ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.56 by root, Wed Jun 4 09:55:16 2008 UTC vs.
Revision 1.132 by elmex, Thu Jul 2 22:25:13 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.12; 19our $VERSION = 4.45;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
87 99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
96usable. Non-fatal errors can be retried by simply returning, but it is 112Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 113to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 116
100On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 119
103While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
105C<croak>. 122C<croak>.
106 123
107=item on_read => $cb->($handle) 124=item on_read => $cb->($handle)
108 125
109This sets the default read callback, which is called when data arrives 126This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
111 130
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly. Note that you
133must not enlarge or modify the read buffer, you can only remove data at
134the beginning from it.
114 135
115When an EOF condition is detected then AnyEvent::Handle will first try to 136When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 137feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 138calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 139error will be raised (with C<$!> set to C<EPIPE>).
122This sets the callback that is called when the write buffer becomes empty 143This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 144(or when the callback is set and the buffer is empty already).
124 145
125To append to the write buffer, use the C<< ->push_write >> method. 146To append to the write buffer, use the C<< ->push_write >> method.
126 147
148This callback is useful when you don't want to put all of your write data
149into the queue at once, for example, when you want to write the contents
150of some file to the socket you might not want to read the whole file into
151memory and push it into the queue, but instead only read more data from
152the file when the write queue becomes empty.
153
127=item timeout => $fractional_seconds 154=item timeout => $fractional_seconds
128 155
129If non-zero, then this enables an "inactivity" timeout: whenever this many 156If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 157seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 158handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 159missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 160
134Note that timeout processing is also active when you currently do not have 161Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 162any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 163idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 164in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
165restart the timeout.
138 166
139Zero (the default) disables this timeout. 167Zero (the default) disables this timeout.
140 168
141=item on_timeout => $cb->($handle) 169=item on_timeout => $cb->($handle)
142 170
146 174
147=item rbuf_max => <bytes> 175=item rbuf_max => <bytes>
148 176
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 177If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 178when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 179avoid some forms of denial-of-service attacks.
152 180
153For example, a server accepting connections from untrusted sources should 181For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 182be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 183(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 184amount of data without a callback ever being called as long as the line
157isn't finished). 185isn't finished).
158 186
187=item autocork => <boolean>
188
189When disabled (the default), then C<push_write> will try to immediately
190write the data to the handle, if possible. This avoids having to register
191a write watcher and wait for the next event loop iteration, but can
192be inefficient if you write multiple small chunks (on the wire, this
193disadvantage is usually avoided by your kernel's nagle algorithm, see
194C<no_delay>, but this option can save costly syscalls).
195
196When enabled, then writes will always be queued till the next event loop
197iteration. This is efficient when you do many small writes per iteration,
198but less efficient when you do a single write only per iteration (or when
199the write buffer often is full). It also increases write latency.
200
201=item no_delay => <boolean>
202
203When doing small writes on sockets, your operating system kernel might
204wait a bit for more data before actually sending it out. This is called
205the Nagle algorithm, and usually it is beneficial.
206
207In some situations you want as low a delay as possible, which can be
208accomplishd by setting this option to a true value.
209
210The default is your opertaing system's default behaviour (most likely
211enabled), this option explicitly enables or disables it, if possible.
212
159=item read_size => <bytes> 213=item read_size => <bytes>
160 214
161The default read block size (the amount of bytes this module will try to read 215The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 216try to read during each loop iteration, which affects memory
217requirements). Default: C<8192>.
163 218
164=item low_water_mark => <bytes> 219=item low_water_mark => <bytes>
165 220
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 221Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 222buffer: If the write reaches this size or gets even samller it is
168considered empty. 223considered empty.
169 224
225Sometimes it can be beneficial (for performance reasons) to add data to
226the write buffer before it is fully drained, but this is a rare case, as
227the operating system kernel usually buffers data as well, so the default
228is good in almost all cases.
229
230=item linger => <seconds>
231
232If non-zero (default: C<3600>), then the destructor of the
233AnyEvent::Handle object will check whether there is still outstanding
234write data and will install a watcher that will write this data to the
235socket. No errors will be reported (this mostly matches how the operating
236system treats outstanding data at socket close time).
237
238This will not work for partial TLS data that could not be encoded
239yet. This data will be lost. Calling the C<stoptls> method in time might
240help.
241
242=item common_name => $string
243
244The common name used by some verification methods (most notably SSL/TLS)
245associated with this connection. Usually this is the remote hostname used
246to connect, but can be almost anything.
247
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 248=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 249
172When this parameter is given, it enables TLS (SSL) mode, that means it 250When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 251AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 252established and will transparently encrypt/decrypt data afterwards.
175 253
176TLS mode requires Net::SSLeay to be installed (it will be loaded 254TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 255automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself.
178 258
179For the TLS server side, use C<accept>, and for the TLS client side of a 259Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 260C<accept>, and for the TLS client side of a connection, use C<connect>
261mode.
181 262
182You can also provide your own TLS connection object, but you have 263You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 264to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 265or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 266AnyEvent::Handle. Also, this module will take ownership of this connection
267object.
186 268
269At some future point, AnyEvent::Handle might switch to another TLS
270implementation, then the option to use your own session object will go
271away.
272
273B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
274passing in the wrong integer will lead to certain crash. This most often
275happens when one uses a stylish C<< tls => 1 >> and is surprised about the
276segmentation fault.
277
187See the C<starttls> method if you need to start TLs negotiation later. 278See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 279
189=item tls_ctx => $ssl_ctx 280=item tls_ctx => $anyevent_tls
190 281
191Use the given Net::SSLeay::CTX object to create the new TLS connection 282Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 283(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 284missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 285
286Instead of an object, you can also specify a hash reference with C<< key
287=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
288new TLS context object.
