ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.93
Committed: Wed Oct 1 14:49:23 2008 UTC (15 years, 7 months ago) by root
Branch: MAIN
Changes since 1.92: +25 -31 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.91 our $VERSION = 4.3;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64 root 1.90 =head2 SIGPIPE is not handled by this module
65    
66     SIGPIPE is not handled by this module, so one of the practical
67     requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68     'IGNORE'>). At least, this is highly recommend in a networked program: If
69     you use AnyEvent::Handle in a filter program (like sort), exiting on
70     SIGPIPE is probably the right thing to do.
71    
72 elmex 1.1 =head1 METHODS
73    
74     =over 4
75    
76     =item B<new (%args)>
77    
78 root 1.8 The constructor supports these arguments (all as key => value pairs).
79 elmex 1.1
80     =over 4
81    
82 root 1.8 =item fh => $filehandle [MANDATORY]
83 elmex 1.1
84     The filehandle this L<AnyEvent::Handle> object will operate on.
85    
86 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
87     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88     that mode.
89 root 1.8
90 root 1.40 =item on_eof => $cb->($handle)
91 root 1.10
92 root 1.74 Set the callback to be called when an end-of-file condition is detected,
93 root 1.52 i.e. in the case of a socket, when the other side has closed the
94     connection cleanly.
95 root 1.8
96 root 1.82 For sockets, this just means that the other side has stopped sending data,
97     you can still try to write data, and, in fact, one can return from the eof
98     callback and continue writing data, as only the read part has been shut
99     down.
100    
101 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
102 root 1.16 otherwise you might end up with a closed socket while you are still
103     waiting for data.
104    
105 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
106     set, then a fatal error will be raised with C<$!> set to <0>.
107    
108 root 1.52 =item on_error => $cb->($handle, $fatal)
109 root 1.10
110 root 1.52 This is the error callback, which is called when, well, some error
111     occured, such as not being able to resolve the hostname, failure to
112     connect or a read error.
113    
114     Some errors are fatal (which is indicated by C<$fatal> being true). On
115 root 1.82 fatal errors the handle object will be shut down and will not be usable
116 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
118     (C<EPIPE>) or I/O errors.
119    
120     Non-fatal errors can be retried by simply returning, but it is recommended
121     to simply ignore this parameter and instead abondon the handle object
122     when this callback is invoked. Examples of non-fatal errors are timeouts
123     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 root 1.8
125 root 1.10 On callback entrance, the value of C<$!> contains the operating system
126 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
127 root 1.8
128 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
129     you will not be notified of errors otherwise. The default simply calls
130 root 1.52 C<croak>.
131 root 1.8
132 root 1.40 =item on_read => $cb->($handle)
133 root 1.8
134     This sets the default read callback, which is called when data arrives
135 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
136     callback will only be called when at least one octet of data is in the
137     read buffer).
138 root 1.8
139     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140 root 1.40 method or access the C<$handle->{rbuf}> member directly.
141 root 1.8
142     When an EOF condition is detected then AnyEvent::Handle will first try to
143     feed all the remaining data to the queued callbacks and C<on_read> before
144     calling the C<on_eof> callback. If no progress can be made, then a fatal
145     error will be raised (with C<$!> set to C<EPIPE>).
146 elmex 1.1
147 root 1.40 =item on_drain => $cb->($handle)
148 elmex 1.1
149 root 1.8 This sets the callback that is called when the write buffer becomes empty
150     (or when the callback is set and the buffer is empty already).
151 elmex 1.1
152 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
153 elmex 1.2
154 root 1.69 This callback is useful when you don't want to put all of your write data
155     into the queue at once, for example, when you want to write the contents
156     of some file to the socket you might not want to read the whole file into
157     memory and push it into the queue, but instead only read more data from
158     the file when the write queue becomes empty.
159    
160 root 1.43 =item timeout => $fractional_seconds
161    
162     If non-zero, then this enables an "inactivity" timeout: whenever this many
163     seconds pass without a successful read or write on the underlying file
164     handle, the C<on_timeout> callback will be invoked (and if that one is
165 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
166 root 1.43
167     Note that timeout processing is also active when you currently do not have
168     any outstanding read or write requests: If you plan to keep the connection
169     idle then you should disable the timout temporarily or ignore the timeout
170 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171     restart the timeout.
172 root 1.43
173     Zero (the default) disables this timeout.
174    
175     =item on_timeout => $cb->($handle)
176    
177     Called whenever the inactivity timeout passes. If you return from this
178     callback, then the timeout will be reset as if some activity had happened,
179     so this condition is not fatal in any way.
180    
181 root 1.8 =item rbuf_max => <bytes>
182 elmex 1.2
183 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
184     when the read buffer ever (strictly) exceeds this size. This is useful to
185 root 1.88 avoid some forms of denial-of-service attacks.
186 elmex 1.2
187 root 1.8 For example, a server accepting connections from untrusted sources should
188     be configured to accept only so-and-so much data that it cannot act on
189     (for example, when expecting a line, an attacker could send an unlimited
190     amount of data without a callback ever being called as long as the line
191     isn't finished).
192 elmex 1.2
193 root 1.70 =item autocork => <boolean>
194    
195     When disabled (the default), then C<push_write> will try to immediately
196 root 1.88 write the data to the handle, if possible. This avoids having to register
197     a write watcher and wait for the next event loop iteration, but can
198     be inefficient if you write multiple small chunks (on the wire, this
199     disadvantage is usually avoided by your kernel's nagle algorithm, see
200     C<no_delay>, but this option can save costly syscalls).
201 root 1.70
202     When enabled, then writes will always be queued till the next event loop
203     iteration. This is efficient when you do many small writes per iteration,
204 root 1.88 but less efficient when you do a single write only per iteration (or when
205     the write buffer often is full). It also increases write latency.
206 root 1.70
207     =item no_delay => <boolean>
208    
209     When doing small writes on sockets, your operating system kernel might
210     wait a bit for more data before actually sending it out. This is called
211     the Nagle algorithm, and usually it is beneficial.
212    
213 root 1.88 In some situations you want as low a delay as possible, which can be
214     accomplishd by setting this option to a true value.
215 root 1.70
216 root 1.88 The default is your opertaing system's default behaviour (most likely
217     enabled), this option explicitly enables or disables it, if possible.
218 root 1.70
219 root 1.8 =item read_size => <bytes>
220 elmex 1.2
221 root 1.88 The default read block size (the amount of bytes this module will
222     try to read during each loop iteration, which affects memory
223     requirements). Default: C<8192>.
224 root 1.8
225     =item low_water_mark => <bytes>
226    
227     Sets the amount of bytes (default: C<0>) that make up an "empty" write
228     buffer: If the write reaches this size or gets even samller it is
229     considered empty.
230 elmex 1.2
231 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
232     the write buffer before it is fully drained, but this is a rare case, as
233     the operating system kernel usually buffers data as well, so the default
234     is good in almost all cases.
235    
236 root 1.62 =item linger => <seconds>
237    
238     If non-zero (default: C<3600>), then the destructor of the
239 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
240     write data and will install a watcher that will write this data to the
241     socket. No errors will be reported (this mostly matches how the operating
242     system treats outstanding data at socket close time).
243 root 1.62
244 root 1.88 This will not work for partial TLS data that could not be encoded
245 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
246     help.
247 root 1.62
248 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
249    
250 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
251 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
252     established and will transparently encrypt/decrypt data afterwards.
253 root 1.19
254 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
255 root 1.88 automatically when you try to create a TLS handle): this module doesn't
256     have a dependency on that module, so if your module requires it, you have
257     to add the dependency yourself.
258 root 1.26
259 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
260     C<accept>, and for the TLS client side of a connection, use C<connect>
261     mode.
262 root 1.19
263     You can also provide your own TLS connection object, but you have
264     to make sure that you call either C<Net::SSLeay::set_connect_state>
265     or C<Net::SSLeay::set_accept_state> on it before you pass it to
266     AnyEvent::Handle.
267    
268 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 root 1.26
270 root 1.19 =item tls_ctx => $ssl_ctx
271    
272 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
273 root 1.19 (unless a connection object was specified directly). If this parameter is
274     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
275    
276 root 1.40 =item json => JSON or JSON::XS object
277    
278     This is the json coder object used by the C<json> read and write types.
279    
280 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
281 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
282     texts.
283 root 1.40
284     Note that you are responsible to depend on the JSON module if you want to
285     use this functionality, as AnyEvent does not have a dependency itself.
286    
287 elmex 1.1 =back
288    
289     =cut
290    
291     sub new {
292 root 1.8 my $class = shift;
293    
294     my $self = bless { @_ }, $class;
295    
296     $self->{fh} or Carp::croak "mandatory argument fh is missing";
297    
298     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
299 elmex 1.1
300 root 1.19 if ($self->{tls}) {
301     require Net::SSLeay;
302     $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
303     }
304    
305 root 1.44 $self->{_activity} = AnyEvent->now;
306 root 1.43 $self->_timeout;
307 elmex 1.1
308 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
309     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
310 root 1.10
311 root 1.66 $self->start_read
312 root 1.67 if $self->{on_read};
313 root 1.66
314 root 1.8 $self
315     }
316 elmex 1.2
317 root 1.8 sub _shutdown {
318     my ($self) = @_;
319 elmex 1.2
320 root 1.46 delete $self->{_tw};
321 root 1.38 delete $self->{_rw};
322     delete $self->{_ww};
323 root 1.8 delete $self->{fh};
324 root 1.52
325 root 1.92 &_freetls;
326 root 1.82
327     delete $self->{on_read};
328     delete $self->{_queue};
329 root 1.8 }
330    
331 root 1.52 sub _error {
332     my ($self, $errno, $fatal) = @_;
333 root 1.8
334 root 1.52 $self->_shutdown
335     if $fatal;
336 elmex 1.1
337 root 1.52 $! = $errno;
338 root 1.37
339 root 1.52 if ($self->{on_error}) {
340     $self->{on_error}($self, $fatal);
341     } else {
342     Carp::croak "AnyEvent::Handle uncaught error: $!";
343     }
344 elmex 1.1 }
345    
346 root 1.8 =item $fh = $handle->fh
347 elmex 1.1
348 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
349 elmex 1.1
350     =cut
351    
352 root 1.38 sub fh { $_[0]{fh} }
353 elmex 1.1
354 root 1.8 =item $handle->on_error ($cb)
355 elmex 1.1
356 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
357 elmex 1.1
358 root 1.8 =cut
359    
360     sub on_error {
361     $_[0]{on_error} = $_[1];
362     }
363    
364     =item $handle->on_eof ($cb)
365    
366     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
367 elmex 1.1
368     =cut
369    
370 root 1.8 sub on_eof {
371     $_[0]{on_eof} = $_[1];
372     }
373    
374 root 1.43 =item $handle->on_timeout ($cb)
375    
376 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
377     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
378     argument and method.
379 root 1.43
380     =cut
381    
382     sub on_timeout {
383     $_[0]{on_timeout} = $_[1];
384     }
385    
386 root 1.70 =item $handle->autocork ($boolean)
387    
388     Enables or disables the current autocork behaviour (see C<autocork>
389     constructor argument).
390    
391     =cut
392    
393     =item $handle->no_delay ($boolean)
394    
395     Enables or disables the C<no_delay> setting (see constructor argument of
396     the same name for details).
397    
398     =cut
399    
400     sub no_delay {
401     $_[0]{no_delay} = $_[1];
402    
403     eval {
404     local $SIG{__DIE__};
405     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
406     };
407     }
408    
409 root 1.43 #############################################################################
410    
411     =item $handle->timeout ($seconds)
412    
413     Configures (or disables) the inactivity timeout.
414    
415     =cut
416    
417     sub timeout {
418     my ($self, $timeout) = @_;
419    
420     $self->{timeout} = $timeout;
421     $self->_timeout;
422     }
423    
424     # reset the timeout watcher, as neccessary
425     # also check for time-outs
426     sub _timeout {
427     my ($self) = @_;
428    
429     if ($self->{timeout}) {
430 root 1.44 my $NOW = AnyEvent->now;
431 root 1.43
432     # when would the timeout trigger?
433     my $after = $self->{_activity} + $self->{timeout} - $NOW;
434    
435     # now or in the past already?
436     if ($after <= 0) {
437     $self->{_activity} = $NOW;
438    
439     if ($self->{on_timeout}) {
440 root 1.48 $self->{on_timeout}($self);
441 root 1.43 } else {
442 root 1.52 $self->_error (&Errno::ETIMEDOUT);
443 root 1.43 }
444    
445 root 1.56 # callback could have changed timeout value, optimise
446 root 1.43 return unless $self->{timeout};
447    
448     # calculate new after
449     $after = $self->{timeout};
450     }
451    
452     Scalar::Util::weaken $self;
453 root 1.56 return unless $self; # ->error could have destroyed $self
454 root 1.43
455     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
456     delete $self->{_tw};
457     $self->_timeout;
458     });
459     } else {
460     delete $self->{_tw};
461     }
462     }
463    
464 root 1.9 #############################################################################
465    
466     =back
467    
468     =head2 WRITE QUEUE
469    
470     AnyEvent::Handle manages two queues per handle, one for writing and one
471     for reading.
472    
473     The write queue is very simple: you can add data to its end, and
474     AnyEvent::Handle will automatically try to get rid of it for you.
475    
476 elmex 1.20 When data could be written and the write buffer is shorter then the low
477 root 1.9 water mark, the C<on_drain> callback will be invoked.
478    
479     =over 4
480    
481 root 1.8 =item $handle->on_drain ($cb)
482    
483     Sets the C<on_drain> callback or clears it (see the description of
484     C<on_drain> in the constructor).
485    
486     =cut
487    
488     sub on_drain {
489 elmex 1.1 my ($self, $cb) = @_;
490    
491 root 1.8 $self->{on_drain} = $cb;
492    
493     $cb->($self)
494 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
495 root 1.8 }
496    
497     =item $handle->push_write ($data)
498    
499     Queues the given scalar to be written. You can push as much data as you
500     want (only limited by the available memory), as C<AnyEvent::Handle>
501     buffers it independently of the kernel.
502    
503     =cut
504    
505 root 1.17 sub _drain_wbuf {
506     my ($self) = @_;
507 root 1.8
508 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
509 root 1.35
510 root 1.8 Scalar::Util::weaken $self;
511 root 1.35
512 root 1.8 my $cb = sub {
513     my $len = syswrite $self->{fh}, $self->{wbuf};
514    
515 root 1.29 if ($len >= 0) {
516 root 1.8 substr $self->{wbuf}, 0, $len, "";
517    
518 root 1.44 $self->{_activity} = AnyEvent->now;
519 root 1.43
520 root 1.8 $self->{on_drain}($self)
521 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
522 root 1.8 && $self->{on_drain};
523    
524 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
525 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
526 root 1.52 $self->_error ($!, 1);
527 elmex 1.1 }
528 root 1.8 };
529    
530 root 1.35 # try to write data immediately
531 root 1.70 $cb->() unless $self->{autocork};
532 root 1.8
533 root 1.35 # if still data left in wbuf, we need to poll
534 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
535 root 1.35 if length $self->{wbuf};
536 root 1.8 };
537     }
538    
539 root 1.30 our %WH;
540    
541     sub register_write_type($$) {
542     $WH{$_[0]} = $_[1];
543     }
544    
545 root 1.17 sub push_write {
546     my $self = shift;
547    
548 root 1.29 if (@_ > 1) {
549     my $type = shift;
550    
551     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
552     ->($self, @_);
553     }
554    
555 root 1.93 if ($self->{tls}) {
556     $self->{_tls_wbuf} .= $_[0];
557     &_dotls ($self);
558 root 1.17 } else {
559     $self->{wbuf} .= $_[0];
560     $self->_drain_wbuf;
561     }
562     }
563    
564 root 1.29 =item $handle->push_write (type => @args)
565    
566     Instead of formatting your data yourself, you can also let this module do
567     the job by specifying a type and type-specific arguments.
568    
569 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
570     drop by and tell us):
571 root 1.29
572     =over 4
573    
574     =item netstring => $string
575    
576     Formats the given value as netstring
577     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
578    
579     =cut
580    
581     register_write_type netstring => sub {
582     my ($self, $string) = @_;
583    
584     sprintf "%d:%s,", (length $string), $string
585     };
586    
587 root 1.61 =item packstring => $format, $data
588    
589     An octet string prefixed with an encoded length. The encoding C<$format>
590     uses the same format as a Perl C<pack> format, but must specify a single
591     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
592     optional C<!>, C<< < >> or C<< > >> modifier).
593    
594     =cut
595    
596     register_write_type packstring => sub {
597     my ($self, $format, $string) = @_;
598    
599 root 1.65 pack "$format/a*", $string
600 root 1.61 };
601    
602 root 1.39 =item json => $array_or_hashref
603    
604 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
605     provide your own JSON object, this means it will be encoded to JSON text
606     in UTF-8.
607    
608     JSON objects (and arrays) are self-delimiting, so you can write JSON at
609     one end of a handle and read them at the other end without using any
610     additional framing.
611    
612 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
613     this module doesn't need delimiters after or between JSON texts to be
614     able to read them, many other languages depend on that.
615    
616     A simple RPC protocol that interoperates easily with others is to send
617     JSON arrays (or objects, although arrays are usually the better choice as
618     they mimic how function argument passing works) and a newline after each
619     JSON text:
620    
621     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
622     $handle->push_write ("\012");
623    
624     An AnyEvent::Handle receiver would simply use the C<json> read type and
625     rely on the fact that the newline will be skipped as leading whitespace:
626    
627     $handle->push_read (json => sub { my $array = $_[1]; ... });
628    
629     Other languages could read single lines terminated by a newline and pass
630     this line into their JSON decoder of choice.
631    
632 root 1.40 =cut
633    
634     register_write_type json => sub {
635     my ($self, $ref) = @_;
636    
637     require JSON;
638    
639     $self->{json} ? $self->{json}->encode ($ref)
640     : JSON::encode_json ($ref)
641     };
642    
643 root 1.63 =item storable => $reference
644    
645     Freezes the given reference using L<Storable> and writes it to the
646     handle. Uses the C<nfreeze> format.
647    
648     =cut
649    
650     register_write_type storable => sub {
651     my ($self, $ref) = @_;
652    
653     require Storable;
654    
655 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
656 root 1.63 };
657    
658 root 1.53 =back
659    
660 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 root 1.30
662     This function (not method) lets you add your own types to C<push_write>.
663     Whenever the given C<type> is used, C<push_write> will invoke the code
664     reference with the handle object and the remaining arguments.
665 root 1.29
666 root 1.30 The code reference is supposed to return a single octet string that will
667     be appended to the write buffer.
668 root 1.29
669 root 1.30 Note that this is a function, and all types registered this way will be
670     global, so try to use unique names.
671 root 1.29
672 root 1.30 =cut
673 root 1.29
674 root 1.8 #############################################################################
675    
676 root 1.9 =back
677    
678     =head2 READ QUEUE
679    
680     AnyEvent::Handle manages two queues per handle, one for writing and one
681     for reading.
682    
683     The read queue is more complex than the write queue. It can be used in two
684     ways, the "simple" way, using only C<on_read> and the "complex" way, using
685     a queue.
686    
687     In the simple case, you just install an C<on_read> callback and whenever
688     new data arrives, it will be called. You can then remove some data (if
689 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
690     leave the data there if you want to accumulate more (e.g. when only a
691     partial message has been received so far).
692 root 1.9
693     In the more complex case, you want to queue multiple callbacks. In this
694     case, AnyEvent::Handle will call the first queued callback each time new
695 root 1.61 data arrives (also the first time it is queued) and removes it when it has
696     done its job (see C<push_read>, below).
697 root 1.9
698     This way you can, for example, push three line-reads, followed by reading
699     a chunk of data, and AnyEvent::Handle will execute them in order.
700    
701     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
702     the specified number of bytes which give an XML datagram.
703    
704     # in the default state, expect some header bytes
705     $handle->on_read (sub {
706     # some data is here, now queue the length-header-read (4 octets)
707 root 1.52 shift->unshift_read (chunk => 4, sub {
708 root 1.9 # header arrived, decode
709     my $len = unpack "N", $_[1];
710    
711     # now read the payload
712 root 1.52 shift->unshift_read (chunk => $len, sub {
713 root 1.9 my $xml = $_[1];
714     # handle xml
715     });
716     });
717     });
718    
719 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
720     and another line or "ERROR" for the first request that is sent, and 64
721     bytes for the second request. Due to the availability of a queue, we can
722     just pipeline sending both requests and manipulate the queue as necessary
723     in the callbacks.
724    
725     When the first callback is called and sees an "OK" response, it will
726     C<unshift> another line-read. This line-read will be queued I<before> the
727     64-byte chunk callback.
728 root 1.9
729 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
730 root 1.9 $handle->push_write ("request 1\015\012");
731    
732     # we expect "ERROR" or "OK" as response, so push a line read
733 root 1.52 $handle->push_read (line => sub {
734 root 1.9 # if we got an "OK", we have to _prepend_ another line,
735     # so it will be read before the second request reads its 64 bytes
736     # which are already in the queue when this callback is called
737     # we don't do this in case we got an error
738     if ($_[1] eq "OK") {
739 root 1.52 $_[0]->unshift_read (line => sub {
740 root 1.9 my $response = $_[1];
741     ...
742     });
743     }
744     });
745    
746 root 1.69 # request two, simply returns 64 octets
747 root 1.9 $handle->push_write ("request 2\015\012");
748    
749     # simply read 64 bytes, always
750 root 1.52 $handle->push_read (chunk => 64, sub {
751 root 1.9 my $response = $_[1];
752     ...
753     });
754    
755     =over 4
756    
757 root 1.10 =cut
758    
759 root 1.8 sub _drain_rbuf {
760     my ($self) = @_;
761 elmex 1.1
762 root 1.59 local $self->{_in_drain} = 1;
763    
764 root 1.17 if (
765     defined $self->{rbuf_max}
766     && $self->{rbuf_max} < length $self->{rbuf}
767     ) {
768 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
769 root 1.17 }
770    
771 root 1.59 while () {
772     my $len = length $self->{rbuf};
773 elmex 1.1
774 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
775 root 1.29 unless ($cb->($self)) {
776 root 1.38 if ($self->{_eof}) {
777 root 1.10 # no progress can be made (not enough data and no data forthcoming)
778 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
779 root 1.10 }
780    
781 root 1.38 unshift @{ $self->{_queue} }, $cb;
782 root 1.55 last;
783 root 1.8 }
784     } elsif ($self->{on_read}) {
785 root 1.61 last unless $len;
786    
787 root 1.8 $self->{on_read}($self);
788    
789     if (
790 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
791     && !@{ $self->{_queue} } # and the queue is still empty
792     && $self->{on_read} # but we still have on_read
793 root 1.8 ) {
794 root 1.55 # no further data will arrive
795     # so no progress can be made
796 root 1.82 $self->_error (&Errno::EPIPE, 1), return
797 root 1.55 if $self->{_eof};
798    
799     last; # more data might arrive
800 elmex 1.1 }
801 root 1.8 } else {
802     # read side becomes idle
803 root 1.93 delete $self->{_rw} unless $self->{tls};
804 root 1.55 last;
805 root 1.8 }
806     }
807    
808 root 1.80 if ($self->{_eof}) {
809     if ($self->{on_eof}) {
810     $self->{on_eof}($self)
811     } else {
812     $self->_error (0, 1);
813     }
814     }
815 root 1.55
816     # may need to restart read watcher
817     unless ($self->{_rw}) {
818     $self->start_read
819     if $self->{on_read} || @{ $self->{_queue} };
820     }
821 elmex 1.1 }
822    
823 root 1.8 =item $handle->on_read ($cb)
824 elmex 1.1
825 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
826     the new callback is C<undef>). See the description of C<on_read> in the
827     constructor.
828 elmex 1.1
829 root 1.8 =cut
830    
831     sub on_read {
832     my ($self, $cb) = @_;
833 elmex 1.1
834 root 1.8 $self->{on_read} = $cb;
835 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
836 elmex 1.1 }
837    
838 root 1.8 =item $handle->rbuf
839    
840     Returns the read buffer (as a modifiable lvalue).
841 elmex 1.1
842 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
843     you want.
844 elmex 1.1
845 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
846     C<push_read> or C<unshift_read> methods are used. The other read methods
847     automatically manage the read buffer.
848 elmex 1.1
849     =cut
850    
851 elmex 1.2 sub rbuf : lvalue {
852 root 1.8 $_[0]{rbuf}
853 elmex 1.2 }
854 elmex 1.1
855 root 1.8 =item $handle->push_read ($cb)
856    
857     =item $handle->unshift_read ($cb)
858    
859     Append the given callback to the end of the queue (C<push_read>) or
860     prepend it (C<unshift_read>).
861    
862     The callback is called each time some additional read data arrives.
863 elmex 1.1
864 elmex 1.20 It must check whether enough data is in the read buffer already.
865 elmex 1.1
866 root 1.8 If not enough data is available, it must return the empty list or a false
867     value, in which case it will be called repeatedly until enough data is
868     available (or an error condition is detected).
869    
870     If enough data was available, then the callback must remove all data it is
871     interested in (which can be none at all) and return a true value. After returning
872     true, it will be removed from the queue.
873 elmex 1.1
874     =cut
875    
876 root 1.30 our %RH;
877    
878     sub register_read_type($$) {
879     $RH{$_[0]} = $_[1];
880     }
881    
882 root 1.8 sub push_read {
883 root 1.28 my $self = shift;
884     my $cb = pop;
885    
886     if (@_) {
887     my $type = shift;
888    
889     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890     ->($self, $cb, @_);
891     }
892 elmex 1.1
893 root 1.38 push @{ $self->{_queue} }, $cb;
894 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
895 elmex 1.1 }
896    
897 root 1.8 sub unshift_read {
898 root 1.28 my $self = shift;
899     my $cb = pop;
900    
901     if (@_) {
902     my $type = shift;
903    
904     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
905     ->($self, $cb, @_);
906     }
907    
908 root 1.8
909 root 1.38 unshift @{ $self->{_queue} }, $cb;
910 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
911 root 1.8 }
912 elmex 1.1
913 root 1.28 =item $handle->push_read (type => @args, $cb)
914 elmex 1.1
915 root 1.28 =item $handle->unshift_read (type => @args, $cb)
916 elmex 1.1
917 root 1.28 Instead of providing a callback that parses the data itself you can chose
918     between a number of predefined parsing formats, for chunks of data, lines
919     etc.
920 elmex 1.1
921 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
922     drop by and tell us):
923 root 1.28
924     =over 4
925    
926 root 1.40 =item chunk => $octets, $cb->($handle, $data)
927 root 1.28
928     Invoke the callback only once C<$octets> bytes have been read. Pass the
929     data read to the callback. The callback will never be called with less
930     data.
931    
932     Example: read 2 bytes.
933    
934     $handle->push_read (chunk => 2, sub {
935     warn "yay ", unpack "H*", $_[1];
936     });
937 elmex 1.1
938     =cut
939    
940 root 1.28 register_read_type chunk => sub {
941     my ($self, $cb, $len) = @_;
942 elmex 1.1
943 root 1.8 sub {
944     $len <= length $_[0]{rbuf} or return;
945 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
946 root 1.8 1
947     }
948 root 1.28 };
949 root 1.8
950 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
951 elmex 1.1
952 root 1.8 The callback will be called only once a full line (including the end of
953     line marker, C<$eol>) has been read. This line (excluding the end of line
954     marker) will be passed to the callback as second argument (C<$line>), and
955     the end of line marker as the third argument (C<$eol>).
956 elmex 1.1
957 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
958     will be interpreted as a fixed record end marker, or it can be a regex
959     object (e.g. created by C<qr>), in which case it is interpreted as a
960     regular expression.
961 elmex 1.1
962 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
963     undef), then C<qr|\015?\012|> is used (which is good for most internet
964     protocols).
965 elmex 1.1
966 root 1.8 Partial lines at the end of the stream will never be returned, as they are
967     not marked by the end of line marker.
968 elmex 1.1
969 root 1.8 =cut
970 elmex 1.1
971 root 1.28 register_read_type line => sub {
972     my ($self, $cb, $eol) = @_;
973 elmex 1.1
974 root 1.76 if (@_ < 3) {
975     # this is more than twice as fast as the generic code below
976     sub {
977     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
978 elmex 1.1
979 root 1.76 $cb->($_[0], $1, $2);
980     1
981     }
982     } else {
983     $eol = quotemeta $eol unless ref $eol;
984     $eol = qr|^(.*?)($eol)|s;
985    
986     sub {
987     $_[0]{rbuf} =~ s/$eol// or return;
988 elmex 1.1
989 root 1.76 $cb->($_[0], $1, $2);
990     1
991     }
992 root 1.8 }
993 root 1.28 };
994 elmex 1.1
995 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
996 root 1.36
997     Makes a regex match against the regex object C<$accept> and returns
998     everything up to and including the match.
999    
1000     Example: read a single line terminated by '\n'.
1001    
1002     $handle->push_read (regex => qr<\n>, sub { ... });
1003    
1004     If C<$reject> is given and not undef, then it determines when the data is
1005     to be rejected: it is matched against the data when the C<$accept> regex
1006     does not match and generates an C<EBADMSG> error when it matches. This is
1007     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1008     receive buffer overflow).
1009    
1010     Example: expect a single decimal number followed by whitespace, reject
1011     anything else (not the use of an anchor).
1012    
1013     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1014    
1015     If C<$skip> is given and not C<undef>, then it will be matched against
1016     the receive buffer when neither C<$accept> nor C<$reject> match,
1017     and everything preceding and including the match will be accepted
1018     unconditionally. This is useful to skip large amounts of data that you
1019     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1020     have to start matching from the beginning. This is purely an optimisation
1021     and is usually worth only when you expect more than a few kilobytes.
1022    
1023     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1024     expect the header to be very large (it isn't in practise, but...), we use
1025     a skip regex to skip initial portions. The skip regex is tricky in that
1026     it only accepts something not ending in either \015 or \012, as these are
1027     required for the accept regex.
1028    
1029     $handle->push_read (regex =>
1030     qr<\015\012\015\012>,
1031     undef, # no reject
1032     qr<^.*[^\015\012]>,
1033     sub { ... });
1034    
1035     =cut
1036    
1037     register_read_type regex => sub {
1038     my ($self, $cb, $accept, $reject, $skip) = @_;
1039    
1040     my $data;
1041     my $rbuf = \$self->{rbuf};
1042    
1043     sub {
1044     # accept
1045     if ($$rbuf =~ $accept) {
1046     $data .= substr $$rbuf, 0, $+[0], "";
1047     $cb->($self, $data);
1048     return 1;
1049     }
1050    
1051     # reject
1052     if ($reject && $$rbuf =~ $reject) {
1053 root 1.52 $self->_error (&Errno::EBADMSG);
1054 root 1.36 }
1055    
1056     # skip
1057     if ($skip && $$rbuf =~ $skip) {
1058     $data .= substr $$rbuf, 0, $+[0], "";
1059     }
1060    
1061     ()
1062     }
1063     };
1064    
1065 root 1.61 =item netstring => $cb->($handle, $string)
1066    
1067     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1068    
1069     Throws an error with C<$!> set to EBADMSG on format violations.
1070    
1071     =cut
1072    
1073     register_read_type netstring => sub {
1074     my ($self, $cb) = @_;
1075    
1076     sub {
1077     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078     if ($_[0]{rbuf} =~ /[^0-9]/) {
1079     $self->_error (&Errno::EBADMSG);
1080     }
1081     return;
1082     }
1083    
1084     my $len = $1;
1085    
1086     $self->unshift_read (chunk => $len, sub {
1087     my $string = $_[1];
1088     $_[0]->unshift_read (chunk => 1, sub {
1089     if ($_[1] eq ",") {
1090     $cb->($_[0], $string);
1091     } else {
1092     $self->_error (&Errno::EBADMSG);
1093     }
1094     });
1095     });
1096    
1097     1
1098     }
1099     };
1100    
1101     =item packstring => $format, $cb->($handle, $string)
1102    
1103     An octet string prefixed with an encoded length. The encoding C<$format>
1104     uses the same format as a Perl C<pack> format, but must specify a single
1105     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1106     optional C<!>, C<< < >> or C<< > >> modifier).
1107    
1108     DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1109    
1110     Example: read a block of data prefixed by its length in BER-encoded
1111     format (very efficient).
1112    
1113     $handle->push_read (packstring => "w", sub {
1114     my ($handle, $data) = @_;
1115     });
1116    
1117     =cut
1118    
1119     register_read_type packstring => sub {
1120     my ($self, $cb, $format) = @_;
1121    
1122     sub {
1123     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1124 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1125 root 1.61 or return;
1126    
1127 root 1.77 $format = length pack $format, $len;
1128 root 1.61
1129 root 1.77 # bypass unshift if we already have the remaining chunk
1130     if ($format + $len <= length $_[0]{rbuf}) {
1131     my $data = substr $_[0]{rbuf}, $format, $len;
1132     substr $_[0]{rbuf}, 0, $format + $len, "";
1133     $cb->($_[0], $data);
1134     } else {
1135     # remove prefix
1136     substr $_[0]{rbuf}, 0, $format, "";
1137    
1138     # read remaining chunk
1139     $_[0]->unshift_read (chunk => $len, $cb);
1140     }
1141 root 1.61
1142     1
1143     }
1144     };
1145    
1146 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1147    
1148     Reads a JSON object or array, decodes it and passes it to the callback.
1149    
1150     If a C<json> object was passed to the constructor, then that will be used
1151     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152    
1153     This read type uses the incremental parser available with JSON version
1154     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1155     dependency on your own: this module will load the JSON module, but
1156     AnyEvent does not depend on it itself.
1157    
1158     Since JSON texts are fully self-delimiting, the C<json> read and write
1159 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1160     the C<json> write type description, above, for an actual example.
1161 root 1.40
1162     =cut
1163    
1164     register_read_type json => sub {
1165 root 1.63 my ($self, $cb) = @_;
1166 root 1.40
1167     require JSON;
1168    
1169     my $data;
1170     my $rbuf = \$self->{rbuf};
1171    
1172 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1173 root 1.40
1174     sub {
1175     my $ref = $json->incr_parse ($self->{rbuf});
1176    
1177     if ($ref) {
1178     $self->{rbuf} = $json->incr_text;
1179     $json->incr_text = "";
1180     $cb->($self, $ref);
1181    
1182     1
1183     } else {
1184     $self->{rbuf} = "";
1185     ()
1186     }
1187     }
1188     };
1189    
1190 root 1.63 =item storable => $cb->($handle, $ref)
1191    
1192     Deserialises a L<Storable> frozen representation as written by the
1193     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1194     data).
1195    
1196     Raises C<EBADMSG> error if the data could not be decoded.
1197    
1198     =cut
1199    
1200     register_read_type storable => sub {
1201     my ($self, $cb) = @_;
1202    
1203     require Storable;
1204    
1205     sub {
1206     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1207 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1208 root 1.63 or return;
1209    
1210 root 1.77 my $format = length pack "w", $len;
1211 root 1.63
1212 root 1.77 # bypass unshift if we already have the remaining chunk
1213     if ($format + $len <= length $_[0]{rbuf}) {
1214     my $data = substr $_[0]{rbuf}, $format, $len;
1215     substr $_[0]{rbuf}, 0, $format + $len, "";
1216     $cb->($_[0], Storable::thaw ($data));
1217     } else {
1218     # remove prefix
1219     substr $_[0]{rbuf}, 0, $format, "";
1220    
1221     # read remaining chunk
1222     $_[0]->unshift_read (chunk => $len, sub {
1223     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224     $cb->($_[0], $ref);
1225     } else {
1226     $self->_error (&Errno::EBADMSG);
1227     }
1228     });
1229     }
1230    
1231     1
1232 root 1.63 }
1233     };
1234    
1235 root 1.28 =back
1236    
1237 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1238 root 1.30
1239     This function (not method) lets you add your own types to C<push_read>.
1240    
1241     Whenever the given C<type> is used, C<push_read> will invoke the code
1242     reference with the handle object, the callback and the remaining
1243     arguments.
1244    
1245     The code reference is supposed to return a callback (usually a closure)
1246     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1247    
1248     It should invoke the passed callback when it is done reading (remember to
1249 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1250 root 1.30
1251     Note that this is a function, and all types registered this way will be
1252     global, so try to use unique names.
1253    
1254     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1255     search for C<register_read_type>)).
1256    
1257 root 1.10 =item $handle->stop_read
1258    
1259     =item $handle->start_read
1260    
1261 root 1.18 In rare cases you actually do not want to read anything from the
1262 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1263 root 1.22 any queued callbacks will be executed then. To start reading again, call
1264 root 1.10 C<start_read>.
1265    
1266 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1267     you change the C<on_read> callback or push/unshift a read callback, and it
1268     will automatically C<stop_read> for you when neither C<on_read> is set nor
1269     there are any read requests in the queue.
1270    
1271 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1272     half-duplex connections).
1273    
1274 root 1.10 =cut
1275    
1276     sub stop_read {
1277     my ($self) = @_;
1278 elmex 1.1
1279 root 1.93 delete $self->{_rw} unless $self->{tls};
1280 root 1.8 }
1281 elmex 1.1
1282 root 1.10 sub start_read {
1283     my ($self) = @_;
1284    
1285 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1286 root 1.10 Scalar::Util::weaken $self;
1287    
1288 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1289 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1290 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1291 root 1.10
1292     if ($len > 0) {
1293 root 1.44 $self->{_activity} = AnyEvent->now;
1294 root 1.43
1295 root 1.93 if ($self->{tls}) {
1296     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1297     &_dotls ($self);
1298     } else {
1299     $self->_drain_rbuf unless $self->{_in_drain};
1300     }
1301 root 1.10
1302     } elsif (defined $len) {
1303 root 1.38 delete $self->{_rw};
1304     $self->{_eof} = 1;
1305 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1306 root 1.10
1307 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1308 root 1.52 return $self->_error ($!, 1);
1309 root 1.10 }
1310     });
1311     }
1312 elmex 1.1 }
1313    
1314 root 1.19 sub _dotls {
1315     my ($self) = @_;
1316    
1317 root 1.56 my $buf;
1318    
1319 root 1.38 if (length $self->{_tls_wbuf}) {
1320     while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1321     substr $self->{_tls_wbuf}, 0, $len, "";
1322 root 1.22 }
1323 root 1.19 }
1324    
1325 root 1.56 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1326 root 1.91 unless (length $buf) {
1327 root 1.56 # let's treat SSL-eof as we treat normal EOF
1328 root 1.91 delete $self->{_rw};
1329 root 1.56 $self->{_eof} = 1;
1330 root 1.92 &_freetls;
1331 root 1.56 }
1332 root 1.91
1333     $self->{rbuf} .= $buf;
1334     $self->_drain_rbuf unless $self->{_in_drain};
1335 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1336 root 1.23 }
1337    
1338 root 1.24 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1339    
1340     if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1341 root 1.23 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1342 root 1.52 return $self->_error ($!, 1);
1343 root 1.23 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1344 root 1.52 return $self->_error (&Errno::EIO, 1);
1345 root 1.19 }
1346 root 1.23
1347     # all others are fine for our purposes
1348 root 1.19 }
1349 root 1.91
1350     if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1351     $self->{wbuf} .= $buf;
1352     $self->_drain_wbuf;
1353     }
1354 root 1.19 }
1355    
1356 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1357    
1358     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1359     object is created, you can also do that at a later time by calling
1360     C<starttls>.
1361    
1362     The first argument is the same as the C<tls> constructor argument (either
1363     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1364    
1365     The second argument is the optional C<Net::SSLeay::CTX> object that is
1366     used when AnyEvent::Handle has to create its own TLS connection object.
1367    
1368 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1369     call and can be used or changed to your liking. Note that the handshake
1370     might have already started when this function returns.
1371    
1372 root 1.92 If it an error to start a TLS handshake more than once per
1373     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1374    
1375 root 1.25 =cut
1376    
1377 root 1.19 sub starttls {
1378     my ($self, $ssl, $ctx) = @_;
1379    
1380 root 1.92 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1381     if $self->{tls};
1382    
1383 root 1.19 if ($ssl eq "accept") {
1384     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1385     Net::SSLeay::set_accept_state ($ssl);
1386     } elsif ($ssl eq "connect") {
1387     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1388     Net::SSLeay::set_connect_state ($ssl);
1389     }
1390    
1391     $self->{tls} = $ssl;
1392    
1393 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1394     # but the openssl maintainers basically said: "trust us, it just works".
1395     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1396     # and mismaintained ssleay-module doesn't even offer them).
1397 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1398 root 1.87 #
1399     # in short: this is a mess.
1400     #
1401 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1402 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1403 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1404     # have identity issues in that area.
1405 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1406 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1407     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1408 root 1.21
1409 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1410     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1411 root 1.19
1412 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1413 root 1.19
1414 root 1.93 &_dotls; # need to trigger the initial handshake
1415     $self->start_read; # make sure we actually do read
1416 root 1.19 }
1417    
1418 root 1.25 =item $handle->stoptls
1419    
1420 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1421     sending a close notify to the other side, but since OpenSSL doesn't
1422     support non-blocking shut downs, it is not possible to re-use the stream
1423     afterwards.
1424 root 1.25
1425     =cut
1426    
1427     sub stoptls {
1428     my ($self) = @_;
1429    
1430 root 1.92 if ($self->{tls}) {
1431     Net::SSLeay::shutdown $self->{tls};
1432    
1433     &_dotls;
1434    
1435     # we don't give a shit. no, we do, but we can't. no...
1436     # we, we... have to use openssl :/
1437     &_freetls;
1438     }
1439     }
1440    
1441     sub _freetls {
1442     my ($self) = @_;
1443    
1444     return unless $self->{tls};
1445 root 1.38
1446 root 1.92 Net::SSLeay::free (delete $self->{tls});
1447    
1448 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1449 root 1.25 }
1450    
1451 root 1.19 sub DESTROY {
1452     my $self = shift;
1453    
1454 root 1.92 &_freetls;
1455 root 1.62
1456     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1457    
1458     if ($linger && length $self->{wbuf}) {
1459     my $fh = delete $self->{fh};
1460     my $wbuf = delete $self->{wbuf};
1461    
1462     my @linger;
1463    
1464     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1465     my $len = syswrite $fh, $wbuf, length $wbuf;
1466    
1467     if ($len > 0) {
1468     substr $wbuf, 0, $len, "";
1469     } else {
1470     @linger = (); # end
1471     }
1472     });
1473     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1474     @linger = ();
1475     });
1476     }
1477 root 1.19 }
1478    
1479     =item AnyEvent::Handle::TLS_CTX
1480    
1481     This function creates and returns the Net::SSLeay::CTX object used by
1482     default for TLS mode.
1483    
1484     The context is created like this:
1485    
1486     Net::SSLeay::load_error_strings;
1487     Net::SSLeay::SSLeay_add_ssl_algorithms;
1488     Net::SSLeay::randomize;
1489    
1490     my $CTX = Net::SSLeay::CTX_new;
1491    
1492     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1493    
1494     =cut
1495    
1496     our $TLS_CTX;
1497    
1498     sub TLS_CTX() {
1499     $TLS_CTX || do {
1500     require Net::SSLeay;
1501    
1502     Net::SSLeay::load_error_strings ();
1503     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1504     Net::SSLeay::randomize ();
1505    
1506     $TLS_CTX = Net::SSLeay::CTX_new ();
1507    
1508     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1509    
1510     $TLS_CTX
1511     }
1512     }
1513    
1514 elmex 1.1 =back
1515    
1516 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1517    
1518     In many cases, you might want to subclass AnyEvent::Handle.
1519    
1520     To make this easier, a given version of AnyEvent::Handle uses these
1521     conventions:
1522    
1523     =over 4
1524    
1525     =item * all constructor arguments become object members.
1526    
1527     At least initially, when you pass a C<tls>-argument to the constructor it
1528 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1529 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1530    
1531     =item * other object member names are prefixed with an C<_>.
1532    
1533     All object members not explicitly documented (internal use) are prefixed
1534     with an underscore character, so the remaining non-C<_>-namespace is free
1535     for use for subclasses.
1536    
1537     =item * all members not documented here and not prefixed with an underscore
1538     are free to use in subclasses.
1539    
1540     Of course, new versions of AnyEvent::Handle may introduce more "public"
1541     member variables, but thats just life, at least it is documented.
1542    
1543     =back
1544    
1545 elmex 1.1 =head1 AUTHOR
1546    
1547 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1548 elmex 1.1
1549     =cut
1550    
1551     1; # End of AnyEvent::Handle