ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.132 by elmex, Thu Jul 2 22:25:13 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.151; 19our $VERSION = 4.45;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
87 99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
96usable. Non-fatal errors can be retried by simply returning, but it is 112Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 113to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 116
100On callback entrance, the value of C<$!> contains the operating system 117On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102 119
103While not mandatory, it is I<highly> recommended to set this callback, as 120While not mandatory, it is I<highly> recommended to set this callback, as
110and no read request is in the queue (unlike read queue callbacks, this 127and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 128callback will only be called when at least one octet of data is in the
112read buffer). 129read buffer).
113 130
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 132method or access the C<$handle->{rbuf}> member directly. Note that you
133must not enlarge or modify the read buffer, you can only remove data at
134the beginning from it.
116 135
117When an EOF condition is detected then AnyEvent::Handle will first try to 136When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 137feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 138calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 139error will be raised (with C<$!> set to C<EPIPE>).
135=item timeout => $fractional_seconds 154=item timeout => $fractional_seconds
136 155
137If non-zero, then this enables an "inactivity" timeout: whenever this many 156If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 157seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 158handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 159missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 160
142Note that timeout processing is also active when you currently do not have 161Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 162any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 163idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 164in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
165restart the timeout.
146 166
147Zero (the default) disables this timeout. 167Zero (the default) disables this timeout.
148 168
149=item on_timeout => $cb->($handle) 169=item on_timeout => $cb->($handle)
150 170
154 174
155=item rbuf_max => <bytes> 175=item rbuf_max => <bytes>
156 176
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 177If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 178when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 179avoid some forms of denial-of-service attacks.
160 180
161For example, a server accepting connections from untrusted sources should 181For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 182be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 183(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 184amount of data without a callback ever being called as long as the line
165isn't finished). 185isn't finished).
166 186
187=item autocork => <boolean>
188
189When disabled (the default), then C<push_write> will try to immediately
190write the data to the handle, if possible. This avoids having to register
191a write watcher and wait for the next event loop iteration, but can
192be inefficient if you write multiple small chunks (on the wire, this
193disadvantage is usually avoided by your kernel's nagle algorithm, see
194C<no_delay>, but this option can save costly syscalls).
195
196When enabled, then writes will always be queued till the next event loop
197iteration. This is efficient when you do many small writes per iteration,
198but less efficient when you do a single write only per iteration (or when
199the write buffer often is full). It also increases write latency.
200
201=item no_delay => <boolean>
202
203When doing small writes on sockets, your operating system kernel might
204wait a bit for more data before actually sending it out. This is called
205the Nagle algorithm, and usually it is beneficial.
206
207In some situations you want as low a delay as possible, which can be
208accomplishd by setting this option to a true value.
209
210The default is your opertaing system's default behaviour (most likely
211enabled), this option explicitly enables or disables it, if possible.
212
167=item read_size => <bytes> 213=item read_size => <bytes>
168 214
169The default read block size (the amount of bytes this module will try to read 215The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 216try to read during each loop iteration, which affects memory
217requirements). Default: C<8192>.
171 218
172=item low_water_mark => <bytes> 219=item low_water_mark => <bytes>
173 220
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 221Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 222buffer: If the write reaches this size or gets even samller it is
176considered empty. 223considered empty.
177 224
225Sometimes it can be beneficial (for performance reasons) to add data to
226the write buffer before it is fully drained, but this is a rare case, as
227the operating system kernel usually buffers data as well, so the default
228is good in almost all cases.
229
178=item linger => <seconds> 230=item linger => <seconds>
179 231
180If non-zero (default: C<3600>), then the destructor of the 232If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 233AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 234write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 235socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 236system treats outstanding data at socket close time).
185 237
186This will not work for partial TLS data that could not yet been 238This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 239yet. This data will be lost. Calling the C<stoptls> method in time might
240help.
241
242=item common_name => $string
243
244The common name used by some verification methods (most notably SSL/TLS)
245associated with this connection. Usually this is the remote hostname used
246to connect, but can be almost anything.
188 247
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 248=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 249
191When this parameter is given, it enables TLS (SSL) mode, that means it 250When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 251AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 252established and will transparently encrypt/decrypt data afterwards.
194 253
195TLS mode requires Net::SSLeay to be installed (it will be loaded 254TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 255automatically when you try to create a TLS handle): this module doesn't
256have a dependency on that module, so if your module requires it, you have
257to add the dependency yourself.
197 258
198For the TLS server side, use C<accept>, and for the TLS client side of a 259Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 260C<accept>, and for the TLS client side of a connection, use C<connect>
261mode.
200 262
201You can also provide your own TLS connection object, but you have 263You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 264to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 265or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 266AnyEvent::Handle. Also, this module will take ownership of this connection
267object.
205 268
269At some future point, AnyEvent::Handle might switch to another TLS
270implementation, then the option to use your own session object will go
271away.
272
273B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
274passing in the wrong integer will lead to certain crash. This most often
275happens when one uses a stylish C<< tls => 1 >> and is surprised about the
276segmentation fault.
277
206See the C<starttls> method if you need to start TLs negotiation later. 278See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 279
208=item tls_ctx => $ssl_ctx 280=item tls_ctx => $anyevent_tls
209 281
210Use the given Net::SSLeay::CTX object to create the new TLS connection 282Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 283(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 284missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 285
286Instead of an object, you can also specify a hash reference with C<< key
287=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
288new TLS context object.
289
214=item json => JSON or JSON::XS object 290=item json => JSON or JSON::XS object
215 291
216This is the json coder object used by the C<json> read and write types. 292This is the json coder object used by the C<json> read and write types.
217 293
218If you don't supply it, then AnyEvent::Handle will create and use a 294If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 295suitable one (on demand), which will write and expect UTF-8 encoded JSON
296texts.
220 297
221Note that you are responsible to depend on the JSON module if you want to 298Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 299use this functionality, as AnyEvent does not have a dependency itself.
223 300
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 301=back
231 302
232=cut 303=cut
233 304
234sub new { 305sub new {
235 my $class = shift; 306 my $class = shift;
236
237 my $self = bless { @_ }, $class; 307 my $self = bless { @_ }, $class;
238 308
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 309 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240 310
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 311 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 312
248 $self->{_activity} = AnyEvent->now; 313 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 314 $self->_timeout;
250 315
316 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
317
318 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
319 if $self->{tls};
320
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 321 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
252 322
253 $self->start_read 323 $self->start_read
254 if $self->{on_read}; 324 if $self->{on_read};
255 325
256 $self 326 $self->{fh} && $self
257} 327}
258 328
259sub _shutdown { 329sub _shutdown {
260 my ($self) = @_; 330 my ($self) = @_;
261 331
262 delete $self->{_tw}; 332 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 333 $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww};
265 delete $self->{fh};
266 334
267 $self->stoptls; 335 &_freetls;
268} 336}
269 337
270sub _error { 338sub _error {
271 my ($self, $errno, $fatal) = @_; 339 my ($self, $errno, $fatal) = @_;
272 340
275 343
276 $! = $errno; 344 $! = $errno;
277 345
278 if ($self->{on_error}) { 346 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 347 $self->{on_error}($self, $fatal);
280 } else { 348 } elsif ($self->{fh}) {
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 349 Carp::croak "AnyEvent::Handle uncaught error: $!";
282 } 350 }
283} 351}
284 352
285=item $fh = $handle->fh 353=item $fh = $handle->fh
286 354
287This method returns the file handle of the L<AnyEvent::Handle> object. 355This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 356
289=cut 357=cut
290 358
291sub fh { $_[0]{fh} } 359sub fh { $_[0]{fh} }
292 360
310 $_[0]{on_eof} = $_[1]; 378 $_[0]{on_eof} = $_[1];
311} 379}
312 380
313=item $handle->on_timeout ($cb) 381=item $handle->on_timeout ($cb)
314 382
315Replace the current C<on_timeout> callback, or disables the callback 383Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 384not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 385argument and method.
318 386
319=cut 387=cut
320 388
321sub on_timeout { 389sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 390 $_[0]{on_timeout} = $_[1];
391}
392
393=item $handle->autocork ($boolean)
394
395Enables or disables the current autocork behaviour (see C<autocork>
396constructor argument). Changes will only take effect on the next write.
397
398=cut
399
400sub autocork {
401 $_[0]{autocork} = $_[1];
402}
403
404=item $handle->no_delay ($boolean)
405
406Enables or disables the C<no_delay> setting (see constructor argument of
407the same name for details).
408
409=cut
410
411sub no_delay {
412 $_[0]{no_delay} = $_[1];
413
414 eval {
415 local $SIG{__DIE__};
416 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
417 };
323} 418}
324 419
325############################################################################# 420#############################################################################
326 421
327=item $handle->timeout ($seconds) 422=item $handle->timeout ($seconds)
405 my ($self, $cb) = @_; 500 my ($self, $cb) = @_;
406 501
407 $self->{on_drain} = $cb; 502 $self->{on_drain} = $cb;
408 503
409 $cb->($self) 504 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 505 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 506}
412 507
413=item $handle->push_write ($data) 508=item $handle->push_write ($data)
414 509
415Queues the given scalar to be written. You can push as much data as you 510Queues the given scalar to be written. You can push as much data as you
432 substr $self->{wbuf}, 0, $len, ""; 527 substr $self->{wbuf}, 0, $len, "";
433 528
434 $self->{_activity} = AnyEvent->now; 529 $self->{_activity} = AnyEvent->now;
435 530
436 $self->{on_drain}($self) 531 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 532 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 533 && $self->{on_drain};
439 534
440 delete $self->{_ww} unless length $self->{wbuf}; 535 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 536 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 537 $self->_error ($!, 1);
443 } 538 }
444 }; 539 };
445 540
446 # try to write data immediately 541 # try to write data immediately
447 $cb->(); 542 $cb->() unless $self->{autocork};
448 543
449 # if still data left in wbuf, we need to poll 544 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 545 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 546 if length $self->{wbuf};
452 }; 547 };
466 561
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 562 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 563 ->($self, @_);
469 } 564 }
470 565
471 if ($self->{filter_w}) { 566 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 567 $self->{_tls_wbuf} .= $_[0];
568
569 &_dotls ($self);
473 } else { 570 } else {
474 $self->{wbuf} .= $_[0]; 571 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 572 $self->_drain_wbuf;
476 } 573 }
477} 574}
494=cut 591=cut
495 592
496register_write_type netstring => sub { 593register_write_type netstring => sub {
497 my ($self, $string) = @_; 594 my ($self, $string) = @_;
498 595
499 sprintf "%d:%s,", (length $string), $string 596 (length $string) . ":$string,"
500}; 597};
501 598
502=item packstring => $format, $data 599=item packstring => $format, $data
503 600
504An octet string prefixed with an encoded length. The encoding C<$format> 601An octet string prefixed with an encoded length. The encoding C<$format>
678 775
679 if ( 776 if (
680 defined $self->{rbuf_max} 777 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 778 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 779 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 780 $self->_error (&Errno::ENOSPC, 1), return;
684 } 781 }
685 782
686 while () { 783 while () {
687 no strict 'refs'; 784 # we need to use a separate tls read buffer, as we must not receive data while
785 # we are draining the buffer, and this can only happen with TLS.
786 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
688 787
689 my $len = length $self->{rbuf}; 788 my $len = length $self->{rbuf};
690 789
691 if (my $cb = shift @{ $self->{_queue} }) { 790 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 791 unless ($cb->($self)) {
693 if ($self->{_eof}) { 792 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming) 793 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 794 $self->_error (&Errno::EPIPE, 1), return;
696 } 795 }
697 796
698 unshift @{ $self->{_queue} }, $cb; 797 unshift @{ $self->{_queue} }, $cb;
699 last; 798 last;
700 } 799 }
708 && !@{ $self->{_queue} } # and the queue is still empty 807 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 808 && $self->{on_read} # but we still have on_read
710 ) { 809 ) {
711 # no further data will arrive 810 # no further data will arrive
712 # so no progress can be made 811 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 812 $self->_error (&Errno::EPIPE, 1), return
714 if $self->{_eof}; 813 if $self->{_eof};
715 814
716 last; # more data might arrive 815 last; # more data might arrive
717 } 816 }
718 } else { 817 } else {
719 # read side becomes idle 818 # read side becomes idle
720 delete $self->{_rw}; 819 delete $self->{_rw} unless $self->{tls};
721 last; 820 last;
722 } 821 }
723 } 822 }
724 823
824 if ($self->{_eof}) {
825 if ($self->{on_eof}) {
725 $self->{on_eof}($self) 826 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 827 } else {
828 $self->_error (0, 1);
829 }
830 }
727 831
728 # may need to restart read watcher 832 # may need to restart read watcher
729 unless ($self->{_rw}) { 833 unless ($self->{_rw}) {
730 $self->start_read 834 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 835 if $self->{on_read} || @{ $self->{_queue} };
749 853
750=item $handle->rbuf 854=item $handle->rbuf
751 855
752Returns the read buffer (as a modifiable lvalue). 856Returns the read buffer (as a modifiable lvalue).
753 857
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 858You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 859member, if you want. However, the only operation allowed on the
860read buffer (apart from looking at it) is removing data from its
861beginning. Otherwise modifying or appending to it is not allowed and will
862lead to hard-to-track-down bugs.
756 863
757NOTE: The read buffer should only be used or modified if the C<on_read>, 864NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 865C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 866automatically manage the read buffer.
760 867
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 964 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 965 1
859 } 966 }
860}; 967};
861 968
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 969=item line => [$eol, ]$cb->($handle, $line, $eol)
872 970
873The callback will be called only once a full line (including the end of 971The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 972line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 973marker) will be passed to the callback as second argument (C<$line>), and
890=cut 988=cut
891 989
892register_read_type line => sub { 990register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 991 my ($self, $cb, $eol) = @_;
894 992
895 $eol = qr|(\015?\012)| if @_ < 3; 993 if (@_ < 3) {
994 # this is more than twice as fast as the generic code below
995 sub {
996 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
997
998 $cb->($_[0], $1, $2);
999 1
1000 }
1001 } else {
896 $eol = quotemeta $eol unless ref $eol; 1002 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1003 $eol = qr|^(.*?)($eol)|s;
898 1004
899 sub { 1005 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1006 $_[0]{rbuf} =~ s/$eol// or return;
901 1007
902 $cb->($_[0], $1, $2); 1008 $cb->($_[0], $1, $2);
1009 1
903 1 1010 }
904 } 1011 }
905}; 1012};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1013
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1014=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1015
920Makes a regex match against the regex object C<$accept> and returns 1016Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1017everything up to and including the match.
1026An octet string prefixed with an encoded length. The encoding C<$format> 1122An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1123uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1124integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1125optional C<!>, C<< < >> or C<< > >> modifier).
1030 1126
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1127For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1128EPP uses a prefix of C<N> (4 octtes).
1032 1129
1033Example: read a block of data prefixed by its length in BER-encoded 1130Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1131format (very efficient).
1035 1132
1036 $handle->push_read (packstring => "w", sub { 1133 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1139register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1140 my ($self, $cb, $format) = @_;
1044 1141
1045 sub { 1142 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1143 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1144 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1145 or return;
1049 1146
1147 $format = length pack $format, $len;
1148
1149 # bypass unshift if we already have the remaining chunk
1150 if ($format + $len <= length $_[0]{rbuf}) {
1151 my $data = substr $_[0]{rbuf}, $format, $len;
1152 substr $_[0]{rbuf}, 0, $format + $len, "";
1153 $cb->($_[0], $data);
1154 } else {
1050 # remove prefix 1155 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1156 substr $_[0]{rbuf}, 0, $format, "";
1052 1157
1053 # read rest 1158 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1159 $_[0]->unshift_read (chunk => $len, $cb);
1160 }
1055 1161
1056 1 1162 1
1057 } 1163 }
1058}; 1164};
1059 1165
1060=item json => $cb->($handle, $hash_or_arrayref) 1166=item json => $cb->($handle, $hash_or_arrayref)
1061 1167
1062Reads a JSON object or array, decodes it and passes it to the callback. 1168Reads a JSON object or array, decodes it and passes it to the
1169callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1170
1064If a C<json> object was passed to the constructor, then that will be used 1171If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1172for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1173
1067This read type uses the incremental parser available with JSON version 1174This read type uses the incremental parser available with JSON version
1084 my $rbuf = \$self->{rbuf}; 1191 my $rbuf = \$self->{rbuf};
1085 1192
1086 my $json = $self->{json} ||= JSON->new->utf8; 1193 my $json = $self->{json} ||= JSON->new->utf8;
1087 1194
1088 sub { 1195 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1196 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1197
1091 if ($ref) { 1198 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1199 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1200 $json->incr_text = "";
1094 $cb->($self, $ref); 1201 $cb->($self, $ref);
1095 1202
1096 1 1203 1
1204 } elsif ($@) {
1205 # error case
1206 $json->incr_skip;
1207
1208 $self->{rbuf} = $json->incr_text;
1209 $json->incr_text = "";
1210
1211 $self->_error (&Errno::EBADMSG);
1212
1213 ()
1097 } else { 1214 } else {
1098 $self->{rbuf} = ""; 1215 $self->{rbuf} = "";
1216
1099 () 1217 ()
1100 } 1218 }
1101 } 1219 }
1102}; 1220};
1103 1221
1116 1234
1117 require Storable; 1235 require Storable;
1118 1236
1119 sub { 1237 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1238 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1239 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1240 or return;
1123 1241
1242 my $format = length pack "w", $len;
1243
1244 # bypass unshift if we already have the remaining chunk
1245 if ($format + $len <= length $_[0]{rbuf}) {
1246 my $data = substr $_[0]{rbuf}, $format, $len;
1247 substr $_[0]{rbuf}, 0, $format + $len, "";
1248 $cb->($_[0], Storable::thaw ($data));
1249 } else {
1124 # remove prefix 1250 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1251 substr $_[0]{rbuf}, 0, $format, "";
1126 1252
1127 # read rest 1253 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1254 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1255 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1256 $cb->($_[0], $ref);
1131 } else { 1257 } else {
1132 $self->_error (&Errno::EBADMSG); 1258 $self->_error (&Errno::EBADMSG);
1259 }
1133 } 1260 });
1134 }); 1261 }
1262
1263 1
1135 } 1264 }
1136}; 1265};
1137 1266
1138=back 1267=back
1139 1268
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1298Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1299you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1300will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1301there are any read requests in the queue.
1173 1302
1303These methods will have no effect when in TLS mode (as TLS doesn't support
1304half-duplex connections).
1305
1174=cut 1306=cut
1175 1307
1176sub stop_read { 1308sub stop_read {
1177 my ($self) = @_; 1309 my ($self) = @_;
1178 1310
1179 delete $self->{_rw}; 1311 delete $self->{_rw} unless $self->{tls};
1180} 1312}
1181 1313
1182sub start_read { 1314sub start_read {
1183 my ($self) = @_; 1315 my ($self) = @_;
1184 1316
1185 unless ($self->{_rw} || $self->{_eof}) { 1317 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1318 Scalar::Util::weaken $self;
1187 1319
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1320 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1321 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1322 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1323
1192 if ($len > 0) { 1324 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1325 $self->{_activity} = AnyEvent->now;
1194 1326
1195 $self->{filter_r} 1327 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1328 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1329
1330 &_dotls ($self);
1331 } else {
1332 $self->_drain_rbuf unless $self->{_in_drain};
1333 }
1198 1334
1199 } elsif (defined $len) { 1335 } elsif (defined $len) {
1200 delete $self->{_rw}; 1336 delete $self->{_rw};
1201 $self->{_eof} = 1; 1337 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1338 $self->_drain_rbuf unless $self->{_in_drain};
1206 } 1342 }
1207 }); 1343 });
1208 } 1344 }
1209} 1345}
1210 1346
1347# poll the write BIO and send the data if applicable
1211sub _dotls { 1348sub _dotls {
1212 my ($self) = @_; 1349 my ($self) = @_;
1213 1350
1214 my $buf; 1351 my $tmp;
1215 1352
1216 if (length $self->{_tls_wbuf}) { 1353 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1354 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1355 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1356 }
1220 } 1357 }
1221 1358
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf;
1224 $self->_drain_wbuf;
1225 }
1226
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1359 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1228 if (length $buf) { 1360 unless (length $tmp) {
1229 $self->{rbuf} .= $buf;
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF 1361 # let's treat SSL-eof as we treat normal EOF
1362 delete $self->{_rw};
1233 $self->{_eof} = 1; 1363 $self->{_eof} = 1;
1234 $self->_shutdown; 1364 &_freetls;
1235 return;
1236 } 1365 }
1237 }
1238 1366
1367 $self->{_tls_rbuf} .= $tmp;
1368 $self->_drain_rbuf unless $self->{_in_drain};
1369 $self->{tls} or return; # tls session might have gone away in callback
1370 }
1371
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1); 1372 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1240 1373
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) { 1374 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) { 1375 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1); 1376 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) { 1377 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1); 1378 return $self->_error (&Errno::EIO, 1);
1246 } 1379 }
1247 1380
1248 # all others are fine for our purposes 1381 # all other errors are fine for our purposes
1382 }
1383
1384 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1385 $self->{wbuf} .= $tmp;
1386 $self->_drain_wbuf;
1249 } 1387 }
1250} 1388}
1251 1389
1252=item $handle->starttls ($tls[, $tls_ctx]) 1390=item $handle->starttls ($tls[, $tls_ctx])
1253 1391
1256C<starttls>. 1394C<starttls>.
1257 1395
1258The first argument is the same as the C<tls> constructor argument (either 1396The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1397C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1398
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1399The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1400when AnyEvent::Handle has to create its own TLS connection object, or
1401a hash reference with C<< key => value >> pairs that will be used to
1402construct a new context.
1263 1403
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1404The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1405context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1406changed to your liking. Note that the handshake might have already started
1407when this function returns.
1408
1409If it an error to start a TLS handshake more than once per
1410AnyEvent::Handle object (this is due to bugs in OpenSSL).
1267 1411
1268=cut 1412=cut
1269 1413
1270sub starttls { 1414sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1415 my ($self, $ssl, $ctx) = @_;
1272 1416
1273 $self->stoptls; 1417 require Net::SSLeay;
1274 1418
1275 if ($ssl eq "accept") { 1419 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1420 if $self->{tls};
1277 Net::SSLeay::set_accept_state ($ssl); 1421
1278 } elsif ($ssl eq "connect") { 1422 $ctx ||= $self->{tls_ctx};
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1423
1280 Net::SSLeay::set_connect_state ($ssl); 1424 if ("HASH" eq ref $ctx) {
1425 require AnyEvent::TLS;
1426
1427 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1428 $ctx = new AnyEvent::TLS %$ctx;
1429 }
1281 } 1430
1282 1431 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1432 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self);
1284 1433
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1434 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1435 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1436 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1437 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1438 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1439 #
1440 # in short: this is a mess.
1441 #
1442 # note that we do not try to keep the length constant between writes as we are required to do.
1443 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1444 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1445 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1446# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1447# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1448# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1449 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1293 1450
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1451 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1452 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1453
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1454 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 1455
1299 $self->{filter_w} = sub { 1456 &_dotls; # need to trigger the initial handshake
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1457 $self->start_read; # make sure we actually do read
1301 &_dotls;
1302 };
1303 $self->{filter_r} = sub {
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1458}
1308 1459
1309=item $handle->stoptls 1460=item $handle->stoptls
1310 1461
1311Destroys the SSL connection, if any. Partial read or write data will be 1462Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1463sending a close notify to the other side, but since OpenSSL doesn't
1464support non-blocking shut downs, it is not possible to re-use the stream
1465afterwards.
1313 1466
1314=cut 1467=cut
1315 1468
1316sub stoptls { 1469sub stoptls {
1317 my ($self) = @_; 1470 my ($self) = @_;
1318 1471
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1472 if ($self->{tls}) {
1473 Net::SSLeay::shutdown ($self->{tls});
1320 1474
1321 delete $self->{_rbio}; 1475 &_dotls;
1322 delete $self->{_wbio}; 1476
1323 delete $self->{_tls_wbuf}; 1477 # we don't give a shit. no, we do, but we can't. no...
1324 delete $self->{filter_r}; 1478 # we, we... have to use openssl :/
1325 delete $self->{filter_w}; 1479 &_freetls;
1480 }
1481}
1482
1483sub _freetls {
1484 my ($self) = @_;
1485
1486 return unless $self->{tls};
1487
1488 $self->{tls_ctx}->_put_session (delete $self->{tls});
1489
1490 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1326} 1491}
1327 1492
1328sub DESTROY { 1493sub DESTROY {
1329 my $self = shift; 1494 my ($self) = @_;
1330 1495
1331 $self->stoptls; 1496 &_freetls;
1332 1497
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1498 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1499
1335 if ($linger && length $self->{wbuf}) { 1500 if ($linger && length $self->{wbuf}) {
1336 my $fh = delete $self->{fh}; 1501 my $fh = delete $self->{fh};
1351 @linger = (); 1516 @linger = ();
1352 }); 1517 });
1353 } 1518 }
1354} 1519}
1355 1520
1521=item $handle->destroy
1522
1523Shuts down the handle object as much as possible - this call ensures that
1524no further callbacks will be invoked and resources will be freed as much
1525as possible. You must not call any methods on the object afterwards.
1526
1527Normally, you can just "forget" any references to an AnyEvent::Handle
1528object and it will simply shut down. This works in fatal error and EOF
1529callbacks, as well as code outside. It does I<NOT> work in a read or write
1530callback, so when you want to destroy the AnyEvent::Handle object from
1531within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1532that case.
1533
1534The handle might still linger in the background and write out remaining
1535data, as specified by the C<linger> option, however.
1536
1537=cut
1538
1539sub destroy {
1540 my ($self) = @_;
1541
1542 $self->DESTROY;
1543 %$self = ();
1544}
1545
1356=item AnyEvent::Handle::TLS_CTX 1546=item AnyEvent::Handle::TLS_CTX
1357 1547
1358This function creates and returns the Net::SSLeay::CTX object used by 1548This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1549for TLS mode.
1360 1550
1361The context is created like this: 1551The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1552
1371=cut 1553=cut
1372 1554
1373our $TLS_CTX; 1555our $TLS_CTX;
1374 1556
1375sub TLS_CTX() { 1557sub TLS_CTX() {
1376 $TLS_CTX || do { 1558 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1559 require AnyEvent::TLS;
1378 1560
1379 Net::SSLeay::load_error_strings (); 1561 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1562 }
1389} 1563}
1390 1564
1391=back 1565=back
1566
1567
1568=head1 NONFREQUENTLY ASKED QUESTIONS
1569
1570=over 4
1571
1572=item I C<undef> the AnyEvent::Handle reference inside my callback and
1573still get further invocations!
1574
1575That's because AnyEvent::Handle keeps a reference to itself when handling
1576read or write callbacks.
1577
1578It is only safe to "forget" the reference inside EOF or error callbacks,
1579from within all other callbacks, you need to explicitly call the C<<
1580->destroy >> method.
1581
1582=item I get different callback invocations in TLS mode/Why can't I pause
1583reading?
1584
1585Unlike, say, TCP, TLS connections do not consist of two independent
1586communication channels, one for each direction. Or put differently. The
1587read and write directions are not independent of each other: you cannot
1588write data unless you are also prepared to read, and vice versa.
1589
1590This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1591callback invocations when you are not expecting any read data - the reason
1592is that AnyEvent::Handle always reads in TLS mode.
1593
1594During the connection, you have to make sure that you always have a
1595non-empty read-queue, or an C<on_read> watcher. At the end of the
1596connection (or when you no longer want to use it) you can call the
1597C<destroy> method.
1598
1599=item How do I read data until the other side closes the connection?
1600
1601If you just want to read your data into a perl scalar, the easiest way
1602to achieve this is by setting an C<on_read> callback that does nothing,
1603clearing the C<on_eof> callback and in the C<on_error> callback, the data
1604will be in C<$_[0]{rbuf}>:
1605
1606 $handle->on_read (sub { });
1607 $handle->on_eof (undef);
1608 $handle->on_error (sub {
1609 my $data = delete $_[0]{rbuf};
1610 undef $handle;
1611 });
1612
1613The reason to use C<on_error> is that TCP connections, due to latencies
1614and packets loss, might get closed quite violently with an error, when in
1615fact, all data has been received.
1616
1617It is usually better to use acknowledgements when transferring data,
1618to make sure the other side hasn't just died and you got the data
1619intact. This is also one reason why so many internet protocols have an
1620explicit QUIT command.
1621
1622=item I don't want to destroy the handle too early - how do I wait until
1623all data has been written?
1624
1625After writing your last bits of data, set the C<on_drain> callback
1626and destroy the handle in there - with the default setting of
1627C<low_water_mark> this will be called precisely when all data has been
1628written to the socket:
1629
1630 $handle->push_write (...);
1631 $handle->on_drain (sub {
1632 warn "all data submitted to the kernel\n";
1633 undef $handle;
1634 });
1635
1636=back
1637
1392 1638
1393=head1 SUBCLASSING AnyEvent::Handle 1639=head1 SUBCLASSING AnyEvent::Handle
1394 1640
1395In many cases, you might want to subclass AnyEvent::Handle. 1641In many cases, you might want to subclass AnyEvent::Handle.
1396 1642
1400=over 4 1646=over 4
1401 1647
1402=item * all constructor arguments become object members. 1648=item * all constructor arguments become object members.
1403 1649
1404At least initially, when you pass a C<tls>-argument to the constructor it 1650At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 1651will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 1652mutated later on (for example C<tls> will hold the TLS connection object).
1407 1653
1408=item * other object member names are prefixed with an C<_>. 1654=item * other object member names are prefixed with an C<_>.
1409 1655
1410All object members not explicitly documented (internal use) are prefixed 1656All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines