ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.97
Committed: Thu Oct 2 11:07:59 2008 UTC (15 years, 7 months ago) by root
Branch: MAIN
Changes since 1.96: +16 -13 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 package AnyEvent::Handle;
2    
3 elmex 1.6 no warnings;
4 root 1.79 use strict qw(subs vars);
5 elmex 1.1
6 root 1.8 use AnyEvent ();
7 root 1.42 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 root 1.8 use Scalar::Util ();
9     use Carp ();
10     use Fcntl ();
11 root 1.43 use Errno qw(EAGAIN EINTR);
12 elmex 1.1
13     =head1 NAME
14    
15 root 1.22 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 elmex 1.1
17     =cut
18    
19 root 1.91 our $VERSION = 4.3;
20 elmex 1.1
21     =head1 SYNOPSIS
22    
23     use AnyEvent;
24     use AnyEvent::Handle;
25    
26     my $cv = AnyEvent->condvar;
27    
28 root 1.31 my $handle =
29 elmex 1.2 AnyEvent::Handle->new (
30     fh => \*STDIN,
31     on_eof => sub {
32     $cv->broadcast;
33     },
34     );
35    
36 root 1.31 # send some request line
37     $handle->push_write ("getinfo\015\012");
38    
39     # read the response line
40     $handle->push_read (line => sub {
41     my ($handle, $line) = @_;
42     warn "read line <$line>\n";
43     $cv->send;
44     });
45    
46     $cv->recv;
47 elmex 1.1
48     =head1 DESCRIPTION
49    
50 root 1.8 This module is a helper module to make it easier to do event-based I/O on
51 elmex 1.13 filehandles. For utility functions for doing non-blocking connects and accepts
52     on sockets see L<AnyEvent::Util>.
53 root 1.8
54 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
55     AnyEvent::Handle examples.
56    
57 root 1.8 In the following, when the documentation refers to of "bytes" then this
58     means characters. As sysread and syswrite are used for all I/O, their
59     treatment of characters applies to this module as well.
60 elmex 1.1
61 root 1.8 All callbacks will be invoked with the handle object as their first
62     argument.
63 elmex 1.1
64 root 1.90 =head2 SIGPIPE is not handled by this module
65    
66     SIGPIPE is not handled by this module, so one of the practical
67     requirements of using it is to ignore SIGPIPE (C<$SIG{PIPE} =
68     'IGNORE'>). At least, this is highly recommend in a networked program: If
69     you use AnyEvent::Handle in a filter program (like sort), exiting on
70     SIGPIPE is probably the right thing to do.
71    
72 elmex 1.1 =head1 METHODS
73    
74     =over 4
75    
76     =item B<new (%args)>
77    
78 root 1.8 The constructor supports these arguments (all as key => value pairs).
79 elmex 1.1
80     =over 4
81    
82 root 1.8 =item fh => $filehandle [MANDATORY]
83 elmex 1.1
84     The filehandle this L<AnyEvent::Handle> object will operate on.
85    
86 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
87     C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
88     that mode.
89 root 1.8
90 root 1.40 =item on_eof => $cb->($handle)
91 root 1.10
92 root 1.74 Set the callback to be called when an end-of-file condition is detected,
93 root 1.52 i.e. in the case of a socket, when the other side has closed the
94     connection cleanly.
95 root 1.8
96 root 1.82 For sockets, this just means that the other side has stopped sending data,
97     you can still try to write data, and, in fact, one can return from the eof
98     callback and continue writing data, as only the read part has been shut
99     down.
100    
101 root 1.80 While not mandatory, it is I<highly> recommended to set an eof callback,
102 root 1.16 otherwise you might end up with a closed socket while you are still
103     waiting for data.
104    
105 root 1.80 If an EOF condition has been detected but no C<on_eof> callback has been
106     set, then a fatal error will be raised with C<$!> set to <0>.
107    
108 root 1.52 =item on_error => $cb->($handle, $fatal)
109 root 1.10
110 root 1.52 This is the error callback, which is called when, well, some error
111     occured, such as not being able to resolve the hostname, failure to
112     connect or a read error.
113    
114     Some errors are fatal (which is indicated by C<$fatal> being true). On
115 root 1.82 fatal errors the handle object will be shut down and will not be usable
116 root 1.88 (but you are free to look at the current C<< ->rbuf >>). Examples of fatal
117 root 1.82 errors are an EOF condition with active (but unsatisifable) read watchers
118     (C<EPIPE>) or I/O errors.
119    
120     Non-fatal errors can be retried by simply returning, but it is recommended
121     to simply ignore this parameter and instead abondon the handle object
122     when this callback is invoked. Examples of non-fatal errors are timeouts
123     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
124 root 1.8
125 root 1.10 On callback entrance, the value of C<$!> contains the operating system
126 root 1.43 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
127 root 1.8
128 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
129     you will not be notified of errors otherwise. The default simply calls
130 root 1.52 C<croak>.
131 root 1.8
132 root 1.40 =item on_read => $cb->($handle)
133 root 1.8
134     This sets the default read callback, which is called when data arrives
135 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
136     callback will only be called when at least one octet of data is in the
137     read buffer).
138 root 1.8
139     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
140 root 1.40 method or access the C<$handle->{rbuf}> member directly.
141 root 1.8
142     When an EOF condition is detected then AnyEvent::Handle will first try to
143     feed all the remaining data to the queued callbacks and C<on_read> before
144     calling the C<on_eof> callback. If no progress can be made, then a fatal
145     error will be raised (with C<$!> set to C<EPIPE>).
146 elmex 1.1
147 root 1.40 =item on_drain => $cb->($handle)
148 elmex 1.1
149 root 1.8 This sets the callback that is called when the write buffer becomes empty
150     (or when the callback is set and the buffer is empty already).
151 elmex 1.1
152 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
153 elmex 1.2
154 root 1.69 This callback is useful when you don't want to put all of your write data
155     into the queue at once, for example, when you want to write the contents
156     of some file to the socket you might not want to read the whole file into
157     memory and push it into the queue, but instead only read more data from
158     the file when the write queue becomes empty.
159    
160 root 1.43 =item timeout => $fractional_seconds
161    
162     If non-zero, then this enables an "inactivity" timeout: whenever this many
163     seconds pass without a successful read or write on the underlying file
164     handle, the C<on_timeout> callback will be invoked (and if that one is
165 root 1.88 missing, a non-fatal C<ETIMEDOUT> error will be raised).
166 root 1.43
167     Note that timeout processing is also active when you currently do not have
168     any outstanding read or write requests: If you plan to keep the connection
169     idle then you should disable the timout temporarily or ignore the timeout
170 root 1.88 in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171     restart the timeout.
172 root 1.43
173     Zero (the default) disables this timeout.
174    
175     =item on_timeout => $cb->($handle)
176    
177     Called whenever the inactivity timeout passes. If you return from this
178     callback, then the timeout will be reset as if some activity had happened,
179     so this condition is not fatal in any way.
180    
181 root 1.8 =item rbuf_max => <bytes>
182 elmex 1.2
183 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
184     when the read buffer ever (strictly) exceeds this size. This is useful to
185 root 1.88 avoid some forms of denial-of-service attacks.
186 elmex 1.2
187 root 1.8 For example, a server accepting connections from untrusted sources should
188     be configured to accept only so-and-so much data that it cannot act on
189     (for example, when expecting a line, an attacker could send an unlimited
190     amount of data without a callback ever being called as long as the line
191     isn't finished).
192 elmex 1.2
193 root 1.70 =item autocork => <boolean>
194    
195     When disabled (the default), then C<push_write> will try to immediately
196 root 1.88 write the data to the handle, if possible. This avoids having to register
197     a write watcher and wait for the next event loop iteration, but can
198     be inefficient if you write multiple small chunks (on the wire, this
199     disadvantage is usually avoided by your kernel's nagle algorithm, see
200     C<no_delay>, but this option can save costly syscalls).
201 root 1.70
202     When enabled, then writes will always be queued till the next event loop
203     iteration. This is efficient when you do many small writes per iteration,
204 root 1.88 but less efficient when you do a single write only per iteration (or when
205     the write buffer often is full). It also increases write latency.
206 root 1.70
207     =item no_delay => <boolean>
208    
209     When doing small writes on sockets, your operating system kernel might
210     wait a bit for more data before actually sending it out. This is called
211     the Nagle algorithm, and usually it is beneficial.
212    
213 root 1.88 In some situations you want as low a delay as possible, which can be
214     accomplishd by setting this option to a true value.
215 root 1.70
216 root 1.88 The default is your opertaing system's default behaviour (most likely
217     enabled), this option explicitly enables or disables it, if possible.
218 root 1.70
219 root 1.8 =item read_size => <bytes>
220 elmex 1.2
221 root 1.88 The default read block size (the amount of bytes this module will
222     try to read during each loop iteration, which affects memory
223     requirements). Default: C<8192>.
224 root 1.8
225     =item low_water_mark => <bytes>
226    
227     Sets the amount of bytes (default: C<0>) that make up an "empty" write
228     buffer: If the write reaches this size or gets even samller it is
229     considered empty.
230 elmex 1.2
231 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
232     the write buffer before it is fully drained, but this is a rare case, as
233     the operating system kernel usually buffers data as well, so the default
234     is good in almost all cases.
235    
236 root 1.62 =item linger => <seconds>
237    
238     If non-zero (default: C<3600>), then the destructor of the
239 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
240     write data and will install a watcher that will write this data to the
241     socket. No errors will be reported (this mostly matches how the operating
242     system treats outstanding data at socket close time).
243 root 1.62
244 root 1.88 This will not work for partial TLS data that could not be encoded
245 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
246     help.
247 root 1.62
248 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
249    
250 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
251 root 1.88 AnyEvent will start a TLS handshake as soon as the conenction has been
252     established and will transparently encrypt/decrypt data afterwards.
253 root 1.19
254 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
255 root 1.88 automatically when you try to create a TLS handle): this module doesn't
256     have a dependency on that module, so if your module requires it, you have
257     to add the dependency yourself.
258 root 1.26
259 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
260     C<accept>, and for the TLS client side of a connection, use C<connect>
261     mode.
262 root 1.19
263     You can also provide your own TLS connection object, but you have
264     to make sure that you call either C<Net::SSLeay::set_connect_state>
265     or C<Net::SSLeay::set_accept_state> on it before you pass it to
266     AnyEvent::Handle.
267    
268 root 1.88 See the C<< ->starttls >> method for when need to start TLS negotiation later.
269 root 1.26
270 root 1.19 =item tls_ctx => $ssl_ctx
271    
272 root 1.88 Use the given C<Net::SSLeay::CTX> object to create the new TLS connection
273 root 1.19 (unless a connection object was specified directly). If this parameter is
274     missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
275    
276 root 1.40 =item json => JSON or JSON::XS object
277    
278     This is the json coder object used by the C<json> read and write types.
279    
280 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
281 root 1.86 suitable one (on demand), which will write and expect UTF-8 encoded JSON
282     texts.
283 root 1.40
284     Note that you are responsible to depend on the JSON module if you want to
285     use this functionality, as AnyEvent does not have a dependency itself.
286    
287 elmex 1.1 =back
288    
289     =cut
290    
291     sub new {
292 root 1.8 my $class = shift;
293    
294     my $self = bless { @_ }, $class;
295    
296     $self->{fh} or Carp::croak "mandatory argument fh is missing";
297    
298     AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
299 elmex 1.1
300 root 1.94 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
301     if $self->{tls};
302 root 1.19
303 root 1.44 $self->{_activity} = AnyEvent->now;
304 root 1.43 $self->_timeout;
305 elmex 1.1
306 root 1.70 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307     $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 root 1.10
309 root 1.66 $self->start_read
310 root 1.67 if $self->{on_read};
311 root 1.66
312 root 1.8 $self
313     }
314 elmex 1.2
315 root 1.8 sub _shutdown {
316     my ($self) = @_;
317 elmex 1.2
318 root 1.46 delete $self->{_tw};
319 root 1.38 delete $self->{_rw};
320     delete $self->{_ww};
321 root 1.8 delete $self->{fh};
322 root 1.52
323 root 1.92 &_freetls;
324 root 1.82
325     delete $self->{on_read};
326     delete $self->{_queue};
327 root 1.8 }
328    
329 root 1.52 sub _error {
330     my ($self, $errno, $fatal) = @_;
331 root 1.8
332 root 1.52 $self->_shutdown
333     if $fatal;
334 elmex 1.1
335 root 1.52 $! = $errno;
336 root 1.37
337 root 1.52 if ($self->{on_error}) {
338     $self->{on_error}($self, $fatal);
339     } else {
340     Carp::croak "AnyEvent::Handle uncaught error: $!";
341     }
342 elmex 1.1 }
343    
344 root 1.8 =item $fh = $handle->fh
345 elmex 1.1
346 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
347 elmex 1.1
348     =cut
349    
350 root 1.38 sub fh { $_[0]{fh} }
351 elmex 1.1
352 root 1.8 =item $handle->on_error ($cb)
353 elmex 1.1
354 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
355 elmex 1.1
356 root 1.8 =cut
357    
358     sub on_error {
359     $_[0]{on_error} = $_[1];
360     }
361    
362     =item $handle->on_eof ($cb)
363    
364     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
365 elmex 1.1
366     =cut
367    
368 root 1.8 sub on_eof {
369     $_[0]{on_eof} = $_[1];
370     }
371    
372 root 1.43 =item $handle->on_timeout ($cb)
373    
374 root 1.88 Replace the current C<on_timeout> callback, or disables the callback (but
375     not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
376     argument and method.
377 root 1.43
378     =cut
379    
380     sub on_timeout {
381     $_[0]{on_timeout} = $_[1];
382     }
383    
384 root 1.70 =item $handle->autocork ($boolean)
385    
386     Enables or disables the current autocork behaviour (see C<autocork>
387     constructor argument).
388    
389     =cut
390    
391     =item $handle->no_delay ($boolean)
392    
393     Enables or disables the C<no_delay> setting (see constructor argument of
394     the same name for details).
395    
396     =cut
397    
398     sub no_delay {
399     $_[0]{no_delay} = $_[1];
400    
401     eval {
402     local $SIG{__DIE__};
403     setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
404     };
405     }
406    
407 root 1.43 #############################################################################
408    
409     =item $handle->timeout ($seconds)
410    
411     Configures (or disables) the inactivity timeout.
412    
413     =cut
414    
415     sub timeout {
416     my ($self, $timeout) = @_;
417    
418     $self->{timeout} = $timeout;
419     $self->_timeout;
420     }
421    
422     # reset the timeout watcher, as neccessary
423     # also check for time-outs
424     sub _timeout {
425     my ($self) = @_;
426    
427     if ($self->{timeout}) {
428 root 1.44 my $NOW = AnyEvent->now;
429 root 1.43
430     # when would the timeout trigger?
431     my $after = $self->{_activity} + $self->{timeout} - $NOW;
432    
433     # now or in the past already?
434     if ($after <= 0) {
435     $self->{_activity} = $NOW;
436    
437     if ($self->{on_timeout}) {
438 root 1.48 $self->{on_timeout}($self);
439 root 1.43 } else {
440 root 1.52 $self->_error (&Errno::ETIMEDOUT);
441 root 1.43 }
442    
443 root 1.56 # callback could have changed timeout value, optimise
444 root 1.43 return unless $self->{timeout};
445    
446     # calculate new after
447     $after = $self->{timeout};
448     }
449    
450     Scalar::Util::weaken $self;
451 root 1.56 return unless $self; # ->error could have destroyed $self
452 root 1.43
453     $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
454     delete $self->{_tw};
455     $self->_timeout;
456     });
457     } else {
458     delete $self->{_tw};
459     }
460     }
461    
462 root 1.9 #############################################################################
463    
464     =back
465    
466     =head2 WRITE QUEUE
467    
468     AnyEvent::Handle manages two queues per handle, one for writing and one
469     for reading.
470    
471     The write queue is very simple: you can add data to its end, and
472     AnyEvent::Handle will automatically try to get rid of it for you.
473    
474 elmex 1.20 When data could be written and the write buffer is shorter then the low
475 root 1.9 water mark, the C<on_drain> callback will be invoked.
476    
477     =over 4
478    
479 root 1.8 =item $handle->on_drain ($cb)
480    
481     Sets the C<on_drain> callback or clears it (see the description of
482     C<on_drain> in the constructor).
483    
484     =cut
485    
486     sub on_drain {
487 elmex 1.1 my ($self, $cb) = @_;
488    
489 root 1.8 $self->{on_drain} = $cb;
490    
491     $cb->($self)
492 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493 root 1.8 }
494    
495     =item $handle->push_write ($data)
496    
497     Queues the given scalar to be written. You can push as much data as you
498     want (only limited by the available memory), as C<AnyEvent::Handle>
499     buffers it independently of the kernel.
500    
501     =cut
502    
503 root 1.17 sub _drain_wbuf {
504     my ($self) = @_;
505 root 1.8
506 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
507 root 1.35
508 root 1.8 Scalar::Util::weaken $self;
509 root 1.35
510 root 1.8 my $cb = sub {
511     my $len = syswrite $self->{fh}, $self->{wbuf};
512    
513 root 1.29 if ($len >= 0) {
514 root 1.8 substr $self->{wbuf}, 0, $len, "";
515    
516 root 1.44 $self->{_activity} = AnyEvent->now;
517 root 1.43
518 root 1.8 $self->{on_drain}($self)
519 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 root 1.8 && $self->{on_drain};
521    
522 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
523 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 root 1.52 $self->_error ($!, 1);
525 elmex 1.1 }
526 root 1.8 };
527    
528 root 1.35 # try to write data immediately
529 root 1.70 $cb->() unless $self->{autocork};
530 root 1.8
531 root 1.35 # if still data left in wbuf, we need to poll
532 root 1.38 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
533 root 1.35 if length $self->{wbuf};
534 root 1.8 };
535     }
536    
537 root 1.30 our %WH;
538    
539     sub register_write_type($$) {
540     $WH{$_[0]} = $_[1];
541     }
542    
543 root 1.17 sub push_write {
544     my $self = shift;
545    
546 root 1.29 if (@_ > 1) {
547     my $type = shift;
548    
549     @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550     ->($self, @_);
551     }
552    
553 root 1.93 if ($self->{tls}) {
554     $self->{_tls_wbuf} .= $_[0];
555 root 1.97
556 root 1.93 &_dotls ($self);
557 root 1.17 } else {
558     $self->{wbuf} .= $_[0];
559     $self->_drain_wbuf;
560     }
561     }
562    
563 root 1.29 =item $handle->push_write (type => @args)
564    
565     Instead of formatting your data yourself, you can also let this module do
566     the job by specifying a type and type-specific arguments.
567    
568 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
569     drop by and tell us):
570 root 1.29
571     =over 4
572    
573     =item netstring => $string
574    
575     Formats the given value as netstring
576     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
577    
578     =cut
579    
580     register_write_type netstring => sub {
581     my ($self, $string) = @_;
582    
583 root 1.96 (length $string) . ":$string,"
584 root 1.29 };
585    
586 root 1.61 =item packstring => $format, $data
587    
588     An octet string prefixed with an encoded length. The encoding C<$format>
589     uses the same format as a Perl C<pack> format, but must specify a single
590     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
591     optional C<!>, C<< < >> or C<< > >> modifier).
592    
593     =cut
594    
595     register_write_type packstring => sub {
596     my ($self, $format, $string) = @_;
597    
598 root 1.65 pack "$format/a*", $string
599 root 1.61 };
600    
601 root 1.39 =item json => $array_or_hashref
602    
603 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
604     provide your own JSON object, this means it will be encoded to JSON text
605     in UTF-8.
606    
607     JSON objects (and arrays) are self-delimiting, so you can write JSON at
608     one end of a handle and read them at the other end without using any
609     additional framing.
610    
611 root 1.41 The generated JSON text is guaranteed not to contain any newlines: While
612     this module doesn't need delimiters after or between JSON texts to be
613     able to read them, many other languages depend on that.
614    
615     A simple RPC protocol that interoperates easily with others is to send
616     JSON arrays (or objects, although arrays are usually the better choice as
617     they mimic how function argument passing works) and a newline after each
618     JSON text:
619    
620     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
621     $handle->push_write ("\012");
622    
623     An AnyEvent::Handle receiver would simply use the C<json> read type and
624     rely on the fact that the newline will be skipped as leading whitespace:
625    
626     $handle->push_read (json => sub { my $array = $_[1]; ... });
627    
628     Other languages could read single lines terminated by a newline and pass
629     this line into their JSON decoder of choice.
630    
631 root 1.40 =cut
632    
633     register_write_type json => sub {
634     my ($self, $ref) = @_;
635    
636     require JSON;
637    
638     $self->{json} ? $self->{json}->encode ($ref)
639     : JSON::encode_json ($ref)
640     };
641    
642 root 1.63 =item storable => $reference
643    
644     Freezes the given reference using L<Storable> and writes it to the
645     handle. Uses the C<nfreeze> format.
646    
647     =cut
648    
649     register_write_type storable => sub {
650     my ($self, $ref) = @_;
651    
652     require Storable;
653    
654 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
655 root 1.63 };
656    
657 root 1.53 =back
658    
659 root 1.40 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
660 root 1.30
661     This function (not method) lets you add your own types to C<push_write>.
662     Whenever the given C<type> is used, C<push_write> will invoke the code
663     reference with the handle object and the remaining arguments.
664 root 1.29
665 root 1.30 The code reference is supposed to return a single octet string that will
666     be appended to the write buffer.
667 root 1.29
668 root 1.30 Note that this is a function, and all types registered this way will be
669     global, so try to use unique names.
670 root 1.29
671 root 1.30 =cut
672 root 1.29
673 root 1.8 #############################################################################
674    
675 root 1.9 =back
676    
677     =head2 READ QUEUE
678    
679     AnyEvent::Handle manages two queues per handle, one for writing and one
680     for reading.
681    
682     The read queue is more complex than the write queue. It can be used in two
683     ways, the "simple" way, using only C<on_read> and the "complex" way, using
684     a queue.
685    
686     In the simple case, you just install an C<on_read> callback and whenever
687     new data arrives, it will be called. You can then remove some data (if
688 root 1.69 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
689     leave the data there if you want to accumulate more (e.g. when only a
690     partial message has been received so far).
691 root 1.9
692     In the more complex case, you want to queue multiple callbacks. In this
693     case, AnyEvent::Handle will call the first queued callback each time new
694 root 1.61 data arrives (also the first time it is queued) and removes it when it has
695     done its job (see C<push_read>, below).
696 root 1.9
697     This way you can, for example, push three line-reads, followed by reading
698     a chunk of data, and AnyEvent::Handle will execute them in order.
699    
700     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
701     the specified number of bytes which give an XML datagram.
702    
703     # in the default state, expect some header bytes
704     $handle->on_read (sub {
705     # some data is here, now queue the length-header-read (4 octets)
706 root 1.52 shift->unshift_read (chunk => 4, sub {
707 root 1.9 # header arrived, decode
708     my $len = unpack "N", $_[1];
709    
710     # now read the payload
711 root 1.52 shift->unshift_read (chunk => $len, sub {
712 root 1.9 my $xml = $_[1];
713     # handle xml
714     });
715     });
716     });
717    
718 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
719     and another line or "ERROR" for the first request that is sent, and 64
720     bytes for the second request. Due to the availability of a queue, we can
721     just pipeline sending both requests and manipulate the queue as necessary
722     in the callbacks.
723    
724     When the first callback is called and sees an "OK" response, it will
725     C<unshift> another line-read. This line-read will be queued I<before> the
726     64-byte chunk callback.
727 root 1.9
728 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
729 root 1.9 $handle->push_write ("request 1\015\012");
730    
731     # we expect "ERROR" or "OK" as response, so push a line read
732 root 1.52 $handle->push_read (line => sub {
733 root 1.9 # if we got an "OK", we have to _prepend_ another line,
734     # so it will be read before the second request reads its 64 bytes
735     # which are already in the queue when this callback is called
736     # we don't do this in case we got an error
737     if ($_[1] eq "OK") {
738 root 1.52 $_[0]->unshift_read (line => sub {
739 root 1.9 my $response = $_[1];
740     ...
741     });
742     }
743     });
744    
745 root 1.69 # request two, simply returns 64 octets
746 root 1.9 $handle->push_write ("request 2\015\012");
747    
748     # simply read 64 bytes, always
749 root 1.52 $handle->push_read (chunk => 64, sub {
750 root 1.9 my $response = $_[1];
751     ...
752     });
753    
754     =over 4
755    
756 root 1.10 =cut
757    
758 root 1.8 sub _drain_rbuf {
759     my ($self) = @_;
760 elmex 1.1
761 root 1.59 local $self->{_in_drain} = 1;
762    
763 root 1.17 if (
764     defined $self->{rbuf_max}
765     && $self->{rbuf_max} < length $self->{rbuf}
766     ) {
767 root 1.82 $self->_error (&Errno::ENOSPC, 1), return;
768 root 1.17 }
769    
770 root 1.59 while () {
771     my $len = length $self->{rbuf};
772 elmex 1.1
773 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
774 root 1.29 unless ($cb->($self)) {
775 root 1.38 if ($self->{_eof}) {
776 root 1.10 # no progress can be made (not enough data and no data forthcoming)
777 root 1.82 $self->_error (&Errno::EPIPE, 1), return;
778 root 1.10 }
779    
780 root 1.38 unshift @{ $self->{_queue} }, $cb;
781 root 1.55 last;
782 root 1.8 }
783     } elsif ($self->{on_read}) {
784 root 1.61 last unless $len;
785    
786 root 1.8 $self->{on_read}($self);
787    
788     if (
789 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
790     && !@{ $self->{_queue} } # and the queue is still empty
791     && $self->{on_read} # but we still have on_read
792 root 1.8 ) {
793 root 1.55 # no further data will arrive
794     # so no progress can be made
795 root 1.82 $self->_error (&Errno::EPIPE, 1), return
796 root 1.55 if $self->{_eof};
797    
798     last; # more data might arrive
799 elmex 1.1 }
800 root 1.8 } else {
801     # read side becomes idle
802 root 1.93 delete $self->{_rw} unless $self->{tls};
803 root 1.55 last;
804 root 1.8 }
805     }
806    
807 root 1.80 if ($self->{_eof}) {
808     if ($self->{on_eof}) {
809     $self->{on_eof}($self)
810     } else {
811     $self->_error (0, 1);
812     }
813     }
814 root 1.55
815     # may need to restart read watcher
816     unless ($self->{_rw}) {
817     $self->start_read
818     if $self->{on_read} || @{ $self->{_queue} };
819     }
820 elmex 1.1 }
821    
822 root 1.8 =item $handle->on_read ($cb)
823 elmex 1.1
824 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
825     the new callback is C<undef>). See the description of C<on_read> in the
826     constructor.
827 elmex 1.1
828 root 1.8 =cut
829    
830     sub on_read {
831     my ($self, $cb) = @_;
832 elmex 1.1
833 root 1.8 $self->{on_read} = $cb;
834 root 1.59 $self->_drain_rbuf if $cb && !$self->{_in_drain};
835 elmex 1.1 }
836    
837 root 1.8 =item $handle->rbuf
838    
839     Returns the read buffer (as a modifiable lvalue).
840 elmex 1.1
841 root 1.8 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
842     you want.
843 elmex 1.1
844 root 1.8 NOTE: The read buffer should only be used or modified if the C<on_read>,
845     C<push_read> or C<unshift_read> methods are used. The other read methods
846     automatically manage the read buffer.
847 elmex 1.1
848     =cut
849    
850 elmex 1.2 sub rbuf : lvalue {
851 root 1.8 $_[0]{rbuf}
852 elmex 1.2 }
853 elmex 1.1
854 root 1.8 =item $handle->push_read ($cb)
855    
856     =item $handle->unshift_read ($cb)
857    
858     Append the given callback to the end of the queue (C<push_read>) or
859     prepend it (C<unshift_read>).
860    
861     The callback is called each time some additional read data arrives.
862 elmex 1.1
863 elmex 1.20 It must check whether enough data is in the read buffer already.
864 elmex 1.1
865 root 1.8 If not enough data is available, it must return the empty list or a false
866     value, in which case it will be called repeatedly until enough data is
867     available (or an error condition is detected).
868    
869     If enough data was available, then the callback must remove all data it is
870     interested in (which can be none at all) and return a true value. After returning
871     true, it will be removed from the queue.
872 elmex 1.1
873     =cut
874    
875 root 1.30 our %RH;
876    
877     sub register_read_type($$) {
878     $RH{$_[0]} = $_[1];
879     }
880    
881 root 1.8 sub push_read {
882 root 1.28 my $self = shift;
883     my $cb = pop;
884    
885     if (@_) {
886     my $type = shift;
887    
888     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
889     ->($self, $cb, @_);
890     }
891 elmex 1.1
892 root 1.38 push @{ $self->{_queue} }, $cb;
893 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
894 elmex 1.1 }
895    
896 root 1.8 sub unshift_read {
897 root 1.28 my $self = shift;
898     my $cb = pop;
899    
900     if (@_) {
901     my $type = shift;
902    
903     $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
904     ->($self, $cb, @_);
905     }
906    
907 root 1.8
908 root 1.38 unshift @{ $self->{_queue} }, $cb;
909 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
910 root 1.8 }
911 elmex 1.1
912 root 1.28 =item $handle->push_read (type => @args, $cb)
913 elmex 1.1
914 root 1.28 =item $handle->unshift_read (type => @args, $cb)
915 elmex 1.1
916 root 1.28 Instead of providing a callback that parses the data itself you can chose
917     between a number of predefined parsing formats, for chunks of data, lines
918     etc.
919 elmex 1.1
920 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
921     drop by and tell us):
922 root 1.28
923     =over 4
924    
925 root 1.40 =item chunk => $octets, $cb->($handle, $data)
926 root 1.28
927     Invoke the callback only once C<$octets> bytes have been read. Pass the
928     data read to the callback. The callback will never be called with less
929     data.
930    
931     Example: read 2 bytes.
932    
933     $handle->push_read (chunk => 2, sub {
934     warn "yay ", unpack "H*", $_[1];
935     });
936 elmex 1.1
937     =cut
938    
939 root 1.28 register_read_type chunk => sub {
940     my ($self, $cb, $len) = @_;
941 elmex 1.1
942 root 1.8 sub {
943     $len <= length $_[0]{rbuf} or return;
944 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
945 root 1.8 1
946     }
947 root 1.28 };
948 root 1.8
949 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
950 elmex 1.1
951 root 1.8 The callback will be called only once a full line (including the end of
952     line marker, C<$eol>) has been read. This line (excluding the end of line
953     marker) will be passed to the callback as second argument (C<$line>), and
954     the end of line marker as the third argument (C<$eol>).
955 elmex 1.1
956 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
957     will be interpreted as a fixed record end marker, or it can be a regex
958     object (e.g. created by C<qr>), in which case it is interpreted as a
959     regular expression.
960 elmex 1.1
961 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
962     undef), then C<qr|\015?\012|> is used (which is good for most internet
963     protocols).
964 elmex 1.1
965 root 1.8 Partial lines at the end of the stream will never be returned, as they are
966     not marked by the end of line marker.
967 elmex 1.1
968 root 1.8 =cut
969 elmex 1.1
970 root 1.28 register_read_type line => sub {
971     my ($self, $cb, $eol) = @_;
972 elmex 1.1
973 root 1.76 if (@_ < 3) {
974     # this is more than twice as fast as the generic code below
975     sub {
976     $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
977 elmex 1.1
978 root 1.76 $cb->($_[0], $1, $2);
979     1
980     }
981     } else {
982     $eol = quotemeta $eol unless ref $eol;
983     $eol = qr|^(.*?)($eol)|s;
984    
985     sub {
986     $_[0]{rbuf} =~ s/$eol// or return;
987 elmex 1.1
988 root 1.76 $cb->($_[0], $1, $2);
989     1
990     }
991 root 1.8 }
992 root 1.28 };
993 elmex 1.1
994 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
995 root 1.36
996     Makes a regex match against the regex object C<$accept> and returns
997     everything up to and including the match.
998    
999     Example: read a single line terminated by '\n'.
1000    
1001     $handle->push_read (regex => qr<\n>, sub { ... });
1002    
1003     If C<$reject> is given and not undef, then it determines when the data is
1004     to be rejected: it is matched against the data when the C<$accept> regex
1005     does not match and generates an C<EBADMSG> error when it matches. This is
1006     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1007     receive buffer overflow).
1008    
1009     Example: expect a single decimal number followed by whitespace, reject
1010     anything else (not the use of an anchor).
1011    
1012     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1013    
1014     If C<$skip> is given and not C<undef>, then it will be matched against
1015     the receive buffer when neither C<$accept> nor C<$reject> match,
1016     and everything preceding and including the match will be accepted
1017     unconditionally. This is useful to skip large amounts of data that you
1018     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1019     have to start matching from the beginning. This is purely an optimisation
1020     and is usually worth only when you expect more than a few kilobytes.
1021    
1022     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1023     expect the header to be very large (it isn't in practise, but...), we use
1024     a skip regex to skip initial portions. The skip regex is tricky in that
1025     it only accepts something not ending in either \015 or \012, as these are
1026     required for the accept regex.
1027    
1028     $handle->push_read (regex =>
1029     qr<\015\012\015\012>,
1030     undef, # no reject
1031     qr<^.*[^\015\012]>,
1032     sub { ... });
1033    
1034     =cut
1035    
1036     register_read_type regex => sub {
1037     my ($self, $cb, $accept, $reject, $skip) = @_;
1038    
1039     my $data;
1040     my $rbuf = \$self->{rbuf};
1041    
1042     sub {
1043     # accept
1044     if ($$rbuf =~ $accept) {
1045     $data .= substr $$rbuf, 0, $+[0], "";
1046     $cb->($self, $data);
1047     return 1;
1048     }
1049    
1050     # reject
1051     if ($reject && $$rbuf =~ $reject) {
1052 root 1.52 $self->_error (&Errno::EBADMSG);
1053 root 1.36 }
1054    
1055     # skip
1056     if ($skip && $$rbuf =~ $skip) {
1057     $data .= substr $$rbuf, 0, $+[0], "";
1058     }
1059    
1060     ()
1061     }
1062     };
1063    
1064 root 1.61 =item netstring => $cb->($handle, $string)
1065    
1066     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1067    
1068     Throws an error with C<$!> set to EBADMSG on format violations.
1069    
1070     =cut
1071    
1072     register_read_type netstring => sub {
1073     my ($self, $cb) = @_;
1074    
1075     sub {
1076     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1077     if ($_[0]{rbuf} =~ /[^0-9]/) {
1078     $self->_error (&Errno::EBADMSG);
1079     }
1080     return;
1081     }
1082    
1083     my $len = $1;
1084    
1085     $self->unshift_read (chunk => $len, sub {
1086     my $string = $_[1];
1087     $_[0]->unshift_read (chunk => 1, sub {
1088     if ($_[1] eq ",") {
1089     $cb->($_[0], $string);
1090     } else {
1091     $self->_error (&Errno::EBADMSG);
1092     }
1093     });
1094     });
1095    
1096     1
1097     }
1098     };
1099    
1100     =item packstring => $format, $cb->($handle, $string)
1101    
1102     An octet string prefixed with an encoded length. The encoding C<$format>
1103     uses the same format as a Perl C<pack> format, but must specify a single
1104     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1105     optional C<!>, C<< < >> or C<< > >> modifier).
1106    
1107 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1108     EPP uses a prefix of C<N> (4 octtes).
1109 root 1.61
1110     Example: read a block of data prefixed by its length in BER-encoded
1111     format (very efficient).
1112    
1113     $handle->push_read (packstring => "w", sub {
1114     my ($handle, $data) = @_;
1115     });
1116    
1117     =cut
1118    
1119     register_read_type packstring => sub {
1120     my ($self, $cb, $format) = @_;
1121    
1122     sub {
1123     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1124 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1125 root 1.61 or return;
1126    
1127 root 1.77 $format = length pack $format, $len;
1128 root 1.61
1129 root 1.77 # bypass unshift if we already have the remaining chunk
1130     if ($format + $len <= length $_[0]{rbuf}) {
1131     my $data = substr $_[0]{rbuf}, $format, $len;
1132     substr $_[0]{rbuf}, 0, $format + $len, "";
1133     $cb->($_[0], $data);
1134     } else {
1135     # remove prefix
1136     substr $_[0]{rbuf}, 0, $format, "";
1137    
1138     # read remaining chunk
1139     $_[0]->unshift_read (chunk => $len, $cb);
1140     }
1141 root 1.61
1142     1
1143     }
1144     };
1145    
1146 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1147    
1148     Reads a JSON object or array, decodes it and passes it to the callback.
1149    
1150     If a C<json> object was passed to the constructor, then that will be used
1151     for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1152    
1153     This read type uses the incremental parser available with JSON version
1154     2.09 (and JSON::XS version 2.2) and above. You have to provide a
1155     dependency on your own: this module will load the JSON module, but
1156     AnyEvent does not depend on it itself.
1157    
1158     Since JSON texts are fully self-delimiting, the C<json> read and write
1159 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1160     the C<json> write type description, above, for an actual example.
1161 root 1.40
1162     =cut
1163    
1164     register_read_type json => sub {
1165 root 1.63 my ($self, $cb) = @_;
1166 root 1.40
1167     require JSON;
1168    
1169     my $data;
1170     my $rbuf = \$self->{rbuf};
1171    
1172 root 1.41 my $json = $self->{json} ||= JSON->new->utf8;
1173 root 1.40
1174     sub {
1175     my $ref = $json->incr_parse ($self->{rbuf});
1176    
1177     if ($ref) {
1178     $self->{rbuf} = $json->incr_text;
1179     $json->incr_text = "";
1180     $cb->($self, $ref);
1181    
1182     1
1183     } else {
1184     $self->{rbuf} = "";
1185     ()
1186     }
1187     }
1188     };
1189    
1190 root 1.63 =item storable => $cb->($handle, $ref)
1191    
1192     Deserialises a L<Storable> frozen representation as written by the
1193     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1194     data).
1195    
1196     Raises C<EBADMSG> error if the data could not be decoded.
1197    
1198     =cut
1199    
1200     register_read_type storable => sub {
1201     my ($self, $cb) = @_;
1202    
1203     require Storable;
1204    
1205     sub {
1206     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1207 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1208 root 1.63 or return;
1209    
1210 root 1.77 my $format = length pack "w", $len;
1211 root 1.63
1212 root 1.77 # bypass unshift if we already have the remaining chunk
1213     if ($format + $len <= length $_[0]{rbuf}) {
1214     my $data = substr $_[0]{rbuf}, $format, $len;
1215     substr $_[0]{rbuf}, 0, $format + $len, "";
1216     $cb->($_[0], Storable::thaw ($data));
1217     } else {
1218     # remove prefix
1219     substr $_[0]{rbuf}, 0, $format, "";
1220    
1221     # read remaining chunk
1222     $_[0]->unshift_read (chunk => $len, sub {
1223     if (my $ref = eval { Storable::thaw ($_[1]) }) {
1224     $cb->($_[0], $ref);
1225     } else {
1226     $self->_error (&Errno::EBADMSG);
1227     }
1228     });
1229     }
1230    
1231     1
1232 root 1.63 }
1233     };
1234    
1235 root 1.28 =back
1236    
1237 root 1.40 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1238 root 1.30
1239     This function (not method) lets you add your own types to C<push_read>.
1240    
1241     Whenever the given C<type> is used, C<push_read> will invoke the code
1242     reference with the handle object, the callback and the remaining
1243     arguments.
1244    
1245     The code reference is supposed to return a callback (usually a closure)
1246     that works as a plain read callback (see C<< ->push_read ($cb) >>).
1247    
1248     It should invoke the passed callback when it is done reading (remember to
1249 root 1.40 pass C<$handle> as first argument as all other callbacks do that).
1250 root 1.30
1251     Note that this is a function, and all types registered this way will be
1252     global, so try to use unique names.
1253    
1254     For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1255     search for C<register_read_type>)).
1256    
1257 root 1.10 =item $handle->stop_read
1258    
1259     =item $handle->start_read
1260    
1261 root 1.18 In rare cases you actually do not want to read anything from the
1262 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1263 root 1.22 any queued callbacks will be executed then. To start reading again, call
1264 root 1.10 C<start_read>.
1265    
1266 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1267     you change the C<on_read> callback or push/unshift a read callback, and it
1268     will automatically C<stop_read> for you when neither C<on_read> is set nor
1269     there are any read requests in the queue.
1270    
1271 root 1.93 These methods will have no effect when in TLS mode (as TLS doesn't support
1272     half-duplex connections).
1273    
1274 root 1.10 =cut
1275    
1276     sub stop_read {
1277     my ($self) = @_;
1278 elmex 1.1
1279 root 1.93 delete $self->{_rw} unless $self->{tls};
1280 root 1.8 }
1281 elmex 1.1
1282 root 1.10 sub start_read {
1283     my ($self) = @_;
1284    
1285 root 1.38 unless ($self->{_rw} || $self->{_eof}) {
1286 root 1.10 Scalar::Util::weaken $self;
1287    
1288 root 1.38 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1289 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1290 root 1.17 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1291 root 1.10
1292     if ($len > 0) {
1293 root 1.44 $self->{_activity} = AnyEvent->now;
1294 root 1.43
1295 root 1.93 if ($self->{tls}) {
1296     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1297 root 1.97
1298 root 1.93 &_dotls ($self);
1299     } else {
1300     $self->_drain_rbuf unless $self->{_in_drain};
1301     }
1302 root 1.10
1303     } elsif (defined $len) {
1304 root 1.38 delete $self->{_rw};
1305     $self->{_eof} = 1;
1306 root 1.59 $self->_drain_rbuf unless $self->{_in_drain};
1307 root 1.10
1308 root 1.42 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1309 root 1.52 return $self->_error ($!, 1);
1310 root 1.10 }
1311     });
1312     }
1313 elmex 1.1 }
1314    
1315 root 1.97 # poll the write BIO and send the data if applicable
1316 root 1.19 sub _dotls {
1317     my ($self) = @_;
1318    
1319 root 1.97 my $tmp;
1320 root 1.56
1321 root 1.38 if (length $self->{_tls_wbuf}) {
1322 root 1.97 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1323     substr $self->{_tls_wbuf}, 0, $tmp, "";
1324 root 1.22 }
1325 root 1.19 }
1326    
1327 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1328     unless (length $tmp) {
1329 root 1.56 # let's treat SSL-eof as we treat normal EOF
1330 root 1.91 delete $self->{_rw};
1331 root 1.56 $self->{_eof} = 1;
1332 root 1.92 &_freetls;
1333 root 1.56 }
1334 root 1.91
1335 root 1.97 $self->{rbuf} .= $tmp;
1336 root 1.91 $self->_drain_rbuf unless $self->{_in_drain};
1337 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
1338 root 1.23 }
1339    
1340 root 1.97 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1341 root 1.24
1342 root 1.97 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1343     if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1344 root 1.52 return $self->_error ($!, 1);
1345 root 1.97 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1346 root 1.52 return $self->_error (&Errno::EIO, 1);
1347 root 1.19 }
1348 root 1.23
1349 root 1.97 # all other errors are fine for our purposes
1350 root 1.19 }
1351 root 1.91
1352 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1353     $self->{wbuf} .= $tmp;
1354 root 1.91 $self->_drain_wbuf;
1355     }
1356 root 1.19 }
1357    
1358 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
1359    
1360     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1361     object is created, you can also do that at a later time by calling
1362     C<starttls>.
1363    
1364     The first argument is the same as the C<tls> constructor argument (either
1365     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1366    
1367     The second argument is the optional C<Net::SSLeay::CTX> object that is
1368     used when AnyEvent::Handle has to create its own TLS connection object.
1369    
1370 root 1.38 The TLS connection object will end up in C<< $handle->{tls} >> after this
1371     call and can be used or changed to your liking. Note that the handshake
1372     might have already started when this function returns.
1373    
1374 root 1.92 If it an error to start a TLS handshake more than once per
1375     AnyEvent::Handle object (this is due to bugs in OpenSSL).
1376    
1377 root 1.25 =cut
1378    
1379 root 1.19 sub starttls {
1380     my ($self, $ssl, $ctx) = @_;
1381    
1382 root 1.94 require Net::SSLeay;
1383    
1384 root 1.92 Carp::croak "it is an error to call starttls more than once on an Anyevent::Handle object"
1385     if $self->{tls};
1386    
1387 root 1.19 if ($ssl eq "accept") {
1388     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1389     Net::SSLeay::set_accept_state ($ssl);
1390     } elsif ($ssl eq "connect") {
1391     $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1392     Net::SSLeay::set_connect_state ($ssl);
1393     }
1394    
1395     $self->{tls} = $ssl;
1396    
1397 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
1398     # but the openssl maintainers basically said: "trust us, it just works".
1399     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1400     # and mismaintained ssleay-module doesn't even offer them).
1401 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1402 root 1.87 #
1403     # in short: this is a mess.
1404     #
1405 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
1406 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1407 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1408     # have identity issues in that area.
1409 root 1.21 Net::SSLeay::CTX_set_mode ($self->{tls},
1410 root 1.34 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1411     | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1412 root 1.21
1413 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1414     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1415 root 1.19
1416 root 1.38 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1417 root 1.19
1418 root 1.93 &_dotls; # need to trigger the initial handshake
1419     $self->start_read; # make sure we actually do read
1420 root 1.19 }
1421    
1422 root 1.25 =item $handle->stoptls
1423    
1424 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
1425     sending a close notify to the other side, but since OpenSSL doesn't
1426     support non-blocking shut downs, it is not possible to re-use the stream
1427     afterwards.
1428 root 1.25
1429     =cut
1430    
1431     sub stoptls {
1432     my ($self) = @_;
1433    
1434 root 1.92 if ($self->{tls}) {
1435 root 1.94 Net::SSLeay::shutdown ($self->{tls});
1436 root 1.92
1437     &_dotls;
1438    
1439     # we don't give a shit. no, we do, but we can't. no...
1440     # we, we... have to use openssl :/
1441     &_freetls;
1442     }
1443     }
1444    
1445     sub _freetls {
1446     my ($self) = @_;
1447    
1448     return unless $self->{tls};
1449 root 1.38
1450 root 1.92 Net::SSLeay::free (delete $self->{tls});
1451    
1452 root 1.93 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1453 root 1.25 }
1454    
1455 root 1.19 sub DESTROY {
1456     my $self = shift;
1457    
1458 root 1.92 &_freetls;
1459 root 1.62
1460     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1461    
1462     if ($linger && length $self->{wbuf}) {
1463     my $fh = delete $self->{fh};
1464     my $wbuf = delete $self->{wbuf};
1465    
1466     my @linger;
1467    
1468     push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1469     my $len = syswrite $fh, $wbuf, length $wbuf;
1470    
1471     if ($len > 0) {
1472     substr $wbuf, 0, $len, "";
1473     } else {
1474     @linger = (); # end
1475     }
1476     });
1477     push @linger, AnyEvent->timer (after => $linger, cb => sub {
1478     @linger = ();
1479     });
1480     }
1481 root 1.19 }
1482    
1483     =item AnyEvent::Handle::TLS_CTX
1484    
1485     This function creates and returns the Net::SSLeay::CTX object used by
1486     default for TLS mode.
1487    
1488     The context is created like this:
1489    
1490     Net::SSLeay::load_error_strings;
1491     Net::SSLeay::SSLeay_add_ssl_algorithms;
1492     Net::SSLeay::randomize;
1493    
1494     my $CTX = Net::SSLeay::CTX_new;
1495    
1496     Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1497    
1498     =cut
1499    
1500     our $TLS_CTX;
1501    
1502     sub TLS_CTX() {
1503     $TLS_CTX || do {
1504     require Net::SSLeay;
1505    
1506     Net::SSLeay::load_error_strings ();
1507     Net::SSLeay::SSLeay_add_ssl_algorithms ();
1508     Net::SSLeay::randomize ();
1509    
1510     $TLS_CTX = Net::SSLeay::CTX_new ();
1511    
1512     Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1513    
1514     $TLS_CTX
1515     }
1516     }
1517    
1518 elmex 1.1 =back
1519    
1520 root 1.95
1521     =head1 NONFREQUENTLY ASKED QUESTIONS
1522    
1523     =over 4
1524    
1525     =item How do I read data until the other side closes the connection?
1526    
1527 root 1.96 If you just want to read your data into a perl scalar, the easiest way
1528     to achieve this is by setting an C<on_read> callback that does nothing,
1529     clearing the C<on_eof> callback and in the C<on_error> callback, the data
1530     will be in C<$_[0]{rbuf}>:
1531 root 1.95
1532     $handle->on_read (sub { });
1533     $handle->on_eof (undef);
1534     $handle->on_error (sub {
1535     my $data = delete $_[0]{rbuf};
1536     undef $handle;
1537     });
1538    
1539     The reason to use C<on_error> is that TCP connections, due to latencies
1540     and packets loss, might get closed quite violently with an error, when in
1541     fact, all data has been received.
1542    
1543     It is usually better to use acknowledgements when transfering data,
1544     to make sure the other side hasn't just died and you got the data
1545     intact. This is also one reason why so many internet protocols have an
1546     explicit QUIT command.
1547    
1548    
1549 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
1550     all data has been written?
1551 root 1.95
1552     After writing your last bits of data, set the C<on_drain> callback
1553     and destroy the handle in there - with the default setting of
1554     C<low_water_mark> this will be called precisely when all data has been
1555     written to the socket:
1556    
1557     $handle->push_write (...);
1558     $handle->on_drain (sub {
1559     warn "all data submitted to the kernel\n";
1560     undef $handle;
1561     });
1562    
1563     =back
1564    
1565    
1566 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
1567    
1568     In many cases, you might want to subclass AnyEvent::Handle.
1569    
1570     To make this easier, a given version of AnyEvent::Handle uses these
1571     conventions:
1572    
1573     =over 4
1574    
1575     =item * all constructor arguments become object members.
1576    
1577     At least initially, when you pass a C<tls>-argument to the constructor it
1578 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
1579 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
1580    
1581     =item * other object member names are prefixed with an C<_>.
1582    
1583     All object members not explicitly documented (internal use) are prefixed
1584     with an underscore character, so the remaining non-C<_>-namespace is free
1585     for use for subclasses.
1586    
1587     =item * all members not documented here and not prefixed with an underscore
1588     are free to use in subclasses.
1589    
1590     Of course, new versions of AnyEvent::Handle may introduce more "public"
1591     member variables, but thats just life, at least it is documented.
1592    
1593     =back
1594    
1595 elmex 1.1 =head1 AUTHOR
1596    
1597 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1598 elmex 1.1
1599     =cut
1600    
1601     1; # End of AnyEvent::Handle