289
195=item json => JSON or JSON::XS object 290=item json => JSON or JSON::XS object
196 291
197This is the json coder object used by the C<json> read and write types. 292This is the json coder object used by the C<json> read and write types.
198 293
199If you don't supply it, then AnyEvent::Handle will create and use a 294If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 295suitable one (on demand), which will write and expect UTF-8 encoded JSON
296texts.
201 297
202Note that you are responsible to depend on the JSON module if you want to 298Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 299use this functionality, as AnyEvent does not have a dependency itself.
204 300
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 301=back
212 302
213=cut 303=cut
214 304
215sub new { 305sub new {
216 my $class = shift; 306 my $class = shift;
217
218 my $self = bless { @_ }, $class; 307 my $self = bless { @_ }, $class;
219 308
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 309 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 310
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 311 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 312
234 $self->{_activity} = AnyEvent->now; 313 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 314 $self->_timeout;
236 315
316 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
317
318 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
319 if $self->{tls};
320
321 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
322
237 $self->start_read; 323 $self->start_read
324 if $self->{on_read};
238 325
239 $self 326 $self->{fh} && $self
240} 327}
241 328
242sub _shutdown { 329sub _shutdown {
243 my ($self) = @_; 330 my ($self) = @_;
244 331
245 delete $self->{_tw}; 332 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 333 $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww};
248 delete $self->{fh};
249 334
250 $self->stoptls; 335 &_freetls;
251} 336}
252 337
253sub _error { 338sub _error {
254 my ($self, $errno, $fatal) = @_; 339 my ($self, $errno, $fatal) = @_;
255 340
258 343
259 $! = $errno; 344 $! = $errno;
260 345
261 if ($self->{on_error}) { 346 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 347 $self->{on_error}($self, $fatal);
263 } else { 348 } elsif ($self->{fh}) {
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 349 Carp::croak "AnyEvent::Handle uncaught error: $!";
265 } 350 }
266} 351}
267 352
268=item $fh = $handle->fh 353=item $fh = $handle->fh
269 354
270This method returns the file handle of the L<AnyEvent::Handle> object. 355This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 356
272=cut 357=cut
273 358
274sub fh { $_[0]{fh} } 359sub fh { $_[0]{fh} }
275 360
293 $_[0]{on_eof} = $_[1]; 378 $_[0]{on_eof} = $_[1];
294} 379}
295 380
296=item $handle->on_timeout ($cb) 381=item $handle->on_timeout ($cb)
297 382
298Replace the current C<on_timeout> callback, or disables the callback 383Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 384not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 385argument and method.
301 386
302=cut 387=cut
303 388
304sub on_timeout { 389sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 390 $_[0]{on_timeout} = $_[1];
391}
392
393=item $handle->autocork ($boolean)
394
395Enables or disables the current autocork behaviour (see C<autocork>
396constructor argument). Changes will only take effect on the next write.
397
398=cut
399
400sub autocork {
401 $_[0]{autocork} = $_[1];
402}
403
404=item $handle->no_delay ($boolean)
405
406Enables or disables the C<no_delay> setting (see constructor argument of
407the same name for details).
408
409=cut
410
411sub no_delay {
412 $_[0]{no_delay} = $_[1];
413
414 eval {
415 local $SIG{__DIE__};
416 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
417 };
306} 418}
307 419
308############################################################################# 420#############################################################################
309 421
310=item $handle->timeout ($seconds) 422=item $handle->timeout ($seconds)
388 my ($self, $cb) = @_; 500 my ($self, $cb) = @_;
389 501
390 $self->{on_drain} = $cb; 502 $self->{on_drain} = $cb;
391 503
392 $cb->($self) 504 $cb->($self)
393 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 505 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
394} 506}
395 507
396=item $handle->push_write ($data) 508=item $handle->push_write ($data)
397 509
398Queues the given scalar to be written. You can push as much data as you 510Queues the given scalar to be written. You can push as much data as you
415 substr $self->{wbuf}, 0, $len, ""; 527 substr $self->{wbuf}, 0, $len, "";
416 528
417 $self->{_activity} = AnyEvent->now; 529 $self->{_activity} = AnyEvent->now;
418 530
419 $self->{on_drain}($self) 531 $self->{on_drain}($self)
420 if $self->{low_water_mark} >= length $self->{wbuf} 532 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
421 && $self->{on_drain}; 533 && $self->{on_drain};
422 534
423 delete $self->{_ww} unless length $self->{wbuf}; 535 delete $self->{_ww} unless length $self->{wbuf};
424 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 536 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
425 $self->_error ($!, 1); 537 $self->_error ($!, 1);
426 } 538 }
427 }; 539 };
428 540
429 # try to write data immediately 541 # try to write data immediately
430 $cb->(); 542 $cb->() unless $self->{autocork};
431 543
432 # if still data left in wbuf, we need to poll 544 # if still data left in wbuf, we need to poll
433 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 545 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
434 if length $self->{wbuf}; 546 if length $self->{wbuf};
435 }; 547 };
449 561
450 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 562 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
451 ->($self, @_); 563 ->($self, @_);
452 } 564 }
453 565
454 if ($self->{filter_w}) { 566 if ($self->{tls}) {
455 $self->{filter_w}($self, \$_[0]); 567 $self->{_tls_wbuf} .= $_[0];
568
569 &_dotls ($self);
456 } else { 570 } else {
457 $self->{wbuf} .= $_[0]; 571 $self->{wbuf} .= $_[0];
458 $self->_drain_wbuf; 572 $self->_drain_wbuf;
459 } 573 }
460} 574}
477=cut 591=cut
478 592
479register_write_type netstring => sub { 593register_write_type netstring => sub {
480 my ($self, $string) = @_; 594 my ($self, $string) = @_;
481 595
482 sprintf "%d:%s,", (length $string), $string 596 (length $string) . ":$string,"
597};
598
599=item packstring => $format, $data
600
601An octet string prefixed with an encoded length. The encoding C<$format>
602uses the same format as a Perl C<pack> format, but must specify a single
603integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
604optional C<!>, C<< < >> or C<< > >> modifier).
605
606=cut
607
608register_write_type packstring => sub {
609 my ($self, $format, $string) = @_;
610
611 pack "$format/a*", $string
483}; 612};
484 613
485=item json => $array_or_hashref 614=item json => $array_or_hashref
486 615
487Encodes the given hash or array reference into a JSON object. Unless you 616Encodes the given hash or array reference into a JSON object. Unless you
521 650
522 $self->{json} ? $self->{json}->encode ($ref) 651 $self->{json} ? $self->{json}->encode ($ref)
523 : JSON::encode_json ($ref) 652 : JSON::encode_json ($ref)
524}; 653};
525 654
655=item storable => $reference
656
657Freezes the given reference using L<Storable> and writes it to the
658handle. Uses the C<nfreeze> format.
659
660=cut
661
662register_write_type storable => sub {
663 my ($self, $ref) = @_;
664
665 require Storable;
666
667 pack "w/a*", Storable::nfreeze ($ref)
668};
669
526=back 670=back
527 671
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 672=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 673
530This function (not method) lets you add your own types to C<push_write>. 674This function (not method) lets you add your own types to C<push_write>.
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 696ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 697a queue.
554 698
555In the simple case, you just install an C<on_read> callback and whenever 699In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 700new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 701enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 702leave the data there if you want to accumulate more (e.g. when only a
703partial message has been received so far).
559 704
560In the more complex case, you want to queue multiple callbacks. In this 705In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 706case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 707data arrives (also the first time it is queued) and removes it when it has
563below). 708done its job (see C<push_read>, below).
564 709
565This way you can, for example, push three line-reads, followed by reading 710This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 711a chunk of data, and AnyEvent::Handle will execute them in order.
567 712
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 713Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
581 # handle xml 726 # handle xml
582 }); 727 });
583 }); 728 });
584 }); 729 });
585 730
586Example 2: Implement a client for a protocol that replies either with 731Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 732and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 733bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 734just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 735in the callbacks.
591 736
592 # request one 737When the first callback is called and sees an "OK" response, it will
738C<unshift> another line-read. This line-read will be queued I<before> the
73964-byte chunk callback.
740
741 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 742 $handle->push_write ("request 1\015\012");
594 743
595 # we expect "ERROR" or "OK" as response, so push a line read 744 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read (line => sub { 745 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 746 # if we got an "OK", we have to _prepend_ another line,
604 ... 753 ...
605 }); 754 });
606 } 755 }
607 }); 756 });
608 757
609 # request two 758 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 759 $handle->push_write ("request 2\015\012");
611 760
612 # simply read 64 bytes, always 761 # simply read 64 bytes, always
613 $handle->push_read (chunk => 64, sub { 762 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 763 my $response = $_[1];
620=cut 769=cut
621 770
622sub _drain_rbuf { 771sub _drain_rbuf {
623 my ($self) = @_; 772 my ($self) = @_;
624 773
774 local $self->{_in_drain} = 1;
775
625 if ( 776 if (
626 defined $self->{rbuf_max} 777 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 778 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 779 ) {
629 return $self->_error (&Errno::ENOSPC, 1); 780 $self->_error (&Errno::ENOSPC, 1), return;
630 } 781 }
631 782
632 return if $self->{in_drain}; 783 while () {
633 local $self->{in_drain} = 1; 784 # we need to use a separate tls read buffer, as we must not receive data while
785 # we are draining the buffer, and this can only happen with TLS.
786 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
634 787
635 while (my $len = length $self->{rbuf}) { 788 my $len = length $self->{rbuf};
636 no strict 'refs'; 789
637 if (my $cb = shift @{ $self->{_queue} }) { 790 if (my $cb = shift @{ $self->{_queue} }) {
638 unless ($cb->($self)) { 791 unless ($cb->($self)) {
639 if ($self->{_eof}) { 792 if ($self->{_eof}) {
640 # no progress can be made (not enough data and no data forthcoming) 793 # no progress can be made (not enough data and no data forthcoming)
641 return $self->_error (&Errno::EPIPE, 1); 794 $self->_error (&Errno::EPIPE, 1), return;
642 } 795 }
643 796
644 unshift @{ $self->{_queue} }, $cb; 797 unshift @{ $self->{_queue} }, $cb;
645 last; 798 last;
646 } 799 }
647 } elsif ($self->{on_read}) { 800 } elsif ($self->{on_read}) {
801 last unless $len;
802
648 $self->{on_read}($self); 803 $self->{on_read}($self);
649 804
650 if ( 805 if (
651 $len == length $self->{rbuf} # if no data has been consumed 806 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 807 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # but we still have on_read 808 && $self->{on_read} # but we still have on_read
654 ) { 809 ) {
655 # no further data will arrive 810 # no further data will arrive
656 # so no progress can be made 811 # so no progress can be made
657 return $self->_error (&Errno::EPIPE, 1) 812 $self->_error (&Errno::EPIPE, 1), return
658 if $self->{_eof}; 813 if $self->{_eof};
659 814
660 last; # more data might arrive 815 last; # more data might arrive
661 } 816 }
662 } else { 817 } else {
663 # read side becomes idle 818 # read side becomes idle
664 delete $self->{_rw}; 819 delete $self->{_rw} unless $self->{tls};
665 last; 820 last;
666 } 821 }
667 } 822 }
668 823
824 if ($self->{_eof}) {
825 if ($self->{on_eof}) {
669 $self->{on_eof}($self) 826 $self->{on_eof}($self)
670 if $self->{_eof} && $self->{on_eof}; 827 } else {
828 $self->_error (0, 1);
829 }
830 }
671 831
672 # may need to restart read watcher 832 # may need to restart read watcher
673 unless ($self->{_rw}) { 833 unless ($self->{_rw}) {
674 $self->start_read 834 $self->start_read
675 if $self->{on_read} || @{ $self->{_queue} }; 835 if $self->{on_read} || @{ $self->{_queue} };
686 846
687sub on_read { 847sub on_read {
688 my ($self, $cb) = @_; 848 my ($self, $cb) = @_;
689 849
690 $self->{on_read} = $cb; 850 $self->{on_read} = $cb;
851 $self->_drain_rbuf if $cb && !$self->{_in_drain};
691} 852}
692 853
693=item $handle->rbuf 854=item $handle->rbuf
694 855
695Returns the read buffer (as a modifiable lvalue). 856Returns the read buffer (as a modifiable lvalue).
696 857
697You can access the read buffer directly as the C<< ->{rbuf} >> member, if 858You can access the read buffer directly as the C<< ->{rbuf} >>
698you want. 859member, if you want. However, the only operation allowed on the
860read buffer (apart from looking at it) is removing data from its
861beginning. Otherwise modifying or appending to it is not allowed and will
862lead to hard-to-track-down bugs.
699 863
700NOTE: The read buffer should only be used or modified if the C<on_read>, 864NOTE: The read buffer should only be used or modified if the C<on_read>,
701C<push_read> or C<unshift_read> methods are used. The other read methods 865C<push_read> or C<unshift_read> methods are used. The other read methods
702automatically manage the read buffer. 866automatically manage the read buffer.
703 867
744 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 908 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
745 ->($self, $cb, @_); 909 ->($self, $cb, @_);
746 } 910 }
747 911
748 push @{ $self->{_queue} }, $cb; 912 push @{ $self->{_queue} }, $cb;
749 $self->_drain_rbuf; 913 $self->_drain_rbuf unless $self->{_in_drain};
750} 914}
751 915
752sub unshift_read { 916sub unshift_read {
753 my $self = shift; 917 my $self = shift;
754 my $cb = pop; 918 my $cb = pop;
760 ->($self, $cb, @_); 924 ->($self, $cb, @_);
761 } 925 }
762 926
763 927
764 unshift @{ $self->{_queue} }, $cb; 928 unshift @{ $self->{_queue} }, $cb;
765 $self->_drain_rbuf; 929 $self->_drain_rbuf unless $self->{_in_drain};
766} 930}
767 931
768=item $handle->push_read (type => @args, $cb) 932=item $handle->push_read (type => @args, $cb)
769 933
770=item $handle->unshift_read (type => @args, $cb) 934=item $handle->unshift_read (type => @args, $cb)
800 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 964 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
801 1 965 1
802 } 966 }
803}; 967};
804 968
805# compatibility with older API
806sub push_read_chunk {
807 $_[0]->push_read (chunk => $_[1], $_[2]);
808}
809
810sub unshift_read_chunk {
811 $_[0]->unshift_read (chunk => $_[1], $_[2]);
812}
813
814=item line => [$eol, ]$cb->($handle, $line, $eol) 969=item line => [$eol, ]$cb->($handle, $line, $eol)
815 970
816The callback will be called only once a full line (including the end of 971The callback will be called only once a full line (including the end of
817line marker, C<$eol>) has been read. This line (excluding the end of line 972line marker, C<$eol>) has been read. This line (excluding the end of line
818marker) will be passed to the callback as second argument (C<$line>), and 973marker) will be passed to the callback as second argument (C<$line>), and
833=cut 988=cut
834 989
835register_read_type line => sub { 990register_read_type line => sub {
836 my ($self, $cb, $eol) = @_; 991 my ($self, $cb, $eol) = @_;
837 992
838 $eol = qr|(\015?\012)| if @_ < 3; 993 if (@_ < 3) {
839 $eol = quotemeta $eol unless ref $eol; 994 # this is more than twice as fast as the generic code below
840 $eol = qr|^(.*?)($eol)|s;
841
842 sub { 995 sub {
843 $_[0]{rbuf} =~ s/$eol// or return; 996 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
844 997
845 $cb->($_[0], $1, $2); 998 $cb->($_[0], $1, $2);
846 1
847 }
848};
849
850# compatibility with older API
851sub push_read_line {
852 my $self = shift;
853 $self->push_read (line => @_);
854}
855
856sub unshift_read_line {
857 my $self = shift;
858 $self->unshift_read (line => @_);
859}
860
861=item netstring => $cb->($handle, $string)
862
863A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
864
865Throws an error with C<$!> set to EBADMSG on format violations.
866
867=cut
868
869register_read_type netstring => sub {
870 my ($self, $cb) = @_;
871
872 sub {
873 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
874 if ($_[0]{rbuf} =~ /[^0-9]/) {
875 $self->_error (&Errno::EBADMSG);
876 } 999 1
877 return;
878 } 1000 }
1001 } else {
1002 $eol = quotemeta $eol unless ref $eol;
1003 $eol = qr|^(.*?)($eol)|s;
879 1004
880 my $len = $1; 1005 sub {
1006 $_[0]{rbuf} =~ s/$eol// or return;
881 1007
882 $self->unshift_read (chunk => $len, sub { 1008 $cb->($_[0], $1, $2);
883 my $string = $_[1];
884 $_[0]->unshift_read (chunk => 1, sub {
885 if ($_[1] eq ",") {
886 $cb->($_[0], $string);
887 } else {
888 $self->_error (&Errno::EBADMSG);
889 }
890 }); 1009 1
891 }); 1010 }
892
893 1
894 } 1011 }
895}; 1012};
896 1013
897=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1014=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
898 1015
962 1079
963 () 1080 ()
964 } 1081 }
965}; 1082};
966 1083
1084=item netstring => $cb->($handle, $string)
1085
1086A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1087
1088Throws an error with C<$!> set to EBADMSG on format violations.
1089
1090=cut
1091
1092register_read_type netstring => sub {
1093 my ($self, $cb) = @_;
1094
1095 sub {
1096 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1097 if ($_[0]{rbuf} =~ /[^0-9]/) {
1098 $self->_error (&Errno::EBADMSG);
1099 }
1100 return;
1101 }
1102
1103 my $len = $1;
1104
1105 $self->unshift_read (chunk => $len, sub {
1106 my $string = $_[1];
1107 $_[0]->unshift_read (chunk => 1, sub {
1108 if ($_[1] eq ",") {
1109 $cb->($_[0], $string);
1110 } else {
1111 $self->_error (&Errno::EBADMSG);
1112 }
1113 });
1114 });
1115
1116 1
1117 }
1118};
1119
1120=item packstring => $format, $cb->($handle, $string)
1121
1122An octet string prefixed with an encoded length. The encoding C<$format>
1123uses the same format as a Perl C<pack> format, but must specify a single
1124integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1125optional C<!>, C<< < >> or C<< > >> modifier).
1126
1127For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1128EPP uses a prefix of C<N> (4 octtes).
1129
1130Example: read a block of data prefixed by its length in BER-encoded
1131format (very efficient).
1132
1133 $handle->push_read (packstring => "w", sub {
1134 my ($handle, $data) = @_;
1135 });
1136
1137=cut
1138
1139register_read_type packstring => sub {
1140 my ($self, $cb, $format) = @_;
1141
1142 sub {
1143 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1144 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1145 or return;
1146
1147 $format = length pack $format, $len;
1148
1149 # bypass unshift if we already have the remaining chunk
1150 if ($format + $len <= length $_[0]{rbuf}) {
1151 my $data = substr $_[0]{rbuf}, $format, $len;
1152 substr $_[0]{rbuf}, 0, $format + $len, "";
1153 $cb->($_[0], $data);
1154 } else {
1155 # remove prefix
1156 substr $_[0]{rbuf}, 0, $format, "";
1157
1158 # read remaining chunk
1159 $_[0]->unshift_read (chunk => $len, $cb);
1160 }
1161
1162 1
1163 }
1164};
1165
967=item json => $cb->($handle, $hash_or_arrayref) 1166=item json => $cb->($handle, $hash_or_arrayref)
968 1167
969Reads a JSON object or array, decodes it and passes it to the callback. 1168Reads a JSON object or array, decodes it and passes it to the
1169callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1170
971If a C<json> object was passed to the constructor, then that will be used 1171If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1172for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1173
974This read type uses the incremental parser available with JSON version 1174This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1181the C<json> write type description, above, for an actual example.
982 1182
983=cut 1183=cut
984 1184
985register_read_type json => sub { 1185register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1186 my ($self, $cb) = @_;
987 1187
988 require JSON; 1188 require JSON;
989 1189
990 my $data; 1190 my $data;
991 my $rbuf = \$self->{rbuf}; 1191 my $rbuf = \$self->{rbuf};
992 1192
993 my $json = $self->{json} ||= JSON->new->utf8; 1193 my $json = $self->{json} ||= JSON->new->utf8;
994 1194
995 sub { 1195 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1196 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1197
998 if ($ref) { 1198 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1199 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1200 $json->incr_text = "";
1001 $cb->($self, $ref); 1201 $cb->($self, $ref);
1002 1202
1003 1 1203 1
1204 } elsif ($@) {
1205 # error case
1206 $json->incr_skip;
1207
1208 $self->{rbuf} = $json->incr_text;
1209 $json->incr_text = "";
1210
1211 $self->_error (&Errno::EBADMSG);
1212
1213 ()
1004 } else { 1214 } else {
1005 $self->{rbuf} = ""; 1215 $self->{rbuf} = "";
1216
1006 () 1217 ()
1007 } 1218 }
1219 }
1220};
1221
1222=item storable => $cb->($handle, $ref)
1223
1224Deserialises a L<Storable> frozen representation as written by the
1225C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1226data).
1227
1228Raises C<EBADMSG> error if the data could not be decoded.
1229
1230=cut
1231
1232register_read_type storable => sub {
1233 my ($self, $cb) = @_;
1234
1235 require Storable;
1236
1237 sub {
1238 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1239 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1240 or return;
1241
1242 my $format = length pack "w", $len;
1243
1244 # bypass unshift if we already have the remaining chunk
1245 if ($format + $len <= length $_[0]{rbuf}) {
1246 my $data = substr $_[0]{rbuf}, $format, $len;
1247 substr $_[0]{rbuf}, 0, $format + $len, "";
1248 $cb->($_[0], Storable::thaw ($data));
1249 } else {
1250 # remove prefix
1251 substr $_[0]{rbuf}, 0, $format, "";
1252
1253 # read remaining chunk
1254 $_[0]->unshift_read (chunk => $len, sub {
1255 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1256 $cb->($_[0], $ref);
1257 } else {
1258 $self->_error (&Errno::EBADMSG);
1259 }
1260 });
1261 }
1262
1263 1
1008 } 1264 }
1009}; 1265};
1010 1266
1011=back 1267=back
1012 1268
1033=item $handle->stop_read 1289=item $handle->stop_read
1034 1290
1035=item $handle->start_read 1291=item $handle->start_read
1036 1292
1037In rare cases you actually do not want to read anything from the 1293In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1294socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1295any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1296C<start_read>.
1041 1297
1042Note that AnyEvent::Handle will automatically C<start_read> for you when 1298Note that AnyEvent::Handle will automatically C<start_read> for you when
1043you change the C<on_read> callback or push/unshift a read callback, and it 1299you change the C<on_read> callback or push/unshift a read callback, and it
1044will automatically C<stop_read> for you when neither C<on_read> is set nor 1300will automatically C<stop_read> for you when neither C<on_read> is set nor
1045there are any read requests in the queue. 1301there are any read requests in the queue.
1046 1302
1303These methods will have no effect when in TLS mode (as TLS doesn't support
1304half-duplex connections).
1305
1047=cut 1306=cut
1048 1307
1049sub stop_read { 1308sub stop_read {
1050 my ($self) = @_; 1309 my ($self) = @_;
1051 1310
1052 delete $self->{_rw}; 1311 delete $self->{_rw} unless $self->{tls};
1053} 1312}
1054 1313
1055sub start_read { 1314sub start_read {
1056 my ($self) = @_; 1315 my ($self) = @_;
1057 1316
1058 unless ($self->{_rw} || $self->{_eof}) { 1317 unless ($self->{_rw} || $self->{_eof}) {
1059 Scalar::Util::weaken $self; 1318 Scalar::Util::weaken $self;
1060 1319
1061 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1320 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1062 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1321 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1063 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1322 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1064 1323
1065 if ($len > 0) { 1324 if ($len > 0) {
1066 $self->{_activity} = AnyEvent->now; 1325 $self->{_activity} = AnyEvent->now;
1067 1326
1068 $self->{filter_r} 1327 if ($self->{tls}) {
1069 ? $self->{filter_r}($self, $rbuf) 1328 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1070 : $self->_drain_rbuf; 1329
1330 &_dotls ($self);
1331 } else {
1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 }
1071 1334
1072 } elsif (defined $len) { 1335 } elsif (defined $len) {
1073 delete $self->{_rw}; 1336 delete $self->{_rw};
1074 $self->{_eof} = 1; 1337 $self->{_eof} = 1;
1075 $self->_drain_rbuf; 1338 $self->_drain_rbuf unless $self->{_in_drain};
1076 1339
1077 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1340 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1078 return $self->_error ($!, 1); 1341 return $self->_error ($!, 1);
1079 } 1342 }
1080 }); 1343 });
1081 } 1344 }
1082} 1345}
1083 1346
1347# poll the write BIO and send the data if applicable
1084sub _dotls { 1348sub _dotls {
1085 my ($self) = @_; 1349 my ($self) = @_;
1086 1350
1087 my $buf; 1351 my $tmp;
1088 1352
1089 if (length $self->{_tls_wbuf}) { 1353 if (length $self->{_tls_wbuf}) {
1090 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1354 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1091 substr $self->{_tls_wbuf}, 0, $len, ""; 1355 substr $self->{_tls_wbuf}, 0, $tmp, "";
1092 } 1356 }
1093 } 1357 }
1094 1358
1095 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1096 $self->{wbuf} .= $buf;
1097 $self->_drain_wbuf;
1098 }
1099
1100 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1359 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1101 if (length $buf) { 1360 unless (length $tmp) {
1102 $self->{rbuf} .= $buf;
1103 $self->_drain_rbuf;
1104 } else {
1105 # let's treat SSL-eof as we treat normal EOF 1361 # let's treat SSL-eof as we treat normal EOF
1362 delete $self->{_rw};
1106 $self->{_eof} = 1; 1363 $self->{_eof} = 1;
1107 $self->_shutdown; 1364 &_freetls;
1108 return;
1109 } 1365 }
1110 }
1111 1366
1367 $self->{_tls_rbuf} .= $tmp;
1368 $self->_drain_rbuf unless $self->{_in_drain};
1369 $self->{tls} or return; # tls session might have gone away in callback
1370 }
1371
1112 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1372 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1113 1373
1114 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1374 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1115 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1375 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1116 return $self->_error ($!, 1); 1376 return $self->_error ($!, 1);
1117 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1377 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1118 return $self->_error (&Errno::EIO, 1); 1378 return $self->_error (&Errno::EIO, 1);
1119 } 1379 }
1120 1380
1121 # all others are fine for our purposes 1381 # all other errors are fine for our purposes
1382 }
1383
1384 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1385 $self->{wbuf} .= $tmp;
1386 $self->_drain_wbuf;
1122 } 1387 }
1123} 1388}
1124 1389
1125=item $handle->starttls ($tls[, $tls_ctx]) 1390=item $handle->starttls ($tls[, $tls_ctx])
1126 1391
1129C<starttls>. 1394C<starttls>.
1130 1395
1131The first argument is the same as the C<tls> constructor argument (either 1396The first argument is the same as the C<tls> constructor argument (either
1132C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1397C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1133 1398
1134The second argument is the optional C<Net::SSLeay::CTX> object that is 1399The second argument is the optional C<AnyEvent::TLS> object that is used
1135used when AnyEvent::Handle has to create its own TLS connection object. 1400when AnyEvent::Handle has to create its own TLS connection object, or
1401a hash reference with C<< key => value >> pairs that will be used to
1402construct a new context.
1136 1403
1137The TLS connection object will end up in C<< $handle->{tls} >> after this 1404The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1138call and can be used or changed to your liking. Note that the handshake 1405context in C<< $handle->{tls_ctx} >> after this call and can be used or
1139might have already started when this function returns. 1406changed to your liking. Note that the handshake might have already started
1407when this function returns.
1408
1409If it an error to start a TLS handshake more than once per
1410AnyEvent::Handle object (this is due to bugs in OpenSSL).
1140 1411
1141=cut 1412=cut
1142 1413
1143sub starttls { 1414sub starttls {
1144 my ($self, $ssl, $ctx) = @_; 1415 my ($self, $ssl, $ctx) = @_;
1145 1416
1146 $self->stoptls; 1417 require Net::SSLeay;
1147 1418
1148 if ($ssl eq "accept") { 1419 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1149 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1420 if $self->{tls};
1150 Net::SSLeay::set_accept_state ($ssl); 1421
1151 } elsif ($ssl eq "connect") { 1422 $ctx ||= $self->{tls_ctx};
1152 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1423
1153 Net::SSLeay::set_connect_state ($ssl); 1424 if ("HASH" eq ref $ctx) {
1425 require AnyEvent::TLS;
1426
1427 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1428 $ctx = new AnyEvent::TLS %$ctx;
1429 }
1154 } 1430
1155 1431 $self->{tls_ctx} = $ctx || TLS_CTX ();
1156 $self->{tls} = $ssl; 1432 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self);
1157 1433
1158 # basically, this is deep magic (because SSL_read should have the same issues) 1434 # basically, this is deep magic (because SSL_read should have the same issues)
1159 # but the openssl maintainers basically said: "trust us, it just works". 1435 # but the openssl maintainers basically said: "trust us, it just works".
1160 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1436 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1161 # and mismaintained ssleay-module doesn't even offer them). 1437 # and mismaintained ssleay-module doesn't even offer them).
1162 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1438 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1439 #
1440 # in short: this is a mess.
1441 #
1442 # note that we do not try to keep the length constant between writes as we are required to do.
1443 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1444 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1445 # have identity issues in that area.
1163 Net::SSLeay::CTX_set_mode ($self->{tls}, 1446# Net::SSLeay::CTX_set_mode ($ssl,
1164 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1447# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1165 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1448# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1449 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1166 1450
1167 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1451 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1168 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1452 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1169 1453
1170 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1454 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1171 1455
1172 $self->{filter_w} = sub { 1456 &_dotls; # need to trigger the initial handshake
1173 $_[0]{_tls_wbuf} .= ${$_[1]}; 1457 $self->start_read; # make sure we actually do read
1174 &_dotls;
1175 };
1176 $self->{filter_r} = sub {
1177 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1178 &_dotls;
1179 };
1180} 1458}
1181 1459
1182=item $handle->stoptls 1460=item $handle->stoptls
1183 1461
1184Destroys the SSL connection, if any. Partial read or write data will be 1462Shuts down the SSL connection - this makes a proper EOF handshake by
1185lost. 1463sending a close notify to the other side, but since OpenSSL doesn't
1464support non-blocking shut downs, it is not possible to re-use the stream
1465afterwards.
1186 1466
1187=cut 1467=cut
1188 1468
1189sub stoptls { 1469sub stoptls {
1190 my ($self) = @_; 1470 my ($self) = @_;
1191 1471
1192 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1472 if ($self->{tls}) {
1473 Net::SSLeay::shutdown ($self->{tls});
1193 1474
1194 delete $self->{_rbio}; 1475 &_dotls;
1195 delete $self->{_wbio}; 1476
1196 delete $self->{_tls_wbuf}; 1477 # we don't give a shit. no, we do, but we can't. no...
1197 delete $self->{filter_r}; 1478 # we, we... have to use openssl :/
1198 delete $self->{filter_w}; 1479 &_freetls;
1480 }
1481}
1482
1483sub _freetls {
1484 my ($self) = @_;
1485
1486 return unless $self->{tls};
1487
1488 $self->{tls_ctx}->_put_session (delete $self->{tls});
1489
1490 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1199} 1491}
1200 1492
1201sub DESTROY { 1493sub DESTROY {
1202 my $self = shift; 1494 my ($self) = @_;
1203 1495
1204 $self->stoptls; 1496 &_freetls;
1497
1498 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1499
1500 if ($linger && length $self->{wbuf}) {
1501 my $fh = delete $self->{fh};
1502 my $wbuf = delete $self->{wbuf};
1503
1504 my @linger;
1505
1506 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1507 my $len = syswrite $fh, $wbuf, length $wbuf;
1508
1509 if ($len > 0) {
1510 substr $wbuf, 0, $len, "";
1511 } else {
1512 @linger = (); # end
1513 }
1514 });
1515 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1516 @linger = ();
1517 });
1518 }
1519}
1520
1521=item $handle->destroy
1522
1523Shuts down the handle object as much as possible - this call ensures that
1524no further callbacks will be invoked and resources will be freed as much
1525as possible. You must not call any methods on the object afterwards.
1526
1527Normally, you can just "forget" any references to an AnyEvent::Handle
1528object and it will simply shut down. This works in fatal error and EOF
1529callbacks, as well as code outside. It does I<NOT> work in a read or write
1530callback, so when you want to destroy the AnyEvent::Handle object from
1531within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1532that case.
1533
1534The handle might still linger in the background and write out remaining
1535data, as specified by the C<linger> option, however.
1536
1537=cut
1538
1539sub destroy {
1540 my ($self) = @_;
1541
1542 $self->DESTROY;
1543 %$self = ();
1205} 1544}
1206 1545
1207=item AnyEvent::Handle::TLS_CTX 1546=item AnyEvent::Handle::TLS_CTX
1208 1547
1209This function creates and returns the Net::SSLeay::CTX object used by 1548This function creates and returns the AnyEvent::TLS object used by default
1210default for TLS mode. 1549for TLS mode.
1211 1550
1212The context is created like this: 1551The context is created by calling L<AnyEvent::TLS> without any arguments.
1213
1214 Net::SSLeay::load_error_strings;
1215 Net::SSLeay::SSLeay_add_ssl_algorithms;
1216 Net::SSLeay::randomize;
1217
1218 my $CTX = Net::SSLeay::CTX_new;
1219
1220 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1221 1552
1222=cut 1553=cut
1223 1554
1224our $TLS_CTX; 1555our $TLS_CTX;
1225 1556
1226sub TLS_CTX() { 1557sub TLS_CTX() {
1227 $TLS_CTX || do { 1558 $TLS_CTX ||= do {
1228 require Net::SSLeay; 1559 require AnyEvent::TLS;
1229 1560
1230 Net::SSLeay::load_error_strings (); 1561 new AnyEvent::TLS
1231 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1232 Net::SSLeay::randomize ();
1233
1234 $TLS_CTX = Net::SSLeay::CTX_new ();
1235
1236 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1237
1238 $TLS_CTX
1239 } 1562 }
1240} 1563}
1241 1564
1242=back 1565=back
1566
1567
1568=head1 NONFREQUENTLY ASKED QUESTIONS
1569
1570=over 4
1571
1572=item I C<undef> the AnyEvent::Handle reference inside my callback and
1573still get further invocations!
1574
1575That's because AnyEvent::Handle keeps a reference to itself when handling
1576read or write callbacks.
1577
1578It is only safe to "forget" the reference inside EOF or error callbacks,
1579from within all other callbacks, you need to explicitly call the C<<
1580->destroy >> method.
1581
1582=item I get different callback invocations in TLS mode/Why can't I pause
1583reading?
1584
1585Unlike, say, TCP, TLS connections do not consist of two independent
1586communication channels, one for each direction. Or put differently. The
1587read and write directions are not independent of each other: you cannot
1588write data unless you are also prepared to read, and vice versa.
1589
1590This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1591callback invocations when you are not expecting any read data - the reason
1592is that AnyEvent::Handle always reads in TLS mode.
1593
1594During the connection, you have to make sure that you always have a
1595non-empty read-queue, or an C<on_read> watcher. At the end of the
1596connection (or when you no longer want to use it) you can call the
1597C<destroy> method.
1598
1599=item How do I read data until the other side closes the connection?
1600
1601If you just want to read your data into a perl scalar, the easiest way
1602to achieve this is by setting an C<on_read> callback that does nothing,
1603clearing the C<on_eof> callback and in the C<on_error> callback, the data
1604will be in C<$_[0]{rbuf}>:
1605
1606 $handle->on_read (sub { });
1607 $handle->on_eof (undef);
1608 $handle->on_error (sub {
1609 my $data = delete $_[0]{rbuf};
1610 undef $handle;
1611 });
1612
1613The reason to use C<on_error> is that TCP connections, due to latencies
1614and packets loss, might get closed quite violently with an error, when in
1615fact, all data has been received.
1616
1617It is usually better to use acknowledgements when transferring data,
1618to make sure the other side hasn't just died and you got the data
1619intact. This is also one reason why so many internet protocols have an
1620explicit QUIT command.
1621
1622=item I don't want to destroy the handle too early - how do I wait until
1623all data has been written?
1624
1625After writing your last bits of data, set the C<on_drain> callback
1626and destroy the handle in there - with the default setting of
1627C<low_water_mark> this will be called precisely when all data has been
1628written to the socket:
1629
1630 $handle->push_write (...);
1631 $handle->on_drain (sub {
1632 warn "all data submitted to the kernel\n";
1633 undef $handle;
1634 });
1635
1636=back
1637
1243 1638
1244=head1 SUBCLASSING AnyEvent::Handle 1639=head1 SUBCLASSING AnyEvent::Handle
1245 1640
1246In many cases, you might want to subclass AnyEvent::Handle. 1641In many cases, you might want to subclass AnyEvent::Handle.
1247 1642
1251=over 4 1646=over 4
1252 1647
1253=item * all constructor arguments become object members. 1648=item * all constructor arguments become object members.
1254 1649
1255At least initially, when you pass a C<tls>-argument to the constructor it 1650At least initially, when you pass a C<tls>-argument to the constructor it
1256will end up in C<< $handle->{tls} >>. Those members might be changes or 1651will end up in C<< $handle->{tls} >>. Those members might be changed or
1257mutated later on (for example C<tls> will hold the TLS connection object). 1652mutated later on (for example C<tls> will hold the TLS connection object).
1258 1653
1259=item * other object member names are prefixed with an C<_>. 1654=item * other object member names are prefixed with an C<_>.
1260 1655
1261All object members not explicitly documented (internal use) are prefixed 1656All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines