read_type storable => sub {
1167     my ($self, $cb) = @_;
1168    
1169     require Storable;
1170    
1171     sub {
1172     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1173 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1174 root 1.63 or return;
1175    
1176 root 1.77 my $format = length pack "w", $len;
1177 root 1.63
1178 root 1.77 # bypass unshift if we already have the remaining chunk
1179     if ($format + $len <= length $_[0]{rbuf}) {
1180     my $data = substr $_[0]{rbuf}, $format, $len;
1181     substr $_[0]{rbuf}, 0, $format + $len, "";
1182     $cb->($_[0], Storable::thaw ($data));
1183     } else {
1184     # remove prefix
1185     substr $_[0]{rbuf}, 0, $format, "";
1186    
1187     # read remaining chunk
1188     $_[0]->unshift_read (chunk => $len, sub {
1189     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1190     $cb->($_[0], $ref);
1191     } else {
1192     $self->_error (&Errno::EBADMSG);
1193     }
1194     });
1195     }
1196    
1197     1
1198 root 1.63 }
1199     };
1200    
1201 root 1.28 =back
1202    
1203 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1204 root 1.30
1205     This function (not method) lets you add your own types to C<push_read>.
1206    
1207     Whenever the given C<type> is used, C<push_read> will invoke the code
1208     reference with the handle object, the callback and the remaining
1209     arguments.
1210    
1211     The code reference is supposed to return a callback (usually a closure)
1212     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1213    
1214     It should invoke the passed callback when it is done reading (remember to
1215 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1216 root 1.30
1217     Note that this is a function, and all types registered this way will be
1218     global, so try to use unique names.
1219    
1220     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1221     search for C<register_read_type>)).
1222    
1223 root 1.10 =item $handle->stop_read
1224    
1225     =item $handle->start_read
1226    
1227 root 1.18 In rare cases you actually do not want to read anything from the
1228 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1229 root 1.22 any queued callbacks will be executed then. To start reading again, call
1230 root 1.10 C<start_read>.
1231    
1232 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1233     you change the C<on_read> callback or push/unshift a read callback, and it
1234     will automatically C<stop_read> for you when neither C<on_read> is set nor
1235     there are any read requests in the queue.
1236    
1237 root 1.10 =cut
1238    
1239     sub stop_read {
1240     my ($self) = @_;
1241 elmex 1.1
1242 root 1.38 delete $self->{_rw};
1243 root 1.8 }
1244 elmex 1.1
1245 root 1.10 sub start_read {
1246     my ($self) = @_;
1247    
1248 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1249 root 1.10 Scalar::Util::weaken $self;
1250    
1251 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1252 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1253     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1254 root 1.10
1255     if ($len > 0) {
1256 root 1.44 $self->{_activity} = AnyEvent->now;
1257 root 1.43
1258 root 1.17 $self->{filter_r}
1259 root 1.48 ? $self->{filter_r}($self, $rbuf)
1260 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1261 root 1.10
1262     } elsif (defined $len) {
1263 root 1.38 delete $self->{_rw};
1264     $self->{_eof} = 1;
1265 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1266 root 1.10
1267 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1268 root 1.52 return $self->_error ($!, 1);
1269 root 1.10 }
1270     });
1271     }
1272 elmex 1.1 }
1273    
1274 root 1.19 sub _dotls {
1275     my ($self) = @_;
1276    
1277 root 1.56 my $buf;
1278    
1279 root 1.38 if (length $self->{_tls_wbuf}) {
1280     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1281     substr $self->{_tls_wbuf}, 0, $len, "";
1282 root 1.22 }
1283 root 1.19 }
1284    
1285 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1286 root 1.19 $self->{wbuf} .= $buf;
1287     $self->_drain_wbuf;
1288     }
1289    
1290 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1291     if (length $buf) {
1292     $self->{rbuf} .= $buf;
1293 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1294 root 1.56 } else {
1295     # let's treat SSL-eof as we treat normal EOF
1296     $self->{_eof} = 1;
1297     $self->_shutdown;
1298     return;
1299     }
1300 root 1.23 }
1301    
1302 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1303    
1304     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1305 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1306 root 1.52 return $self->_error ($!, 1);
1307 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1308 root 1.52 return $self->_error (&Errno::EIO, 1);
1309 root 1.19 }
1310 root 1.23
1311     # all others are fine for our purposes
1312 root 1.19 }
1313     }
1314    
1315 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1316    
1317     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1318     object is created, you can also do that at a later time by calling
1319     C<starttls>.
1320    
1321     The first argument is the same as the C<tls> constructor argument (either
1322     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1323    
1324     The second argument is the optional C<Net::SSLeay::CTX> object that is
1325     used when AnyEvent::Handle has to create its own TLS connection object.
1326    
1327 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1328     call and can be used or changed to your liking. Note that the handshake
1329     might have already started when this function returns.
1330    
1331 root 1.25 =cut
1332    
1333 root 1.19 sub starttls {
1334     my ($self, $ssl, $ctx) = @_;
1335    
1336 root 1.25 $self->stoptls;
1337    
1338 root 1.19 if ($ssl eq "accept") {
1339     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1340     Net::SSLeay::set_accept_state ($ssl);
1341     } elsif ($ssl eq "connect") {
1342     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1343     Net::SSLeay::set_connect_state ($ssl);
1344     }
1345    
1346     $self->{tls} = $ssl;
1347    
1348 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1349     # but the openssl maintainers basically said: "trust us, it just works".
1350     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1351     # and mismaintained ssleay-module doesn't even offer them).
1352 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1353 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1354 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1355     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1356 root 1.21
1357 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1358     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1359 root 1.19
1360 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1361 root 1.19
1362     $self->{filter_w} = sub {
1363 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1364 root 1.19 &_dotls;
1365     };
1366     $self->{filter_r} = sub {
1367 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1368 root 1.19 &_dotls;
1369     };
1370     }
1371    
1372 root 1.25 =item $handle->stoptls
1373    
1374     Destroys the SSL connection, if any. Partial read or write data will be
1375     lost.
1376    
1377     =cut
1378    
1379     sub stoptls {
1380     my ($self) = @_;
1381    
1382     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1383 root 1.38
1384     delete $self->{_rbio};
1385     delete $self->{_wbio};
1386     delete $self->{_tls_wbuf};
1387 root 1.25 delete $self->{filter_r};
1388     delete $self->{filter_w};
1389     }
1390    
1391 root 1.19 sub DESTROY {
1392     my $self = shift;
1393    
1394 root 1.25 $self->stoptls;
1395 root 1.62
1396     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1397    
1398     if ($linger && length $self->{wbuf}) {
1399     my $fh = delete $self->{fh};
1400     my $wbuf = delete $self->{wbuf};
1401    
1402     my @linger;
1403    
1404     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1405     my $len = syswrite $fh, $wbuf, length $wbuf;
1406    
1407     if ($len > 0) {
1408     substr $wbuf, 0, $len, "";
1409     } else {
1410     @linger = (); # end
1411     }
1412     });
1413     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1414     @linger = ();
1415     });
1416     }
1417 root 1.19 }
1418    
1419     =item AnyEvent::Handle::TLS_CTX
1420    
1421     This function creates and returns the Net::SSLeay::CTX object used by
1422     default for TLS mode.
1423    
1424     The context is created like this:
1425    
1426     Net::SSLeay::load_error_strings;
1427     Net::SSLeay::SSLeay_add_ssl_algorithms;
1428     Net::SSLeay::randomize;
1429    
1430     my $CTX = Net::SSLeay::CTX_new;
1431    
1432     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1433    
1434     =cut
1435    
1436     our $TLS_CTX;
1437    
1438     sub TLS_CTX() {
1439     $TLS_CTX || do {
1440     require Net::SSLeay;
1441    
1442     Net::SSLeay::load_error_strings ();
1443     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1444     Net::SSLeay::randomize ();
1445    
1446     $TLS_CTX = Net::SSLeay::CTX_new ();
1447    
1448     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1449    
1450     $TLS_CTX
1451     }
1452     }
1453    
1454 elmex 1.1 =back
1455    
1456 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1457    
1458     In many cases, you might want to subclass AnyEvent::Handle.
1459    
1460     To make this easier, a given version of AnyEvent::Handle uses these
1461     conventions:
1462    
1463     =over 4
1464    
1465     =item * all constructor arguments become object members.
1466    
1467     At least initially, when you pass a C<tls>-argument to the constructor it
1468 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1469 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1470    
1471     =item * other object member names are prefixed with an C<_>.
1472    
1473     All object members not explicitly documented (internal use) are prefixed
1474     with an underscore character, so the remaining non-C<_>-namespace is free
1475     for use for subclasses.
1476    
1477     =item * all members not documented here and not prefixed with an underscore
1478     are free to use in subclasses.
1479    
1480     Of course, new versions of AnyEvent::Handle may introduce more "public"
1481     member variables, but thats just life, at least it is documented.
1482    
1483     =back
1484    
1485 elmex 1.1 =head1 AUTHOR
1486    
1487 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1488 elmex 1.1
1489     =cut
1490    
1491     1; # End of AnyEvent::Handle