ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.112 by root, Wed Jan 21 06:01:35 2009 UTC vs.
Revision 1.165 by root, Mon Jul 27 22:49:23 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.331; 16our $VERSION = 4.87;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
28 my ($hdl, $fatal, $msg) = @_;
29 warn "got error $msg\n";
30 $hdl->destroy;
32 $cv->send; 31 $cv->send;
33 },
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
98=item on_prepare => $cb->($handle)
99
100This (rarely used) callback is called before a new connection is
101attempted, but after the file handle has been created. It could be used to
102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
105
106The return value of this callback should be the connect timeout value in
107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108timeout is to be used).
109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
136=item on_error => $cb->($handle, $fatal, $message)
137
138This is the error callback, which is called when, well, some error
139occured, such as not being able to resolve the hostname, failure to
140connect or a read error.
141
142Some errors are fatal (which is indicated by C<$fatal> being true). On
143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
155Non-fatal errors can be retried by simply returning, but it is recommended
156to simply ignore this parameter and instead abondon the handle object
157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159
160On callback entrance, the value of C<$!> contains the operating system
161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
163
164While not mandatory, it is I<highly> recommended to set this callback, as
165you will not be notified of errors otherwise. The default simply calls
166C<croak>.
167
168=item on_read => $cb->($handle)
169
170This sets the default read callback, which is called when data arrives
171and no read request is in the queue (unlike read queue callbacks, this
172callback will only be called when at least one octet of data is in the
173read buffer).
174
175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
179
180When an EOF condition is detected then AnyEvent::Handle will first try to
181feed all the remaining data to the queued callbacks and C<on_read> before
182calling the C<on_eof> callback. If no progress can be made, then a fatal
183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
82=item on_eof => $cb->($handle) 190=item on_eof => $cb->($handle)
83 191
84Set the callback to be called when an end-of-file condition is detected, 192Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 193i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
87 197
88For sockets, this just means that the other side has stopped sending data, 198For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 199you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 200callback and continue writing data, as only the read part has been shut
91down. 201down.
92 202
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 203If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 204set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 305help.
239 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 318
242When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
245 325
246TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 329to add the dependency yourself.
253mode. 333mode.
254 334
255You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
259 344
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 346passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 348segmentation fault.
264 349
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 351
267=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
268 353
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
272 393
273=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
274 395
275This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
276 397
285 406
286=cut 407=cut
287 408
288sub new { 409sub new {
289 my $class = shift; 410 my $class = shift;
290
291 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
292 412
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
294 476
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
296 483
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 485 if $self->{tls};
299 486
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 488
306 $self->start_read 489 $self->start_read
307 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
308 491
309 $self 492 $self->_drain_wbuf;
310} 493}
311 494
312sub _shutdown { 495#sub _shutdown {
313 my ($self) = @_; 496# my ($self) = @_;
314 497#
315 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
316 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
317 delete $self->{_ww}; 500#
318 delete $self->{fh};
319
320 &_freetls; 501# &_freetls;
321 502#}
322 delete $self->{on_read};
323 delete $self->{_queue};
324}
325 503
326sub _error { 504sub _error {
327 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 506
332 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
333 509
334 if ($self->{on_error}) { 510 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
512 $self->destroy if $fatal;
336 } elsif ($self->{fh}) { 513 } elsif ($self->{fh}) {
514 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 516 }
339} 517}
340 518
341=item $fh = $handle->fh 519=item $fh = $handle->fh
342 520
399sub no_delay { 577sub no_delay {
400 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
401 579
402 eval { 580 eval {
403 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
405 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
406} 605}
407 606
408############################################################################# 607#############################################################################
409 608
410=item $handle->timeout ($seconds) 609=item $handle->timeout ($seconds)
423# reset the timeout watcher, as neccessary 622# reset the timeout watcher, as neccessary
424# also check for time-outs 623# also check for time-outs
425sub _timeout { 624sub _timeout {
426 my ($self) = @_; 625 my ($self) = @_;
427 626
428 if ($self->{timeout}) { 627 if ($self->{timeout} && $self->{fh}) {
429 my $NOW = AnyEvent->now; 628 my $NOW = AnyEvent->now;
430 629
431 # when would the timeout trigger? 630 # when would the timeout trigger?
432 my $after = $self->{_activity} + $self->{timeout} - $NOW; 631 my $after = $self->{_activity} + $self->{timeout} - $NOW;
433 632
436 $self->{_activity} = $NOW; 635 $self->{_activity} = $NOW;
437 636
438 if ($self->{on_timeout}) { 637 if ($self->{on_timeout}) {
439 $self->{on_timeout}($self); 638 $self->{on_timeout}($self);
440 } else { 639 } else {
441 $self->_error (&Errno::ETIMEDOUT); 640 $self->_error (Errno::ETIMEDOUT);
442 } 641 }
443 642
444 # callback could have changed timeout value, optimise 643 # callback could have changed timeout value, optimise
445 return unless $self->{timeout}; 644 return unless $self->{timeout};
446 645
509 Scalar::Util::weaken $self; 708 Scalar::Util::weaken $self;
510 709
511 my $cb = sub { 710 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 711 my $len = syswrite $self->{fh}, $self->{wbuf};
513 712
514 if ($len >= 0) { 713 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 714 substr $self->{wbuf}, 0, $len, "";
516 715
517 $self->{_activity} = AnyEvent->now; 716 $self->{_activity} = AnyEvent->now;
518 717
519 $self->{on_drain}($self) 718 $self->{on_drain}($self)
551 ->($self, @_); 750 ->($self, @_);
552 } 751 }
553 752
554 if ($self->{tls}) { 753 if ($self->{tls}) {
555 $self->{_tls_wbuf} .= $_[0]; 754 $self->{_tls_wbuf} .= $_[0];
556 755 &_dotls ($self) if $self->{fh};
557 &_dotls ($self);
558 } else { 756 } else {
559 $self->{wbuf} .= $_[0]; 757 $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 758 $self->_drain_wbuf if $self->{fh};
561 } 759 }
562} 760}
563 761
564=item $handle->push_write (type => @args) 762=item $handle->push_write (type => @args)
565 763
654 852
655 pack "w/a*", Storable::nfreeze ($ref) 853 pack "w/a*", Storable::nfreeze ($ref)
656}; 854};
657 855
658=back 856=back
857
858=item $handle->push_shutdown
859
860Sometimes you know you want to close the socket after writing your data
861before it was actually written. One way to do that is to replace your
862C<on_drain> handler by a callback that shuts down the socket (and set
863C<low_water_mark> to C<0>). This method is a shorthand for just that, and
864replaces the C<on_drain> callback with:
865
866 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
867
868This simply shuts down the write side and signals an EOF condition to the
869the peer.
870
871You can rely on the normal read queue and C<on_eof> handling
872afterwards. This is the cleanest way to close a connection.
873
874=cut
875
876sub push_shutdown {
877 my ($self) = @_;
878
879 delete $self->{low_water_mark};
880 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
881}
659 882
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 883=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 884
662This function (not method) lets you add your own types to C<push_write>. 885This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 886Whenever the given C<type> is used, C<push_write> will invoke the code
757=cut 980=cut
758 981
759sub _drain_rbuf { 982sub _drain_rbuf {
760 my ($self) = @_; 983 my ($self) = @_;
761 984
985 # avoid recursion
986 return if exists $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 987 local $self->{_skip_drain_rbuf} = 1;
763 988
764 if ( 989 if (
765 defined $self->{rbuf_max} 990 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf} 991 && $self->{rbuf_max} < length $self->{rbuf}
767 ) { 992 ) {
768 $self->_error (&Errno::ENOSPC, 1), return; 993 $self->_error (Errno::ENOSPC, 1), return;
769 } 994 }
770 995
771 while () { 996 while () {
997 # we need to use a separate tls read buffer, as we must not receive data while
998 # we are draining the buffer, and this can only happen with TLS.
999 $self->{rbuf} .= delete $self->{_tls_rbuf}
1000 if exists $self->{_tls_rbuf};
1001
772 my $len = length $self->{rbuf}; 1002 my $len = length $self->{rbuf};
773 1003
774 if (my $cb = shift @{ $self->{_queue} }) { 1004 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1005 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1006 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1007 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1008 $self->_error (Errno::EPIPE, 1), return
779 } 1009 if $self->{_eof};
780 1010
781 unshift @{ $self->{_queue} }, $cb; 1011 unshift @{ $self->{_queue} }, $cb;
782 last; 1012 last;
783 } 1013 }
784 } elsif ($self->{on_read}) { 1014 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1021 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1022 && $self->{on_read} # but we still have on_read
793 ) { 1023 ) {
794 # no further data will arrive 1024 # no further data will arrive
795 # so no progress can be made 1025 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1026 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1027 if $self->{_eof};
798 1028
799 last; # more data might arrive 1029 last; # more data might arrive
800 } 1030 }
801 } else { 1031 } else {
804 last; 1034 last;
805 } 1035 }
806 } 1036 }
807 1037
808 if ($self->{_eof}) { 1038 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1039 $self->{on_eof}
810 $self->{on_eof}($self) 1040 ? $self->{on_eof}($self)
811 } else { 1041 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1042
813 } 1043 return;
814 } 1044 }
815 1045
816 # may need to restart read watcher 1046 # may need to restart read watcher
817 unless ($self->{_rw}) { 1047 unless ($self->{_rw}) {
818 $self->start_read 1048 $self->start_read
830 1060
831sub on_read { 1061sub on_read {
832 my ($self, $cb) = @_; 1062 my ($self, $cb) = @_;
833 1063
834 $self->{on_read} = $cb; 1064 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1065 $self->_drain_rbuf if $cb;
836} 1066}
837 1067
838=item $handle->rbuf 1068=item $handle->rbuf
839 1069
840Returns the read buffer (as a modifiable lvalue). 1070Returns the read buffer (as a modifiable lvalue).
841 1071
842You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1072You can access the read buffer directly as the C<< ->{rbuf} >>
843you want. 1073member, if you want. However, the only operation allowed on the
1074read buffer (apart from looking at it) is removing data from its
1075beginning. Otherwise modifying or appending to it is not allowed and will
1076lead to hard-to-track-down bugs.
844 1077
845NOTE: The read buffer should only be used or modified if the C<on_read>, 1078NOTE: The read buffer should only be used or modified if the C<on_read>,
846C<push_read> or C<unshift_read> methods are used. The other read methods 1079C<push_read> or C<unshift_read> methods are used. The other read methods
847automatically manage the read buffer. 1080automatically manage the read buffer.
848 1081
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1122 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
890 ->($self, $cb, @_); 1123 ->($self, $cb, @_);
891 } 1124 }
892 1125
893 push @{ $self->{_queue} }, $cb; 1126 push @{ $self->{_queue} }, $cb;
894 $self->_drain_rbuf unless $self->{_in_drain}; 1127 $self->_drain_rbuf;
895} 1128}
896 1129
897sub unshift_read { 1130sub unshift_read {
898 my $self = shift; 1131 my $self = shift;
899 my $cb = pop; 1132 my $cb = pop;
905 ->($self, $cb, @_); 1138 ->($self, $cb, @_);
906 } 1139 }
907 1140
908 1141
909 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
910 $self->_drain_rbuf unless $self->{_in_drain}; 1143 $self->_drain_rbuf;
911} 1144}
912 1145
913=item $handle->push_read (type => @args, $cb) 1146=item $handle->push_read (type => @args, $cb)
914 1147
915=item $handle->unshift_read (type => @args, $cb) 1148=item $handle->unshift_read (type => @args, $cb)
1048 return 1; 1281 return 1;
1049 } 1282 }
1050 1283
1051 # reject 1284 # reject
1052 if ($reject && $$rbuf =~ $reject) { 1285 if ($reject && $$rbuf =~ $reject) {
1053 $self->_error (&Errno::EBADMSG); 1286 $self->_error (Errno::EBADMSG);
1054 } 1287 }
1055 1288
1056 # skip 1289 # skip
1057 if ($skip && $$rbuf =~ $skip) { 1290 if ($skip && $$rbuf =~ $skip) {
1058 $data .= substr $$rbuf, 0, $+[0], ""; 1291 $data .= substr $$rbuf, 0, $+[0], "";
1074 my ($self, $cb) = @_; 1307 my ($self, $cb) = @_;
1075 1308
1076 sub { 1309 sub {
1077 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1310 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1078 if ($_[0]{rbuf} =~ /[^0-9]/) { 1311 if ($_[0]{rbuf} =~ /[^0-9]/) {
1079 $self->_error (&Errno::EBADMSG); 1312 $self->_error (Errno::EBADMSG);
1080 } 1313 }
1081 return; 1314 return;
1082 } 1315 }
1083 1316
1084 my $len = $1; 1317 my $len = $1;
1087 my $string = $_[1]; 1320 my $string = $_[1];
1088 $_[0]->unshift_read (chunk => 1, sub { 1321 $_[0]->unshift_read (chunk => 1, sub {
1089 if ($_[1] eq ",") { 1322 if ($_[1] eq ",") {
1090 $cb->($_[0], $string); 1323 $cb->($_[0], $string);
1091 } else { 1324 } else {
1092 $self->_error (&Errno::EBADMSG); 1325 $self->_error (Errno::EBADMSG);
1093 } 1326 }
1094 }); 1327 });
1095 }); 1328 });
1096 1329
1097 1 1330 1
1164=cut 1397=cut
1165 1398
1166register_read_type json => sub { 1399register_read_type json => sub {
1167 my ($self, $cb) = @_; 1400 my ($self, $cb) = @_;
1168 1401
1169 require JSON; 1402 my $json = $self->{json} ||=
1403 eval { require JSON::XS; JSON::XS->new->utf8 }
1404 || do { require JSON; JSON->new->utf8 };
1170 1405
1171 my $data; 1406 my $data;
1172 my $rbuf = \$self->{rbuf}; 1407 my $rbuf = \$self->{rbuf};
1173 1408
1174 my $json = $self->{json} ||= JSON->new->utf8;
1175
1176 sub { 1409 sub {
1177 eval {
1178 my $ref = $json->incr_parse ($self->{rbuf}); 1410 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1179 1411
1180 if ($ref) { 1412 if ($ref) {
1181 $self->{rbuf} = $json->incr_text; 1413 $self->{rbuf} = $json->incr_text;
1182 $json->incr_text = ""; 1414 $json->incr_text = "";
1183 $cb->($self, $ref); 1415 $cb->($self, $ref);
1184
1185 1
1186 } else {
1187 $self->{rbuf} = "";
1188 ()
1189 }
1190 1416
1191 1 1417 1
1192 } or do { 1418 } elsif ($@) {
1193 # error case 1419 # error case
1194 $json->incr_skip; 1420 $json->incr_skip;
1195 1421
1196 $self->{rbuf} = $json->incr_text; 1422 $self->{rbuf} = $json->incr_text;
1197 $json->incr_text = ""; 1423 $json->incr_text = "";
1198 1424
1199 $self->_error (&Errno::EBADMSG); 1425 $self->_error (Errno::EBADMSG);
1426
1427 ()
1428 } else {
1429 $self->{rbuf} = "";
1430
1431 ()
1200 }; 1432 }
1201 } 1433 }
1202}; 1434};
1203 1435
1204=item storable => $cb->($handle, $ref) 1436=item storable => $cb->($handle, $ref)
1205 1437
1235 # read remaining chunk 1467 # read remaining chunk
1236 $_[0]->unshift_read (chunk => $len, sub { 1468 $_[0]->unshift_read (chunk => $len, sub {
1237 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1469 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1238 $cb->($_[0], $ref); 1470 $cb->($_[0], $ref);
1239 } else { 1471 } else {
1240 $self->_error (&Errno::EBADMSG); 1472 $self->_error (Errno::EBADMSG);
1241 } 1473 }
1242 }); 1474 });
1243 } 1475 }
1244 1476
1245 1 1477 1
1309 if ($self->{tls}) { 1541 if ($self->{tls}) {
1310 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1542 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1311 1543
1312 &_dotls ($self); 1544 &_dotls ($self);
1313 } else { 1545 } else {
1314 $self->_drain_rbuf unless $self->{_in_drain}; 1546 $self->_drain_rbuf;
1315 } 1547 }
1316 1548
1317 } elsif (defined $len) { 1549 } elsif (defined $len) {
1318 delete $self->{_rw}; 1550 delete $self->{_rw};
1319 $self->{_eof} = 1; 1551 $self->{_eof} = 1;
1320 $self->_drain_rbuf unless $self->{_in_drain}; 1552 $self->_drain_rbuf;
1321 1553
1322 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1554 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1323 return $self->_error ($!, 1); 1555 return $self->_error ($!, 1);
1324 } 1556 }
1325 }); 1557 });
1326 } 1558 }
1327} 1559}
1328 1560
1561our $ERROR_SYSCALL;
1562our $ERROR_WANT_READ;
1563
1564sub _tls_error {
1565 my ($self, $err) = @_;
1566
1567 return $self->_error ($!, 1)
1568 if $err == Net::SSLeay::ERROR_SYSCALL ();
1569
1570 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1571
1572 # reduce error string to look less scary
1573 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1574
1575 if ($self->{_on_starttls}) {
1576 (delete $self->{_on_starttls})->($self, undef, $err);
1577 &_freetls;
1578 } else {
1579 &_freetls;
1580 $self->_error (Errno::EPROTO, 1, $err);
1581 }
1582}
1583
1329# poll the write BIO and send the data if applicable 1584# poll the write BIO and send the data if applicable
1585# also decode read data if possible
1586# this is basiclaly our TLS state machine
1587# more efficient implementations are possible with openssl,
1588# but not with the buggy and incomplete Net::SSLeay.
1330sub _dotls { 1589sub _dotls {
1331 my ($self) = @_; 1590 my ($self) = @_;
1332 1591
1333 my $tmp; 1592 my $tmp;
1334 1593
1335 if (length $self->{_tls_wbuf}) { 1594 if (length $self->{_tls_wbuf}) {
1336 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1595 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1337 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1596 substr $self->{_tls_wbuf}, 0, $tmp, "";
1338 } 1597 }
1598
1599 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1600 return $self->_tls_error ($tmp)
1601 if $tmp != $ERROR_WANT_READ
1602 && ($tmp != $ERROR_SYSCALL || $!);
1339 } 1603 }
1340 1604
1341 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1605 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1342 unless (length $tmp) { 1606 unless (length $tmp) {
1343 # let's treat SSL-eof as we treat normal EOF 1607 $self->{_on_starttls}
1344 delete $self->{_rw}; 1608 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1345 $self->{_eof} = 1;
1346 &_freetls; 1609 &_freetls;
1610
1611 if ($self->{on_stoptls}) {
1612 $self->{on_stoptls}($self);
1613 return;
1614 } else {
1615 # let's treat SSL-eof as we treat normal EOF
1616 delete $self->{_rw};
1617 $self->{_eof} = 1;
1618 }
1347 } 1619 }
1348 1620
1349 $self->{rbuf} .= $tmp; 1621 $self->{_tls_rbuf} .= $tmp;
1350 $self->_drain_rbuf unless $self->{_in_drain}; 1622 $self->_drain_rbuf;
1351 $self->{tls} or return; # tls session might have gone away in callback 1623 $self->{tls} or return; # tls session might have gone away in callback
1352 } 1624 }
1353 1625
1354 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1626 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1355
1356 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1357 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1358 return $self->_error ($!, 1); 1627 return $self->_tls_error ($tmp)
1359 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1628 if $tmp != $ERROR_WANT_READ
1360 return $self->_error (&Errno::EIO, 1); 1629 && ($tmp != $ERROR_SYSCALL || $!);
1361 }
1362
1363 # all other errors are fine for our purposes
1364 }
1365 1630
1366 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1631 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1367 $self->{wbuf} .= $tmp; 1632 $self->{wbuf} .= $tmp;
1368 $self->_drain_wbuf; 1633 $self->_drain_wbuf;
1369 } 1634 }
1635
1636 $self->{_on_starttls}
1637 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1638 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1370} 1639}
1371 1640
1372=item $handle->starttls ($tls[, $tls_ctx]) 1641=item $handle->starttls ($tls[, $tls_ctx])
1373 1642
1374Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1643Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1375object is created, you can also do that at a later time by calling 1644object is created, you can also do that at a later time by calling
1376C<starttls>. 1645C<starttls>.
1377 1646
1647Starting TLS is currently an asynchronous operation - when you push some
1648write data and then call C<< ->starttls >> then TLS negotiation will start
1649immediately, after which the queued write data is then sent.
1650
1378The first argument is the same as the C<tls> constructor argument (either 1651The first argument is the same as the C<tls> constructor argument (either
1379C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1652C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1380 1653
1381The second argument is the optional C<Net::SSLeay::CTX> object that is 1654The second argument is the optional C<AnyEvent::TLS> object that is used
1382used when AnyEvent::Handle has to create its own TLS connection object. 1655when AnyEvent::Handle has to create its own TLS connection object, or
1656a hash reference with C<< key => value >> pairs that will be used to
1657construct a new context.
1383 1658
1384The TLS connection object will end up in C<< $handle->{tls} >> after this 1659The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1385call and can be used or changed to your liking. Note that the handshake 1660context in C<< $handle->{tls_ctx} >> after this call and can be used or
1386might have already started when this function returns. 1661changed to your liking. Note that the handshake might have already started
1662when this function returns.
1387 1663
1388If it an error to start a TLS handshake more than once per 1664Due to bugs in OpenSSL, it might or might not be possible to do multiple
1389AnyEvent::Handle object (this is due to bugs in OpenSSL). 1665handshakes on the same stream. Best do not attempt to use the stream after
1666stopping TLS.
1390 1667
1391=cut 1668=cut
1669
1670our %TLS_CACHE; #TODO not yet documented, should we?
1392 1671
1393sub starttls { 1672sub starttls {
1394 my ($self, $ssl, $ctx) = @_; 1673 my ($self, $tls, $ctx) = @_;
1674
1675 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1676 if $self->{tls};
1677
1678 $self->{tls} = $tls;
1679 $self->{tls_ctx} = $ctx if @_ > 2;
1680
1681 return unless $self->{fh};
1395 1682
1396 require Net::SSLeay; 1683 require Net::SSLeay;
1397 1684
1398 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1685 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1686 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1687
1399 if $self->{tls}; 1688 $tls = $self->{tls};
1689 $ctx = $self->{tls_ctx};
1690
1691 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1692
1693 if ("HASH" eq ref $ctx) {
1694 require AnyEvent::TLS;
1695
1696 if ($ctx->{cache}) {
1697 my $key = $ctx+0;
1698 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1699 } else {
1700 $ctx = new AnyEvent::TLS %$ctx;
1701 }
1702 }
1400 1703
1401 if ($ssl eq "accept") { 1704 $self->{tls_ctx} = $ctx || TLS_CTX ();
1402 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1705 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1403 Net::SSLeay::set_accept_state ($ssl);
1404 } elsif ($ssl eq "connect") {
1405 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1406 Net::SSLeay::set_connect_state ($ssl);
1407 }
1408
1409 $self->{tls} = $ssl;
1410 1706
1411 # basically, this is deep magic (because SSL_read should have the same issues) 1707 # basically, this is deep magic (because SSL_read should have the same issues)
1412 # but the openssl maintainers basically said: "trust us, it just works". 1708 # but the openssl maintainers basically said: "trust us, it just works".
1413 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1709 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1414 # and mismaintained ssleay-module doesn't even offer them). 1710 # and mismaintained ssleay-module doesn't even offer them).
1418 # 1714 #
1419 # note that we do not try to keep the length constant between writes as we are required to do. 1715 # note that we do not try to keep the length constant between writes as we are required to do.
1420 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1716 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1421 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1717 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1422 # have identity issues in that area. 1718 # have identity issues in that area.
1423 Net::SSLeay::CTX_set_mode ($self->{tls}, 1719# Net::SSLeay::CTX_set_mode ($ssl,
1424 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1720# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1425 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1721# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1722 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1426 1723
1427 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1724 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1428 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1725 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1429 1726
1430 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1727 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1728
1729 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1730 if $self->{on_starttls};
1431 1731
1432 &_dotls; # need to trigger the initial handshake 1732 &_dotls; # need to trigger the initial handshake
1433 $self->start_read; # make sure we actually do read 1733 $self->start_read; # make sure we actually do read
1434} 1734}
1435 1735
1436=item $handle->stoptls 1736=item $handle->stoptls
1437 1737
1438Shuts down the SSL connection - this makes a proper EOF handshake by 1738Shuts down the SSL connection - this makes a proper EOF handshake by
1439sending a close notify to the other side, but since OpenSSL doesn't 1739sending a close notify to the other side, but since OpenSSL doesn't
1440support non-blocking shut downs, it is not possible to re-use the stream 1740support non-blocking shut downs, it is not guarenteed that you can re-use
1441afterwards. 1741the stream afterwards.
1442 1742
1443=cut 1743=cut
1444 1744
1445sub stoptls { 1745sub stoptls {
1446 my ($self) = @_; 1746 my ($self) = @_;
1448 if ($self->{tls}) { 1748 if ($self->{tls}) {
1449 Net::SSLeay::shutdown ($self->{tls}); 1749 Net::SSLeay::shutdown ($self->{tls});
1450 1750
1451 &_dotls; 1751 &_dotls;
1452 1752
1453 # we don't give a shit. no, we do, but we can't. no... 1753# # we don't give a shit. no, we do, but we can't. no...#d#
1454 # we, we... have to use openssl :/ 1754# # we, we... have to use openssl :/#d#
1455 &_freetls; 1755# &_freetls;#d#
1456 } 1756 }
1457} 1757}
1458 1758
1459sub _freetls { 1759sub _freetls {
1460 my ($self) = @_; 1760 my ($self) = @_;
1461 1761
1462 return unless $self->{tls}; 1762 return unless $self->{tls};
1463 1763
1464 Net::SSLeay::free (delete $self->{tls}); 1764 $self->{tls_ctx}->_put_session (delete $self->{tls})
1765 if ref $self->{tls};
1465 1766
1466 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1767 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1467} 1768}
1468 1769
1469sub DESTROY { 1770sub DESTROY {
1470 my $self = shift; 1771 my ($self) = @_;
1471 1772
1472 &_freetls; 1773 &_freetls;
1473 1774
1474 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1775 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1475 1776
1476 if ($linger && length $self->{wbuf}) { 1777 if ($linger && length $self->{wbuf} && $self->{fh}) {
1477 my $fh = delete $self->{fh}; 1778 my $fh = delete $self->{fh};
1478 my $wbuf = delete $self->{wbuf}; 1779 my $wbuf = delete $self->{wbuf};
1479 1780
1480 my @linger; 1781 my @linger;
1481 1782
1495} 1796}
1496 1797
1497=item $handle->destroy 1798=item $handle->destroy
1498 1799
1499Shuts down the handle object as much as possible - this call ensures that 1800Shuts down the handle object as much as possible - this call ensures that
1500no further callbacks will be invoked and resources will be freed as much 1801no further callbacks will be invoked and as many resources as possible
1501as possible. You must not call any methods on the object afterwards. 1802will be freed. Any method you will call on the handle object after
1803destroying it in this way will be silently ignored (and it will return the
1804empty list).
1502 1805
1503Normally, you can just "forget" any references to an AnyEvent::Handle 1806Normally, you can just "forget" any references to an AnyEvent::Handle
1504object and it will simply shut down. This works in fatal error and EOF 1807object and it will simply shut down. This works in fatal error and EOF
1505callbacks, as well as code outside. It does I<NOT> work in a read or write 1808callbacks, as well as code outside. It does I<NOT> work in a read or write
1506callback, so when you want to destroy the AnyEvent::Handle object from 1809callback, so when you want to destroy the AnyEvent::Handle object from
1507within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1810within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1508that case. 1811that case.
1509 1812
1813Destroying the handle object in this way has the advantage that callbacks
1814will be removed as well, so if those are the only reference holders (as
1815is common), then one doesn't need to do anything special to break any
1816reference cycles.
1817
1510The handle might still linger in the background and write out remaining 1818The handle might still linger in the background and write out remaining
1511data, as specified by the C<linger> option, however. 1819data, as specified by the C<linger> option, however.
1512 1820
1513=cut 1821=cut
1514 1822
1515sub destroy { 1823sub destroy {
1516 my ($self) = @_; 1824 my ($self) = @_;
1517 1825
1518 $self->DESTROY; 1826 $self->DESTROY;
1519 %$self = (); 1827 %$self = ();
1828 bless $self, "AnyEvent::Handle::destroyed";
1829}
1830
1831sub AnyEvent::Handle::destroyed::AUTOLOAD {
1832 #nop
1520} 1833}
1521 1834
1522=item AnyEvent::Handle::TLS_CTX 1835=item AnyEvent::Handle::TLS_CTX
1523 1836
1524This function creates and returns the Net::SSLeay::CTX object used by 1837This function creates and returns the AnyEvent::TLS object used by default
1525default for TLS mode. 1838for TLS mode.
1526 1839
1527The context is created like this: 1840The context is created by calling L<AnyEvent::TLS> without any arguments.
1528
1529 Net::SSLeay::load_error_strings;
1530 Net::SSLeay::SSLeay_add_ssl_algorithms;
1531 Net::SSLeay::randomize;
1532
1533 my $CTX = Net::SSLeay::CTX_new;
1534
1535 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1536 1841
1537=cut 1842=cut
1538 1843
1539our $TLS_CTX; 1844our $TLS_CTX;
1540 1845
1541sub TLS_CTX() { 1846sub TLS_CTX() {
1542 $TLS_CTX || do { 1847 $TLS_CTX ||= do {
1543 require Net::SSLeay; 1848 require AnyEvent::TLS;
1544 1849
1545 Net::SSLeay::load_error_strings (); 1850 new AnyEvent::TLS
1546 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1547 Net::SSLeay::randomize ();
1548
1549 $TLS_CTX = Net::SSLeay::CTX_new ();
1550
1551 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1552
1553 $TLS_CTX
1554 } 1851 }
1555} 1852}
1556 1853
1557=back 1854=back
1558 1855
1597 1894
1598 $handle->on_read (sub { }); 1895 $handle->on_read (sub { });
1599 $handle->on_eof (undef); 1896 $handle->on_eof (undef);
1600 $handle->on_error (sub { 1897 $handle->on_error (sub {
1601 my $data = delete $_[0]{rbuf}; 1898 my $data = delete $_[0]{rbuf};
1602 undef $handle;
1603 }); 1899 });
1604 1900
1605The reason to use C<on_error> is that TCP connections, due to latencies 1901The reason to use C<on_error> is that TCP connections, due to latencies
1606and packets loss, might get closed quite violently with an error, when in 1902and packets loss, might get closed quite violently with an error, when in
1607fact, all data has been received. 1903fact, all data has been received.
1623 $handle->on_drain (sub { 1919 $handle->on_drain (sub {
1624 warn "all data submitted to the kernel\n"; 1920 warn "all data submitted to the kernel\n";
1625 undef $handle; 1921 undef $handle;
1626 }); 1922 });
1627 1923
1924If you just want to queue some data and then signal EOF to the other side,
1925consider using C<< ->push_shutdown >> instead.
1926
1927=item I want to contact a TLS/SSL server, I don't care about security.
1928
1929If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1930simply connect to it and then create the AnyEvent::Handle with the C<tls>
1931parameter:
1932
1933 tcp_connect $host, $port, sub {
1934 my ($fh) = @_;
1935
1936 my $handle = new AnyEvent::Handle
1937 fh => $fh,
1938 tls => "connect",
1939 on_error => sub { ... };
1940
1941 $handle->push_write (...);
1942 };
1943
1944=item I want to contact a TLS/SSL server, I do care about security.
1945
1946Then you should additionally enable certificate verification, including
1947peername verification, if the protocol you use supports it (see
1948L<AnyEvent::TLS>, C<verify_peername>).
1949
1950E.g. for HTTPS:
1951
1952 tcp_connect $host, $port, sub {
1953 my ($fh) = @_;
1954
1955 my $handle = new AnyEvent::Handle
1956 fh => $fh,
1957 peername => $host,
1958 tls => "connect",
1959 tls_ctx => { verify => 1, verify_peername => "https" },
1960 ...
1961
1962Note that you must specify the hostname you connected to (or whatever
1963"peername" the protocol needs) as the C<peername> argument, otherwise no
1964peername verification will be done.
1965
1966The above will use the system-dependent default set of trusted CA
1967certificates. If you want to check against a specific CA, add the
1968C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1969
1970 tls_ctx => {
1971 verify => 1,
1972 verify_peername => "https",
1973 ca_file => "my-ca-cert.pem",
1974 },
1975
1976=item I want to create a TLS/SSL server, how do I do that?
1977
1978Well, you first need to get a server certificate and key. You have
1979three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1980self-signed certificate (cheap. check the search engine of your choice,
1981there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1982nice program for that purpose).
1983
1984Then create a file with your private key (in PEM format, see
1985L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1986file should then look like this:
1987
1988 -----BEGIN RSA PRIVATE KEY-----
1989 ...header data
1990 ... lots of base64'y-stuff
1991 -----END RSA PRIVATE KEY-----
1992
1993 -----BEGIN CERTIFICATE-----
1994 ... lots of base64'y-stuff
1995 -----END CERTIFICATE-----
1996
1997The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1998specify this file as C<cert_file>:
1999
2000 tcp_server undef, $port, sub {
2001 my ($fh) = @_;
2002
2003 my $handle = new AnyEvent::Handle
2004 fh => $fh,
2005 tls => "accept",
2006 tls_ctx => { cert_file => "my-server-keycert.pem" },
2007 ...
2008
2009When you have intermediate CA certificates that your clients might not
2010know about, just append them to the C<cert_file>.
2011
1628=back 2012=back
1629 2013
1630 2014
1631=head1 SUBCLASSING AnyEvent::Handle 2015=head1 SUBCLASSING AnyEvent::Handle
1632 2016

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines