ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.83
Committed: Thu Aug 21 19:11:37 2008 UTC (15 years, 8 months ago) by root
Branch: MAIN
Changes since 1.82: +3 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.82 our $VERSION = 4.232;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54     In the following, when the documentation refers to of "bytes" then this
55     means characters. As sysread and syswrite are used for all I/O, their
56     treatment of characters applies to this module as well.
57 elmex 1.1
58 root 1.8 All callbacks will be invoked with the handle object as their first
59     argument.
60 elmex 1.1
61     =head1 METHODS
62    
63     =over 4
64    
65     =item B<new (%args)>
66    
67 root 1.8 The constructor supports these arguments (all as key => value pairs).
68 elmex 1.1
69     =over 4
70    
71 root 1.8 =item fh => $filehandle [MANDATORY]
72 elmex 1.1
73     The filehandle this L<AnyEvent::Handle> object will operate on.
74    
75 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
76     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
77     that mode.
78 root 1.8
79 root 1.40 =item on_eof => $cb->($handle)
80 root 1.10
81 root 1.74 Set the callback to be called when an end-of-file condition is detected,
82 root 1.52 i.e. in the case of a socket, when the other side has closed the
83     connection cleanly.
84 root 1.8
85 root 1.82 For sockets, this just means that the other side has stopped sending data,
86     you can still try to write data, and, in fact, one can return from the eof
87     callback and continue writing data, as only the read part has been shut
88     down.
89    
90 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
91 root 1.16 otherwise you might end up with a closed socket while you are still
92     waiting for data.
93    
94 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
95     set, then a fatal error will be raised with C<$!> set to <0>.
96    
97 root 1.52 =item on_error => $cb->($handle, $fatal)
98 root 1.10
99 root 1.52 This is the error callback, which is called when, well, some error
100     occured, such as not being able to resolve the hostname, failure to
101     connect or a read error.
102    
103     Some errors are fatal (which is indicated by C<$fatal> being true). On
104 root 1.82 fatal errors the handle object will be shut down and will not be usable
105     (but you are free to look at the current C< ->rbuf >). Examples of fatal
106     errors are an EOF condition with active (but unsatisifable) read watchers
107     (C<EPIPE>) or I/O errors.
108    
109     Non-fatal errors can be retried by simply returning, but it is recommended
110     to simply ignore this parameter and instead abondon the handle object
111     when this callback is invoked. Examples of non-fatal errors are timeouts
112     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
113 root 1.8
114 root 1.10 On callback entrance, the value of C<$!> contains the operating system
115 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
116 root 1.8
117 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
118     you will not be notified of errors otherwise. The default simply calls
119 root 1.52 C<croak>.
120 root 1.8
121 root 1.40 =item on_read => $cb->($handle)
122 root 1.8
123     This sets the default read callback, which is called when data arrives
124 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
125     callback will only be called when at least one octet of data is in the
126     read buffer).
127 root 1.8
128     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
129 root 1.40 method or access the C<$handle->{rbuf}> member directly.
130 root 1.8
131     When an EOF condition is detected then AnyEvent::Handle will first try to
132     feed all the remaining data to the queued callbacks and C<on_read> before
133     calling the C<on_eof> callback. If no progress can be made, then a fatal
134     error will be raised (with C<$!> set to C<EPIPE>).
135 elmex 1.1
136 root 1.40 =item on_drain => $cb->($handle)
137 elmex 1.1
138 root 1.8 This sets the callback that is called when the write buffer becomes empty
139     (or when the callback is set and the buffer is empty already).
140 elmex 1.1
141 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
142 elmex 1.2
143 root 1.69 This callback is useful when you don't want to put all of your write data
144     into the queue at once, for example, when you want to write the contents
145     of some file to the socket you might not want to read the whole file into
146     memory and push it into the queue, but instead only read more data from
147     the file when the write queue becomes empty.
148    
149 root 1.43 =item timeout => $fractional_seconds
150    
151     If non-zero, then this enables an "inactivity" timeout: whenever this many
152     seconds pass without a successful read or write on the underlying file
153     handle, the C<on_timeout> callback will be invoked (and if that one is
154 root 1.45 missing, an C<ETIMEDOUT> error will be raised).
155 root 1.43
156     Note that timeout processing is also active when you currently do not have
157     any outstanding read or write requests: If you plan to keep the connection
158     idle then you should disable the timout temporarily or ignore the timeout
159     in the C<on_timeout> callback.
160    
161     Zero (the default) disables this timeout.
162    
163     =item on_timeout => $cb->($handle)
164    
165     Called whenever the inactivity timeout passes. If you return from this
166     callback, then the timeout will be reset as if some activity had happened,
167     so this condition is not fatal in any way.
168    
169 root 1.8 =item rbuf_max => <bytes>
170 elmex 1.2
171 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
172     when the read buffer ever (strictly) exceeds this size. This is useful to
173     avoid denial-of-service attacks.
174 elmex 1.2
175 root 1.8 For example, a server accepting connections from untrusted sources should
176     be configured to accept only so-and-so much data that it cannot act on
177     (for example, when expecting a line, an attacker could send an unlimited
178     amount of data without a callback ever being called as long as the line
179     isn't finished).
180 elmex 1.2
181 root 1.70 =item autocork => <boolean>
182    
183     When disabled (the default), then C<push_write> will try to immediately
184     write the data to the handle if possible. This avoids having to register
185     a write watcher and wait for the next event loop iteration, but can be
186     inefficient if you write multiple small chunks (this disadvantage is
187     usually avoided by your kernel's nagle algorithm, see C<low_delay>).
188    
189     When enabled, then writes will always be queued till the next event loop
190     iteration. This is efficient when you do many small writes per iteration,
191     but less efficient when you do a single write only.
192    
193     =item no_delay => <boolean>
194    
195     When doing small writes on sockets, your operating system kernel might
196     wait a bit for more data before actually sending it out. This is called
197     the Nagle algorithm, and usually it is beneficial.
198    
199     In some situations you want as low a delay as possible, which cna be
200     accomplishd by setting this option to true.
201    
202     The default is your opertaing system's default behaviour, this option
203     explicitly enables or disables it, if possible.
204    
205 root 1.8 =item read_size => <bytes>
206 elmex 1.2
207 root 1.8 The default read block size (the amount of bytes this module will try to read
208 root 1.46 during each (loop iteration). Default: C<8192>.
209 root 1.8
210     =item low_water_mark => <bytes>
211    
212     Sets the amount of bytes (default: C<0>) that make up an "empty" write
213     buffer: If the write reaches this size or gets even samller it is
214     considered empty.
215 elmex 1.2
216 root 1.62 =item linger => <seconds>
217    
218     If non-zero (default: C<3600>), then the destructor of the
219     AnyEvent::Handle object will check wether there is still outstanding write
220     data and will install a watcher that will write out this data. No errors
221     will be reported (this mostly matches how the operating system treats
222     outstanding data at socket close time).
223    
224     This will not work for partial TLS data that could not yet been
225     encoded. This data will be lost.
226    
227 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
228    
229     When this parameter is given, it enables TLS (SSL) mode, that means it
230     will start making tls handshake and will transparently encrypt/decrypt
231     data.
232    
233 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
234     automatically when you try to create a TLS handle).
235    
236 root 1.19 For the TLS server side, use C<accept>, and for the TLS client side of a
237     connection, use C<connect> mode.
238    
239     You can also provide your own TLS connection object, but you have
240     to make sure that you call either C<Net::SSLeay::set_connect_state>
241     or C<Net::SSLeay::set_accept_state> on it before you pass it to
242     AnyEvent::Handle.
243    
244 root 1.75 See the C<starttls> method if you need to start TLS negotiation later.
245 root 1.26
246 root 1.19 =item tls_ctx => $ssl_ctx
247    
248     Use the given Net::SSLeay::CTX object to create the new TLS connection
249     (unless a connection object was specified directly). If this parameter is
250     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
251    
252 root 1.40 =item json => JSON or JSON::XS object
253    
254     This is the json coder object used by the C<json> read and write types.
255    
256 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
257     suitable one, which will write and expect UTF-8 encoded JSON texts.
258 root 1.40
259     Note that you are responsible to depend on the JSON module if you want to
260     use this functionality, as AnyEvent does not have a dependency itself.
261    
262 root 1.38 =item filter_r => $cb
263    
264     =item filter_w => $cb
265    
266     These exist, but are undocumented at this time.
267    
268 elmex 1.1 =back
269    
270     =cut
271    
272     sub new {
273 root 1.8 my $class = shift;
274    
275     my $self = bless { @_ }, $class;
276    
277     $self->{fh} or Carp::croak "mandatory argument fh is missing";
278    
279     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
280 elmex 1.1
281 root 1.19 if ($self->{tls}) {
282     require Net::SSLeay;
283     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
284     }
285    
286 root 1.44 $self->{_activity} = AnyEvent->now;
287 root 1.43 $self->_timeout;
288 elmex 1.1
289 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
290     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 root 1.10
292 root 1.66 $self->start_read
293 root 1.67 if $self->{on_read};
294 root 1.66
295 root 1.8 $self
296     }
297 elmex 1.2
298 root 1.8 sub _shutdown {
299     my ($self) = @_;
300 elmex 1.2
301 root 1.46 delete $self->{_tw};
302 root 1.38 delete $self->{_rw};
303     delete $self->{_ww};
304 root 1.8 delete $self->{fh};
305 root 1.52
306     $self->stoptls;
307 root 1.82
308     delete $self->{on_read};
309     delete $self->{_queue};
310 root 1.8 }
311    
312 root 1.52 sub _error {
313     my ($self, $errno, $fatal) = @_;
314 root 1.8
315 root 1.52 $self->_shutdown
316     if $fatal;
317 elmex 1.1
318 root 1.52 $! = $errno;
319 root 1.37
320 root 1.52 if ($self->{on_error}) {
321     $self->{on_error}($self, $fatal);
322     } else {
323     Carp::croak "AnyEvent::Handle uncaught error: $!";
324     }
325 elmex 1.1 }
326    
327 root 1.8 =item $fh = $handle->fh
328 elmex 1.1
329 root 1.22 This method returns the file handle of the L<AnyEvent::Handle> object.
330 elmex 1.1
331     =cut
332    
333 root 1.38 sub fh { $_[0]{fh} }
334 elmex 1.1
335 root 1.8 =item $handle->on_error ($cb)
336 elmex 1.1
337 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
338 elmex 1.1
339 root 1.8 =cut
340    
341     sub on_error {
342     $_[0]{on_error} = $_[1];
343     }
344    
345     =item $handle->on_eof ($cb)
346    
347     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
348 elmex 1.1
349     =cut
350    
351 root 1.8 sub on_eof {
352     $_[0]{on_eof} = $_[1];
353     }
354    
355 root 1.43 =item $handle->on_timeout ($cb)
356    
357     Replace the current C<on_timeout> callback, or disables the callback
358     (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
359     argument.
360    
361     =cut
362    
363     sub on_timeout {
364     $_[0]{on_timeout} = $_[1];
365     }
366    
367 root 1.70 =item $handle->autocork ($boolean)
368    
369     Enables or disables the current autocork behaviour (see C<autocork>
370     constructor argument).
371    
372     =cut
373    
374     =item $handle->no_delay ($boolean)
375    
376     Enables or disables the C<no_delay> setting (see constructor argument of
377     the same name for details).
378    
379     =cut
380    
381     sub no_delay {
382     $_[0]{no_delay} = $_[1];
383    
384     eval {
385     local $SIG{__DIE__};
386     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
387     };
388     }
389    
390 root 1.43 #############################################################################
391    
392     =item $handle->timeout ($seconds)
393    
394     Configures (or disables) the inactivity timeout.
395    
396     =cut
397    
398     sub timeout {
399     my ($self, $timeout) = @_;
400    
401     $self->{timeout} = $timeout;
402     $self->_timeout;
403     }
404    
405     # reset the timeout watcher, as neccessary
406     # also check for time-outs
407     sub _timeout {
408     my ($self) = @_;
409    
410     if ($self->{timeout}) {
411 root 1.44 my $NOW = AnyEvent->now;
412 root 1.43
413     # when would the timeout trigger?
414     my $after = $self->{_activity} + $self->{timeout} - $NOW;
415    
416     # now or in the past already?
417     if ($after <= 0) {
418     $self->{_activity} = $NOW;
419    
420     if ($self->{on_timeout}) {
421 root 1.48 $self->{on_timeout}($self);
422 root 1.43 } else {
423 root 1.52 $self->_error (&Errno::ETIMEDOUT);
424 root 1.43 }
425    
426 root 1.56 # callback could have changed timeout value, optimise
427 root 1.43 return unless $self->{timeout};
428    
429     # calculate new after
430     $after = $self->{timeout};
431     }
432    
433     Scalar::Util::weaken $self;
434 root 1.56 return unless $self; # ->error could have destroyed $self
435 root 1.43
436     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
437     delete $self->{_tw};
438     $self->_timeout;
439     });
440     } else {
441     delete $self->{_tw};
442     }
443     }
444    
445 root 1.9 #############################################################################
446    
447     =back
448    
449     =head2 WRITE QUEUE
450    
451     AnyEvent::Handle manages two queues per handle, one for writing and one
452     for reading.
453    
454     The write queue is very simple: you can add data to its end, and
455     AnyEvent::Handle will automatically try to get rid of it for you.
456    
457 elmex 1.20 When data could be written and the write buffer is shorter then the low
458 root 1.9 water mark, the C<on_drain> callback will be invoked.
459    
460     =over 4
461    
462 root 1.8 =item $handle->on_drain ($cb)
463    
464     Sets the C<on_drain> callback or clears it (see the description of
465     C<on_drain> in the constructor).
466    
467     =cut
468    
469     sub on_drain {
470 elmex 1.1 my ($self, $cb) = @_;
471    
472 root 1.8 $self->{on_drain} = $cb;
473    
474     $cb->($self)
475     if $cb && $self->{low_water_mark} >= length $self->{wbuf};
476     }
477    
478     =item $handle->push_write ($data)
479    
480     Queues the given scalar to be written. You can push as much data as you
481     want (only limited by the available memory), as C<AnyEvent::Handle>
482     buffers it independently of the kernel.
483    
484     =cut
485    
486 root 1.17 sub _drain_wbuf {
487     my ($self) = @_;
488 root 1.8
489 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
490 root 1.35
491 root 1.8 Scalar::Util::weaken $self;
492 root 1.35
493 root 1.8 my $cb = sub {
494     my $len = syswrite $self->{fh}, $self->{wbuf};
495    
496 root 1.29 if ($len >= 0) {
497 root 1.8 substr $self->{wbuf}, 0, $len, "";
498    
499 root 1.44 $self->{_activity} = AnyEvent->now;
500 root 1.43
501 root 1.8 $self->{on_drain}($self)
502     if $self->{low_water_mark} >= length $self->{wbuf}
503     && $self->{on_drain};
504    
505 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
506 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
507 root 1.52 $self->_error ($!, 1);
508 elmex 1.1 }
509 root 1.8 };
510    
511 root 1.35 # try to write data immediately
512 root 1.70 $cb->() unless $self->{autocork};
513 root 1.8
514 root 1.35 # if still data left in wbuf, we need to poll
515 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
516 root 1.35 if length $self->{wbuf};
517 root 1.8 };
518     }
519    
520 root 1.30 our %WH;
521    
522     sub register_write_type($$) {
523     $WH{$_[0]} = $_[1];
524     }
525    
526 root 1.17 sub push_write {
527     my $self = shift;
528    
529 root 1.29 if (@_ > 1) {
530     my $type = shift;
531    
532     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
533     ->($self, @_);
534     }
535    
536 root 1.17 if ($self->{filter_w}) {
537 root 1.48 $self->{filter_w}($self, \$_[0]);
538 root 1.17 } else {
539     $self->{wbuf} .= $_[0];
540     $self->_drain_wbuf;
541     }
542     }
543    
544 root 1.29 =item $handle->push_write (type => @args)
545    
546     Instead of formatting your data yourself, you can also let this module do
547     the job by specifying a type and type-specific arguments.
548    
549 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
550     drop by and tell us):
551 root 1.29
552     =over 4
553    
554     =item netstring => $string
555    
556     Formats the given value as netstring
557     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
558    
559     =cut
560    
561     register_write_type netstring => sub {
562     my ($self, $string) = @_;
563    
564     sprintf "%d:%s,", (length $string), $string
565     };
566    
567 root 1.61 =item packstring => $format, $data
568    
569     An octet string prefixed with an encoded length. The encoding C<$format>
570     uses the same format as a Perl C<pack> format, but must specify a single
571     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
572     optional C<!>, C<< < >> or C<< > >> modifier).
573    
574     =cut
575    
576     register_write_type packstring => sub {
577     my ($self, $format, $string) = @_;
578    
579 root 1.65 pack "$format/a*", $string
580 root 1.61 };
581    
582 root 1.39 =item json => $array_or_hashref
583    
584 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
585     provide your own JSON object, this means it will be encoded to JSON text
586     in UTF-8.
587    
588     JSON objects (and arrays) are self-delimiting, so you can write JSON at
589     one end of a handle and read them at the other end without using any
590     additional framing.
591    
592 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
593     this module doesn't need delimiters after or between JSON texts to be
594     able to read them, many other languages depend on that.
595    
596     A simple RPC protocol that interoperates easily with others is to send
597     JSON arrays (or objects, although arrays are usually the better choice as
598     they mimic how function argument passing works) and a newline after each
599     JSON text:
600    
601     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
602     $handle->push_write ("\012");
603    
604     An AnyEvent::Handle receiver would simply use the C<json> read type and
605     rely on the fact that the newline will be skipped as leading whitespace:
606    
607     $handle->push_read (json => sub { my $array = $_[1]; ... });
608    
609     Other languages could read single lines terminated by a newline and pass
610     this line into their JSON decoder of choice.
611    
612 root 1.40 =cut
613    
614     register_write_type json => sub {
615     my ($self, $ref) = @_;
616    
617     require JSON;
618    
619     $self->{json} ? $self->{json}->encode ($ref)
620     : JSON::encode_json ($ref)
621     };
622    
623 root 1.63 =item storable => $reference
624    
625     Freezes the given reference using L<Storable> and writes it to the
626     handle. Uses the C<nfreeze> format.
627    
628     =cut
629    
630     register_write_type storable => sub {
631     my ($self, $ref) = @_;
632    
633     require Storable;
634    
635 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
636 root 1.63 };
637    
638 root 1.53 =back
639    
640 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
641 root 1.30
642     This function (not method) lets you add your own types to C<push_write>.
643     Whenever the given C<type> is used, C<push_write> will invoke the code
644     reference with the handle object and the remaining arguments.
645 root 1.29
646 root 1.30 The code reference is supposed to return a single octet string that will
647     be appended to the write buffer.
648 root 1.29
649 root 1.30 Note that this is a function, and all types registered this way will be
650     global, so try to use unique names.
651 root 1.29
652 root 1.30 =cut
653 root 1.29
654 root 1.8 #############################################################################
655    
656 root 1.9 =back
657    
658     =head2 READ QUEUE
659    
660     AnyEvent::Handle manages two queues per handle, one for writing and one
661     for reading.
662    
663     The read queue is more complex than the write queue. It can be used in two
664     ways, the "simple" way, using only C<on_read> and the "complex" way, using
665     a queue.
666    
667     In the simple case, you just install an C<on_read> callback and whenever
668     new data arrives, it will be called. You can then remove some data (if
669 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
670     leave the data there if you want to accumulate more (e.g. when only a
671     partial message has been received so far).
672 root 1.9
673     In the more complex case, you want to queue multiple callbacks. In this
674     case, AnyEvent::Handle will call the first queued callback each time new
675 root 1.61 data arrives (also the first time it is queued) and removes it when it has
676     done its job (see C<push_read>, below).
677 root 1.9
678     This way you can, for example, push three line-reads, followed by reading
679     a chunk of data, and AnyEvent::Handle will execute them in order.
680    
681     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
682     the specified number of bytes which give an XML datagram.
683    
684     # in the default state, expect some header bytes
685     $handle->on_read (sub {
686     # some data is here, now queue the length-header-read (4 octets)
687 root 1.52 shift->unshift_read (chunk => 4, sub {
688 root 1.9 # header arrived, decode
689     my $len = unpack "N", $_[1];
690    
691     # now read the payload
692 root 1.52 shift->unshift_read (chunk => $len, sub {
693 root 1.9 my $xml = $_[1];
694     # handle xml
695     });
696     });
697     });
698    
699 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
700     and another line or "ERROR" for the first request that is sent, and 64
701     bytes for the second request. Due to the availability of a queue, we can
702     just pipeline sending both requests and manipulate the queue as necessary
703     in the callbacks.
704    
705     When the first callback is called and sees an "OK" response, it will
706     C<unshift> another line-read. This line-read will be queued I<before> the
707     64-byte chunk callback.
708 root 1.9
709 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
710 root 1.9 $handle->push_write ("request 1\015\012");
711    
712     # we expect "ERROR" or "OK" as response, so push a line read
713 root 1.52 $handle->push_read (line => sub {
714 root 1.9 # if we got an "OK", we have to _prepend_ another line,
715     # so it will be read before the second request reads its 64 bytes
716     # which are already in the queue when this callback is called
717     # we don't do this in case we got an error
718     if ($_[1] eq "OK") {
719 root 1.52 $_[0]->unshift_read (line => sub {
720 root 1.9 my $response = $_[1];
721     ...
722     });
723     }
724     });
725    
726 root 1.69 # request two, simply returns 64 octets
727 root 1.9 $handle->push_write ("request 2\015\012");
728    
729     # simply read 64 bytes, always
730 root 1.52 $handle->push_read (chunk => 64, sub {
731 root 1.9 my $response = $_[1];
732     ...
733     });
734    
735     =over 4
736    
737 root 1.10 =cut
738    
739 root 1.8 sub _drain_rbuf {
740     my ($self) = @_;
741 elmex 1.1
742 root 1.59 local $self->{_in_drain} = 1;
743    
744 root 1.17 if (
745     defined $self->{rbuf_max}
746     && $self->{rbuf_max} < length $self->{rbuf}
747     ) {
748 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
749 root 1.17 }
750    
751 root 1.59 while () {
752     my $len = length $self->{rbuf};
753 elmex 1.1
754 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
755 root 1.29 unless ($cb->($self)) {
756 root 1.38 if ($self->{_eof}) {
757 root 1.10 # no progress can be made (not enough data and no data forthcoming)
758 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
759 root 1.10 }
760    
761 root 1.38 unshift @{ $self->{_queue} }, $cb;
762 root 1.55 last;
763 root 1.8 }
764     } elsif ($self->{on_read}) {
765 root 1.61 last unless $len;
766    
767 root 1.8 $self->{on_read}($self);
768    
769     if (
770 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
771     && !@{ $self->{_queue} } # and the queue is still empty
772     && $self->{on_read} # but we still have on_read
773 root 1.8 ) {
774 root 1.55 # no further data will arrive
775     # so no progress can be made
776 root 1.82 $self->_error (&Errno::EPIPE, 1), return
777 root 1.55 if $self->{_eof};
778    
779     last; # more data might arrive
780 elmex 1.1 }
781 root 1.8 } else {
782     # read side becomes idle
783 root 1.38 delete $self->{_rw};
784 root 1.55 last;
785 root 1.8 }
786     }
787    
788 root 1.80 if ($self->{_eof}) {
789     if ($self->{on_eof}) {
790     $self->{on_eof}($self)
791     } else {
792     $self->_error (0, 1);
793     }
794     }
795 root 1.55
796     # may need to restart read watcher
797     unless ($self->{_rw}) {
798     $self->start_read
799     if $self->{on_read} || @{ $self->{_queue} };
800     }
801 elmex 1.1 }
802    
803 root 1.8 =item $handle->on_read ($cb)
804 elmex 1.1
805 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
806     the new callback is C<undef>). See the description of C<on_read> in the
807     constructor.
808 elmex 1.1
809 root 1.8 =cut
810    
811     sub on_read {
812     my ($self, $cb) = @_;
813 elmex 1.1
814 root 1.8 $self->{on_read} = $cb;
815 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
816 elmex 1.1 }
817    
818 root 1.8 =item $handle->rbuf
819    
820     Returns the read buffer (as a modifiable lvalue).
821 elmex 1.1
822 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
823     you want.
824 elmex 1.1
825 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
826     C<push_read> or C<unshift_read> methods are used. The other read methods
827     automatically manage the read buffer.
828 elmex 1.1
829     =cut
830    
831 elmex 1.2 sub rbuf : lvalue {
832 root 1.8 $_[0]{rbuf}
833 elmex 1.2 }
834 elmex 1.1
835 root 1.8 =item $handle->push_read ($cb)
836    
837     =item $handle->unshift_read ($cb)
838    
839     Append the given callback to the end of the queue (C<push_read>) or
840     prepend it (C<unshift_read>).
841    
842     The callback is called each time some additional read data arrives.
843 elmex 1.1
844 elmex 1.20 It must check whether enough data is in the read buffer already.
845 elmex 1.1
846 root 1.8 If not enough data is available, it must return the empty list or a false
847     value, in which case it will be called repeatedly until enough data is
848     available (or an error condition is detected).
849    
850     If enough data was available, then the callback must remove all data it is
851     interested in (which can be none at all) and return a true value. After returning
852     true, it will be removed from the queue.
853 elmex 1.1
854     =cut
855    
856 root 1.30 our %RH;
857    
858     sub register_read_type($$) {
859     $RH{$_[0]} = $_[1];
860     }
861    
862 root 1.8 sub push_read {
863 root 1.28 my $self = shift;
864     my $cb = pop;
865    
866     if (@_) {
867     my $type = shift;
868    
869     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
870     ->($self, $cb, @_);
871     }
872 elmex 1.1
873 root 1.38 push @{ $self->{_queue} }, $cb;
874 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
875 elmex 1.1 }
876    
877 root 1.8 sub unshift_read {
878 root 1.28 my $self = shift;
879     my $cb = pop;
880    
881     if (@_) {
882     my $type = shift;
883    
884     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
885     ->($self, $cb, @_);
886     }
887    
888 root 1.8
889 root 1.38 unshift @{ $self->{_queue} }, $cb;
890 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
891 root 1.8 }
892 elmex 1.1
893 root 1.28 =item $handle->push_read (type => @args, $cb)
894 elmex 1.1
895 root 1.28 =item $handle->unshift_read (type => @args, $cb)
896 elmex 1.1
897 root 1.28 Instead of providing a callback that parses the data itself you can chose
898     between a number of predefined parsing formats, for chunks of data, lines
899     etc.
900 elmex 1.1
901 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
902     drop by and tell us):
903 root 1.28
904     =over 4
905    
906 root 1.40 =item chunk => $octets, $cb->($handle, $data)
907 root 1.28
908     Invoke the callback only once C<$octets> bytes have been read. Pass the
909     data read to the callback. The callback will never be called with less
910     data.
911    
912     Example: read 2 bytes.
913    
914     $handle->push_read (chunk => 2, sub {
915     warn "yay ", unpack "H*", $_[1];
916     });
917 elmex 1.1
918     =cut
919    
920 root 1.28 register_read_type chunk => sub {
921     my ($self, $cb, $len) = @_;
922 elmex 1.1
923 root 1.8 sub {
924     $len <= length $_[0]{rbuf} or return;
925 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
926 root 1.8 1
927     }
928 root 1.28 };
929 root 1.8
930 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
931 elmex 1.1
932 root 1.8 The callback will be called only once a full line (including the end of
933     line marker, C<$eol>) has been read. This line (excluding the end of line
934     marker) will be passed to the callback as second argument (C<$line>), and
935     the end of line marker as the third argument (C<$eol>).
936 elmex 1.1
937 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
938     will be interpreted as a fixed record end marker, or it can be a regex
939     object (e.g. created by C<qr>), in which case it is interpreted as a
940     regular expression.
941 elmex 1.1
942 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
943     undef), then C<qr|\015?\012|> is used (which is good for most internet
944     protocols).
945 elmex 1.1
946 root 1.8 Partial lines at the end of the stream will never be returned, as they are
947     not marked by the end of line marker.
948 elmex 1.1
949 root 1.8 =cut
950 elmex 1.1
951 root 1.28 register_read_type line => sub {
952     my ($self, $cb, $eol) = @_;
953 elmex 1.1
954 root 1.76 if (@_ < 3) {
955     # this is more than twice as fast as the generic code below
956     sub {
957     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
958 elmex 1.1
959 root 1.76 $cb->($_[0], $1, $2);
960     1
961     }
962     } else {
963     $eol = quotemeta $eol unless ref $eol;
964     $eol = qr|^(.*?)($eol)|s;
965    
966     sub {
967     $_[0]{rbuf} =~ s/$eol// or return;
968 elmex 1.1
969 root 1.76 $cb->($_[0], $1, $2);
970     1
971     }
972 root 1.8 }
973 root 1.28 };
974 elmex 1.1
975 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
976 root 1.36
977     Makes a regex match against the regex object C<$accept> and returns
978     everything up to and including the match.
979    
980     Example: read a single line terminated by '\n'.
981    
982     $handle->push_read (regex => qr<\n>, sub { ... });
983    
984     If C<$reject> is given and not undef, then it determines when the data is
985     to be rejected: it is matched against the data when the C<$accept> regex
986     does not match and generates an C<EBADMSG> error when it matches. This is
987     useful to quickly reject wrong data (to avoid waiting for a timeout or a
988     receive buffer overflow).
989    
990     Example: expect a single decimal number followed by whitespace, reject
991     anything else (not the use of an anchor).
992    
993     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
994    
995     If C<$skip> is given and not C<undef>, then it will be matched against
996     the receive buffer when neither C<$accept> nor C<$reject> match,
997     and everything preceding and including the match will be accepted
998     unconditionally. This is useful to skip large amounts of data that you
999     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1000     have to start matching from the beginning. This is purely an optimisation
1001     and is usually worth only when you expect more than a few kilobytes.
1002    
1003     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1004     expect the header to be very large (it isn't in practise, but...), we use
1005     a skip regex to skip initial portions. The skip regex is tricky in that
1006     it only accepts something not ending in either \015 or \012, as these are
1007     required for the accept regex.
1008    
1009     $handle->push_read (regex =>
1010     qr<\015\012\015\012>,
1011     undef, # no reject
1012     qr<^.*[^\015\012]>,
1013     sub { ... });
1014    
1015     =cut
1016    
1017     register_read_type regex => sub {
1018     my ($self, $cb, $accept, $reject, $skip) = @_;
1019    
1020     my $data;
1021     my $rbuf = \$self->{rbuf};
1022    
1023     sub {
1024     # accept
1025     if ($$rbuf =~ $accept) {
1026     $data .= substr $$rbuf, 0, $+[0], "";
1027     $cb->($self, $data);
1028     return 1;
1029     }
1030    
1031     # reject
1032     if ($reject && $$rbuf =~ $reject) {
1033 root 1.52 $self->_error (&Errno::EBADMSG);
1034 root 1.36 }
1035    
1036     # skip
1037     if ($skip && $$rbuf =~ $skip) {
1038     $data .= substr $$rbuf, 0, $+[0], "";
1039     }
1040    
1041     ()
1042     }
1043     };
1044    
1045 root 1.61 =item netstring => $cb->($handle, $string)
1046    
1047     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1048    
1049     Throws an error with C<$!> set to EBADMSG on format violations.
1050    
1051     =cut
1052    
1053     register_read_type netstring => sub {
1054     my ($self, $cb) = @_;
1055    
1056     sub {
1057     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1058     if ($_[0]{rbuf} =~ /[^0-9]/) {
1059     $self->_error (&Errno::EBADMSG);
1060     }
1061     return;
1062     }
1063    
1064     my $len = $1;
1065    
1066     $self->unshift_read (chunk => $len, sub {
1067     my $string = $_[1];
1068     $_[0]->unshift_read (chunk => 1, sub {
1069     if ($_[1] eq ",") {
1070     $cb->($_[0], $string);
1071     } else {
1072     $self->_error (&Errno::EBADMSG);
1073     }
1074     });
1075     });
1076    
1077     1
1078     }
1079     };
1080    
1081     =item packstring => $format, $cb->($handle, $string)
1082    
1083     An octet string prefixed with an encoded length. The encoding C<$format>
1084     uses the same format as a Perl C<pack> format, but must specify a single
1085     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1086     optional C<!>, C<< < >> or C<< > >> modifier).
1087    
1088     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1089    
1090     Example: read a block of data prefixed by its length in BER-encoded
1091     format (very efficient).
1092    
1093     $handle->push_read (packstring => "w", sub {
1094     my ($handle, $data) = @_;
1095     });
1096    
1097     =cut
1098    
1099     register_read_type packstring => sub {
1100     my ($self, $cb, $format) = @_;
1101    
1102     sub {
1103     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1104 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1105 root 1.61 or return;
1106    
1107 root 1.77 $format = length pack $format, $len;
1108 root 1.61
1109 root 1.77 # bypass unshift if we already have the remaining chunk
1110     if ($format + $len <= length $_[0]{rbuf}) {
1111     my $data = substr $_[0]{rbuf}, $format, $len;
1112     substr $_[0]{rbuf}, 0, $format + $len, "";
1113     $cb->($_[0], $data);
1114     } else {
1115     # remove prefix
1116     substr $_[0]{rbuf}, 0, $format, "";
1117    
1118     # read remaining chunk
1119     $_[0]->unshift_read (chunk => $len, $cb);
1120     }
1121 root 1.61
1122     1
1123     }
1124     };
1125    
1126 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1127    
1128     Reads a JSON object or array, decodes it and passes it to the callback.
1129    
1130     If a C<json> object was passed to the constructor, then that will be used
1131     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1132    
1133     This read type uses the incremental parser available with JSON version
1134     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1135     dependency on your own: this module will load the JSON module, but
1136     AnyEvent does not depend on it itself.
1137    
1138     Since JSON texts are fully self-delimiting, the C<json> read and write
1139 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1140     the C<json> write type description, above, for an actual example.
1141 root 1.40
1142     =cut
1143    
1144     register_read_type json => sub {
1145 root 1.63 my ($self, $cb) = @_;
1146 root 1.40
1147     require JSON;
1148    
1149     my $data;
1150     my $rbuf = \$self->{rbuf};
1151    
1152 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1153 root 1.40
1154     sub {
1155     my $ref = $json->incr_parse ($self->{rbuf});
1156    
1157     if ($ref) {
1158     $self->{rbuf} = $json->incr_text;
1159     $json->incr_text = "";
1160     $cb->($self, $ref);
1161    
1162     1
1163     } else {
1164     $self->{rbuf} = "";
1165     ()
1166     }
1167     }
1168     };
1169    
1170 root 1.63 =item storable => $cb->($handle, $ref)
1171    
1172     Deserialises a L<Storable> frozen representation as written by the
1173     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1174     data).
1175    
1176     Raises C<EBADMSG> error if the data could not be decoded.
1177    
1178     =cut
1179    
1180     register_read_type storable => sub {
1181     my ($self, $cb) = @_;
1182    
1183     require Storable;
1184    
1185     sub {
1186     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1187 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1188 root 1.63 or return;
1189    
1190 root 1.77 my $format = length pack "w", $len;
1191 root 1.63
1192 root 1.77 # bypass unshift if we already have the remaining chunk
1193     if ($format + $len <= length $_[0]{rbuf}) {
1194     my $data = substr $_[0]{rbuf}, $format, $len;
1195     substr $_[0]{rbuf}, 0, $format + $len, "";
1196     $cb->($_[0], Storable::thaw ($data));
1197     } else {
1198     # remove prefix
1199     substr $_[0]{rbuf}, 0, $format, "";
1200    
1201     # read remaining chunk
1202     $_[0]->unshift_read (chunk => $len, sub {
1203     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1204     $cb->($_[0], $ref);
1205     } else {
1206     $self->_error (&Errno::EBADMSG);
1207     }
1208     });
1209     }
1210    
1211     1
1212 root 1.63 }
1213     };
1214    
1215 root 1.28 =back
1216    
1217 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1218 root 1.30
1219     This function (not method) lets you add your own types to C<push_read>.
1220    
1221     Whenever the given C<type> is used, C<push_read> will invoke the code
1222     reference with the handle object, the callback and the remaining
1223     arguments.
1224    
1225     The code reference is supposed to return a callback (usually a closure)
1226     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1227    
1228     It should invoke the passed callback when it is done reading (remember to
1229 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1230 root 1.30
1231     Note that this is a function, and all types registered this way will be
1232     global, so try to use unique names.
1233    
1234     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1235     search for C<register_read_type>)).
1236    
1237 root 1.10 =item $handle->stop_read
1238    
1239     =item $handle->start_read
1240    
1241 root 1.18 In rare cases you actually do not want to read anything from the
1242 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1243 root 1.22 any queued callbacks will be executed then. To start reading again, call
1244 root 1.10 C<start_read>.
1245    
1246 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1247     you change the C<on_read> callback or push/unshift a read callback, and it
1248     will automatically C<stop_read> for you when neither C<on_read> is set nor
1249     there are any read requests in the queue.
1250    
1251 root 1.10 =cut
1252    
1253     sub stop_read {
1254     my ($self) = @_;
1255 elmex 1.1
1256 root 1.38 delete $self->{_rw};
1257 root 1.8 }
1258 elmex 1.1
1259 root 1.10 sub start_read {
1260     my ($self) = @_;
1261    
1262 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1263 root 1.10 Scalar::Util::weaken $self;
1264    
1265 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1266 root 1.17 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1267     my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1268 root 1.10
1269     if ($len > 0) {
1270 root 1.44 $self->{_activity} = AnyEvent->now;
1271 root 1.43
1272 root 1.17 $self->{filter_r}
1273 root 1.48 ? $self->{filter_r}($self, $rbuf)
1274 root 1.59 : $self->{_in_drain} || $self->_drain_rbuf;
1275 root 1.10
1276     } elsif (defined $len) {
1277 root 1.38 delete $self->{_rw};
1278     $self->{_eof} = 1;
1279 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1280 root 1.10
1281 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1282 root 1.52 return $self->_error ($!, 1);
1283 root 1.10 }
1284     });
1285     }
1286 elmex 1.1 }
1287    
1288 root 1.19 sub _dotls {
1289     my ($self) = @_;
1290    
1291 root 1.56 my $buf;
1292    
1293 root 1.38 if (length $self->{_tls_wbuf}) {
1294     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1295     substr $self->{_tls_wbuf}, 0, $len, "";
1296 root 1.22 }
1297 root 1.19 }
1298    
1299 root 1.56 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1300 root 1.19 $self->{wbuf} .= $buf;
1301     $self->_drain_wbuf;
1302     }
1303    
1304 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1305     if (length $buf) {
1306     $self->{rbuf} .= $buf;
1307 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1308 root 1.56 } else {
1309     # let's treat SSL-eof as we treat normal EOF
1310     $self->{_eof} = 1;
1311     $self->_shutdown;
1312     return;
1313     }
1314 root 1.23 }
1315    
1316 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1317    
1318     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1319 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1320 root 1.52 return $self->_error ($!, 1);
1321 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1322 root 1.52 return $self->_error (&Errno::EIO, 1);
1323 root 1.19 }
1324 root 1.23
1325     # all others are fine for our purposes
1326 root 1.19 }
1327     }
1328    
1329 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1330    
1331     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1332     object is created, you can also do that at a later time by calling
1333     C<starttls>.
1334    
1335     The first argument is the same as the C<tls> constructor argument (either
1336     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1337    
1338     The second argument is the optional C<Net::SSLeay::CTX> object that is
1339     used when AnyEvent::Handle has to create its own TLS connection object.
1340    
1341 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1342     call and can be used or changed to your liking. Note that the handshake
1343     might have already started when this function returns.
1344    
1345 root 1.25 =cut
1346    
1347 root 1.19 sub starttls {
1348     my ($self, $ssl, $ctx) = @_;
1349    
1350 root 1.25 $self->stoptls;
1351    
1352 root 1.19 if ($ssl eq "accept") {
1353     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1354     Net::SSLeay::set_accept_state ($ssl);
1355     } elsif ($ssl eq "connect") {
1356     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1357     Net::SSLeay::set_connect_state ($ssl);
1358     }
1359    
1360     $self->{tls} = $ssl;
1361    
1362 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1363     # but the openssl maintainers basically said: "trust us, it just works".
1364     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1365     # and mismaintained ssleay-module doesn't even offer them).
1366 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1367 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1368 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1369     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1370 root 1.21
1371 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1372     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1373 root 1.19
1374 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1375 root 1.19
1376     $self->{filter_w} = sub {
1377 root 1.38 $_[0]{_tls_wbuf} .= ${$_[1]};
1378 root 1.19 &_dotls;
1379     };
1380     $self->{filter_r} = sub {
1381 root 1.38 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1382 root 1.19 &_dotls;
1383     };
1384     }
1385    
1386 root 1.25 =item $handle->stoptls
1387    
1388     Destroys the SSL connection, if any. Partial read or write data will be
1389     lost.
1390    
1391     =cut
1392    
1393     sub stoptls {
1394     my ($self) = @_;
1395    
1396     Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1397 root 1.38
1398     delete $self->{_rbio};
1399     delete $self->{_wbio};
1400     delete $self->{_tls_wbuf};
1401 root 1.25 delete $self->{filter_r};
1402     delete $self->{filter_w};
1403     }
1404    
1405 root 1.19 sub DESTROY {
1406     my $self = shift;
1407    
1408 root 1.25 $self->stoptls;
1409 root 1.62
1410     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1411    
1412     if ($linger && length $self->{wbuf}) {
1413     my $fh = delete $self->{fh};
1414     my $wbuf = delete $self->{wbuf};
1415    
1416     my @linger;
1417    
1418     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1419     my $len = syswrite $fh, $wbuf, length $wbuf;
1420    
1421     if ($len > 0) {
1422     substr $wbuf, 0, $len, "";
1423     } else {
1424     @linger = (); # end
1425     }
1426     });
1427     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1428     @linger = ();
1429     });
1430     }
1431 root 1.19 }
1432    
1433     =item AnyEvent::Handle::TLS_CTX
1434    
1435     This function creates and returns the Net::SSLeay::CTX object used by
1436     default for TLS mode.
1437    
1438     The context is created like this:
1439    
1440     Net::SSLeay::load_error_strings;
1441     Net::SSLeay::SSLeay_add_ssl_algorithms;
1442     Net::SSLeay::randomize;
1443    
1444     my $CTX = Net::SSLeay::CTX_new;
1445    
1446     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1447    
1448     =cut
1449    
1450     our $TLS_CTX;
1451    
1452     sub TLS_CTX() {
1453     $TLS_CTX || do {
1454     require Net::SSLeay;
1455    
1456     Net::SSLeay::load_error_strings ();
1457     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1458     Net::SSLeay::randomize ();
1459    
1460     $TLS_CTX = Net::SSLeay::CTX_new ();
1461    
1462     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1463    
1464     $TLS_CTX
1465     }
1466     }
1467    
1468 elmex 1.1 =back
1469    
1470 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1471    
1472     In many cases, you might want to subclass AnyEvent::Handle.
1473    
1474     To make this easier, a given version of AnyEvent::Handle uses these
1475     conventions:
1476    
1477     =over 4
1478    
1479     =item * all constructor arguments become object members.
1480    
1481     At least initially, when you pass a C<tls>-argument to the constructor it
1482 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1483 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1484    
1485     =item * other object member names are prefixed with an C<_>.
1486    
1487     All object members not explicitly documented (internal use) are prefixed
1488     with an underscore character, so the remaining non-C<_>-namespace is free
1489     for use for subclasses.
1490    
1491     =item * all members not documented here and not prefixed with an underscore
1492     are free to use in subclasses.
1493    
1494     Of course, new versions of AnyEvent::Handle may introduce more "public"
1495     member variables, but thats just life, at least it is documented.
1496    
1497     =back
1498    
1499 elmex 1.1 =head1 AUTHOR
1500    
1501 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1502 elmex 1.1
1503     =cut
1504    
1505     1; # End of AnyEvent::Handle