ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.43 by root, Wed May 28 23:57:38 2008 UTC vs.
Revision 1.134 by root, Fri Jul 3 00:09:04 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
10use Fcntl (); 10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 11use Errno qw(EAGAIN EINTR);
12use Time::HiRes qw(time);
13 12
14=head1 NAME 13=head1 NAME
15 14
16AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
17 16
18=cut 17=cut
19 18
20our $VERSION = '0.04'; 19our $VERSION = 4.45;
21 20
22=head1 SYNOPSIS 21=head1 SYNOPSIS
23 22
24 use AnyEvent; 23 use AnyEvent;
25 use AnyEvent::Handle; 24 use AnyEvent::Handle;
28 27
29 my $handle = 28 my $handle =
30 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
31 fh => \*STDIN, 30 fh => \*STDIN,
32 on_eof => sub { 31 on_eof => sub {
33 $cv->broadcast; 32 $cv->send;
34 }, 33 },
35 ); 34 );
36 35
37 # send some request line 36 # send some request line
38 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
50 49
51This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
52filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
53on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
54 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
55In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
56means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
57treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
58 60
59All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
61 63
62=head1 METHODS 64=head1 METHODS
63 65
64=over 4 66=over 4
65 67
66=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
67 69
68The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
69 71
70=over 4 72=over 4
71 73
72=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
73 75
74The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
75 77
76NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
77AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
78 81
79=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
80 83
81Set the callback to be called on EOF. 84Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the
86connection cleanly.
82 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
83While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
84otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
85waiting for data. 95waiting for data.
86 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
87=item on_error => $cb->($handle) 100=item on_error => $cb->($handle, $fatal, $message)
88 101
89This is the fatal error callback, that is called when, well, a fatal error 102This is the error callback, which is called when, well, some error
90occurs, such as not being able to resolve the hostname, failure to connect 103occured, such as not being able to resolve the hostname, failure to
91or a read error. 104connect or a read error.
92 105
93The object will not be in a usable state when this callback has been 106Some errors are fatal (which is indicated by C<$fatal> being true). On
94called. 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
117Non-fatal errors can be retried by simply returning, but it is recommended
118to simply ignore this parameter and instead abondon the handle object
119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
95 121
96On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
97error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
98 124C<EPROTO>).
99The callback should throw an exception. If it returns, then
100AnyEvent::Handle will C<croak> for you.
101 125
102While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
103you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
104die. 128C<croak>.
105 129
106=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
107 131
108This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
109and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
110 136
111To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
112method or access the C<$handle->{rbuf}> member directly. 138method or access the C<$handle->{rbuf}> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
113 141
114When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
115feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
116calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
117error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
121This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
122(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
123 151
124To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
125 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
126=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
127 161
128If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
129seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
130handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
131missing, an C<ETIMEDOUT> errror will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
132 166
133Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
134any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
135idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
136in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
137 172
138Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
139 174
140=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
141 176
145 180
146=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
147 182
148If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
149when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
150avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
151 186
152For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
153be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
154(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
155amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
156isn't finished). 191isn't finished).
157 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
158=item read_size => <bytes> 219=item read_size => <bytes>
159 220
160The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
161on each [loop iteration). Default: C<4096>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
162 224
163=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
164 226
165Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
166buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
167considered empty. 229considered empty.
168 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254common name verification (see C<verify_cn> in L<AnyEvent::TLS>).
255
169=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
170 257
171When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
172will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
173data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
174 264
175TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
176automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
177 269
178For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
179connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
180 273
181You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
182to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
183or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
184AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
185 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
186See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
187 290
188=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
189 292
190Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
191(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
192missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
193 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
194=item json => JSON or JSON::XS object 301=item json => JSON or JSON::XS object
195 302
196This is the json coder object used by the C<json> read and write types. 303This is the json coder object used by the C<json> read and write types.
197 304
198If you don't supply it, then AnyEvent::Handle will create and use a 305If you don't supply it, then AnyEvent::Handle will create and use a
199suitable one, which will write and expect UTF-8 encoded JSON texts. 306suitable one (on demand), which will write and expect UTF-8 encoded JSON
307texts.
200 308
201Note that you are responsible to depend on the JSON module if you want to 309Note that you are responsible to depend on the JSON module if you want to
202use this functionality, as AnyEvent does not have a dependency itself. 310use this functionality, as AnyEvent does not have a dependency itself.
203 311
204=item filter_r => $cb
205
206=item filter_w => $cb
207
208These exist, but are undocumented at this time.
209
210=back 312=back
211 313
212=cut 314=cut
213 315
214sub new { 316sub new {
215 my $class = shift; 317 my $class = shift;
216
217 my $self = bless { @_ }, $class; 318 my $self = bless { @_ }, $class;
218 319
219 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 320 $self->{fh} or Carp::croak "mandatory argument fh is missing";
220 321
221 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 322 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
222 323
223 if ($self->{tls}) {
224 require Net::SSLeay;
225 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
226 }
227
228# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
229# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
230# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
231 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
232
233 $self->{_activity} = time; 324 $self->{_activity} = AnyEvent->now;
234 $self->_timeout; 325 $self->_timeout;
235 326
327 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328
329 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330 if $self->{tls};
331
332 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
333
236 $self->start_read; 334 $self->start_read
335 if $self->{on_read};
237 336
238 $self 337 $self->{fh} && $self
239} 338}
240 339
241sub _shutdown { 340sub _shutdown {
242 my ($self) = @_; 341 my ($self) = @_;
243 342
244 delete $self->{_rw}; 343 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
245 delete $self->{_ww}; 344 $self->{_eof} = 1; # tell starttls et. al to stop trying
246 delete $self->{fh};
247}
248 345
346 &_freetls;
347}
348
249sub error { 349sub _error {
250 my ($self) = @_; 350 my ($self, $errno, $fatal, $message) = @_;
251 351
252 {
253 local $!;
254 $self->_shutdown; 352 $self->_shutdown
255 } 353 if $fatal;
256 354
257 $self->{on_error}($self) 355 $! = $errno;
356 $message ||= "$!";
357
258 if $self->{on_error}; 358 if ($self->{on_error}) {
259 359 $self->{on_error}($self, $fatal, $message);
360 } elsif ($self->{fh}) {
260 Carp::croak "AnyEvent::Handle uncaught fatal error: $!"; 361 Carp::croak "AnyEvent::Handle uncaught error: $message";
362 }
261} 363}
262 364
263=item $fh = $handle->fh 365=item $fh = $handle->fh
264 366
265This method returns the file handle of the L<AnyEvent::Handle> object. 367This method returns the file handle used to create the L<AnyEvent::Handle> object.
266 368
267=cut 369=cut
268 370
269sub fh { $_[0]{fh} } 371sub fh { $_[0]{fh} }
270 372
288 $_[0]{on_eof} = $_[1]; 390 $_[0]{on_eof} = $_[1];
289} 391}
290 392
291=item $handle->on_timeout ($cb) 393=item $handle->on_timeout ($cb)
292 394
293Replace the current C<on_timeout> callback, or disables the callback 395Replace the current C<on_timeout> callback, or disables the callback (but
294(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 396not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
295argument. 397argument and method.
296 398
297=cut 399=cut
298 400
299sub on_timeout { 401sub on_timeout {
300 $_[0]{on_timeout} = $_[1]; 402 $_[0]{on_timeout} = $_[1];
403}
404
405=item $handle->autocork ($boolean)
406
407Enables or disables the current autocork behaviour (see C<autocork>
408constructor argument). Changes will only take effect on the next write.
409
410=cut
411
412sub autocork {
413 $_[0]{autocork} = $_[1];
414}
415
416=item $handle->no_delay ($boolean)
417
418Enables or disables the C<no_delay> setting (see constructor argument of
419the same name for details).
420
421=cut
422
423sub no_delay {
424 $_[0]{no_delay} = $_[1];
425
426 eval {
427 local $SIG{__DIE__};
428 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
429 };
301} 430}
302 431
303############################################################################# 432#############################################################################
304 433
305=item $handle->timeout ($seconds) 434=item $handle->timeout ($seconds)
319# also check for time-outs 448# also check for time-outs
320sub _timeout { 449sub _timeout {
321 my ($self) = @_; 450 my ($self) = @_;
322 451
323 if ($self->{timeout}) { 452 if ($self->{timeout}) {
324 my $NOW = time; 453 my $NOW = AnyEvent->now;
325 454
326 # when would the timeout trigger? 455 # when would the timeout trigger?
327 my $after = $self->{_activity} + $self->{timeout} - $NOW; 456 my $after = $self->{_activity} + $self->{timeout} - $NOW;
328
329 warn "next to in $after\n";#d#
330 457
331 # now or in the past already? 458 # now or in the past already?
332 if ($after <= 0) { 459 if ($after <= 0) {
333 $self->{_activity} = $NOW; 460 $self->{_activity} = $NOW;
334 461
335 if ($self->{on_timeout}) { 462 if ($self->{on_timeout}) {
336 $self->{on_timeout}->($self); 463 $self->{on_timeout}($self);
337 } else { 464 } else {
338 $! = Errno::ETIMEDOUT; 465 $self->_error (&Errno::ETIMEDOUT);
339 $self->error;
340 } 466 }
341 467
342 # callbakx could have changed timeout value, optimise 468 # callback could have changed timeout value, optimise
343 return unless $self->{timeout}; 469 return unless $self->{timeout};
344 470
345 # calculate new after 471 # calculate new after
346 $after = $self->{timeout}; 472 $after = $self->{timeout};
347 } 473 }
348 474
349 Scalar::Util::weaken $self; 475 Scalar::Util::weaken $self;
476 return unless $self; # ->error could have destroyed $self
350 477
351 warn "after $after\n";#d#
352 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 478 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
353 delete $self->{_tw}; 479 delete $self->{_tw};
354 $self->_timeout; 480 $self->_timeout;
355 }); 481 });
356 } else { 482 } else {
386 my ($self, $cb) = @_; 512 my ($self, $cb) = @_;
387 513
388 $self->{on_drain} = $cb; 514 $self->{on_drain} = $cb;
389 515
390 $cb->($self) 516 $cb->($self)
391 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 517 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
392} 518}
393 519
394=item $handle->push_write ($data) 520=item $handle->push_write ($data)
395 521
396Queues the given scalar to be written. You can push as much data as you 522Queues the given scalar to be written. You can push as much data as you
410 my $len = syswrite $self->{fh}, $self->{wbuf}; 536 my $len = syswrite $self->{fh}, $self->{wbuf};
411 537
412 if ($len >= 0) { 538 if ($len >= 0) {
413 substr $self->{wbuf}, 0, $len, ""; 539 substr $self->{wbuf}, 0, $len, "";
414 540
415 $self->{_activity} = time; 541 $self->{_activity} = AnyEvent->now;
416 542
417 $self->{on_drain}($self) 543 $self->{on_drain}($self)
418 if $self->{low_water_mark} >= length $self->{wbuf} 544 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
419 && $self->{on_drain}; 545 && $self->{on_drain};
420 546
421 delete $self->{_ww} unless length $self->{wbuf}; 547 delete $self->{_ww} unless length $self->{wbuf};
422 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
423 $self->error; 549 $self->_error ($!, 1);
424 } 550 }
425 }; 551 };
426 552
427 # try to write data immediately 553 # try to write data immediately
428 $cb->(); 554 $cb->() unless $self->{autocork};
429 555
430 # if still data left in wbuf, we need to poll 556 # if still data left in wbuf, we need to poll
431 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 557 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
432 if length $self->{wbuf}; 558 if length $self->{wbuf};
433 }; 559 };
447 573
448 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 574 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
449 ->($self, @_); 575 ->($self, @_);
450 } 576 }
451 577
452 if ($self->{filter_w}) { 578 if ($self->{tls}) {
453 $self->{filter_w}->($self, \$_[0]); 579 $self->{_tls_wbuf} .= $_[0];
580
581 &_dotls ($self);
454 } else { 582 } else {
455 $self->{wbuf} .= $_[0]; 583 $self->{wbuf} .= $_[0];
456 $self->_drain_wbuf; 584 $self->_drain_wbuf;
457 } 585 }
458} 586}
459 587
460=item $handle->push_write (type => @args) 588=item $handle->push_write (type => @args)
461 589
462=item $handle->unshift_write (type => @args)
463
464Instead of formatting your data yourself, you can also let this module do 590Instead of formatting your data yourself, you can also let this module do
465the job by specifying a type and type-specific arguments. 591the job by specifying a type and type-specific arguments.
466 592
467Predefined types are (if you have ideas for additional types, feel free to 593Predefined types are (if you have ideas for additional types, feel free to
468drop by and tell us): 594drop by and tell us):
472=item netstring => $string 598=item netstring => $string
473 599
474Formats the given value as netstring 600Formats the given value as netstring
475(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them). 601(http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
476 602
477=back
478
479=cut 603=cut
480 604
481register_write_type netstring => sub { 605register_write_type netstring => sub {
482 my ($self, $string) = @_; 606 my ($self, $string) = @_;
483 607
484 sprintf "%d:%s,", (length $string), $string 608 (length $string) . ":$string,"
609};
610
611=item packstring => $format, $data
612
613An octet string prefixed with an encoded length. The encoding C<$format>
614uses the same format as a Perl C<pack> format, but must specify a single
615integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
616optional C<!>, C<< < >> or C<< > >> modifier).
617
618=cut
619
620register_write_type packstring => sub {
621 my ($self, $format, $string) = @_;
622
623 pack "$format/a*", $string
485}; 624};
486 625
487=item json => $array_or_hashref 626=item json => $array_or_hashref
488 627
489Encodes the given hash or array reference into a JSON object. Unless you 628Encodes the given hash or array reference into a JSON object. Unless you
523 662
524 $self->{json} ? $self->{json}->encode ($ref) 663 $self->{json} ? $self->{json}->encode ($ref)
525 : JSON::encode_json ($ref) 664 : JSON::encode_json ($ref)
526}; 665};
527 666
667=item storable => $reference
668
669Freezes the given reference using L<Storable> and writes it to the
670handle. Uses the C<nfreeze> format.
671
672=cut
673
674register_write_type storable => sub {
675 my ($self, $ref) = @_;
676
677 require Storable;
678
679 pack "w/a*", Storable::nfreeze ($ref)
680};
681
682=back
683
684=item $handle->push_shutdown
685
686Sometimes you know you want to close the socket after writing your data
687before it was actually written. One way to do that is to replace your
688C<on_drain> handler by a callback that shuts down the socket. This method
689is a shorthand for just that, and replaces the C<on_drain> callback with:
690
691 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692
693This simply shuts down the write side and signals an EOF condition to the
694the peer.
695
696You can rely on the normal read queue and C<on_eof> handling
697afterwards. This is the cleanest way to close a connection.
698
699=cut
700
701sub push_shutdown {
702 $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703}
704
528=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 705=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
529 706
530This function (not method) lets you add your own types to C<push_write>. 707This function (not method) lets you add your own types to C<push_write>.
531Whenever the given C<type> is used, C<push_write> will invoke the code 708Whenever the given C<type> is used, C<push_write> will invoke the code
532reference with the handle object and the remaining arguments. 709reference with the handle object and the remaining arguments.
552ways, the "simple" way, using only C<on_read> and the "complex" way, using 729ways, the "simple" way, using only C<on_read> and the "complex" way, using
553a queue. 730a queue.
554 731
555In the simple case, you just install an C<on_read> callback and whenever 732In the simple case, you just install an C<on_read> callback and whenever
556new data arrives, it will be called. You can then remove some data (if 733new data arrives, it will be called. You can then remove some data (if
557enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 734enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
558or not. 735leave the data there if you want to accumulate more (e.g. when only a
736partial message has been received so far).
559 737
560In the more complex case, you want to queue multiple callbacks. In this 738In the more complex case, you want to queue multiple callbacks. In this
561case, AnyEvent::Handle will call the first queued callback each time new 739case, AnyEvent::Handle will call the first queued callback each time new
562data arrives and removes it when it has done its job (see C<push_read>, 740data arrives (also the first time it is queued) and removes it when it has
563below). 741done its job (see C<push_read>, below).
564 742
565This way you can, for example, push three line-reads, followed by reading 743This way you can, for example, push three line-reads, followed by reading
566a chunk of data, and AnyEvent::Handle will execute them in order. 744a chunk of data, and AnyEvent::Handle will execute them in order.
567 745
568Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 746Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
569the specified number of bytes which give an XML datagram. 747the specified number of bytes which give an XML datagram.
570 748
571 # in the default state, expect some header bytes 749 # in the default state, expect some header bytes
572 $handle->on_read (sub { 750 $handle->on_read (sub {
573 # some data is here, now queue the length-header-read (4 octets) 751 # some data is here, now queue the length-header-read (4 octets)
574 shift->unshift_read_chunk (4, sub { 752 shift->unshift_read (chunk => 4, sub {
575 # header arrived, decode 753 # header arrived, decode
576 my $len = unpack "N", $_[1]; 754 my $len = unpack "N", $_[1];
577 755
578 # now read the payload 756 # now read the payload
579 shift->unshift_read_chunk ($len, sub { 757 shift->unshift_read (chunk => $len, sub {
580 my $xml = $_[1]; 758 my $xml = $_[1];
581 # handle xml 759 # handle xml
582 }); 760 });
583 }); 761 });
584 }); 762 });
585 763
586Example 2: Implement a client for a protocol that replies either with 764Example 2: Implement a client for a protocol that replies either with "OK"
587"OK" and another line or "ERROR" for one request, and 64 bytes for the 765and another line or "ERROR" for the first request that is sent, and 64
588second request. Due tot he availability of a full queue, we can just 766bytes for the second request. Due to the availability of a queue, we can
589pipeline sending both requests and manipulate the queue as necessary in 767just pipeline sending both requests and manipulate the queue as necessary
590the callbacks: 768in the callbacks.
591 769
592 # request one 770When the first callback is called and sees an "OK" response, it will
771C<unshift> another line-read. This line-read will be queued I<before> the
77264-byte chunk callback.
773
774 # request one, returns either "OK + extra line" or "ERROR"
593 $handle->push_write ("request 1\015\012"); 775 $handle->push_write ("request 1\015\012");
594 776
595 # we expect "ERROR" or "OK" as response, so push a line read 777 # we expect "ERROR" or "OK" as response, so push a line read
596 $handle->push_read_line (sub { 778 $handle->push_read (line => sub {
597 # if we got an "OK", we have to _prepend_ another line, 779 # if we got an "OK", we have to _prepend_ another line,
598 # so it will be read before the second request reads its 64 bytes 780 # so it will be read before the second request reads its 64 bytes
599 # which are already in the queue when this callback is called 781 # which are already in the queue when this callback is called
600 # we don't do this in case we got an error 782 # we don't do this in case we got an error
601 if ($_[1] eq "OK") { 783 if ($_[1] eq "OK") {
602 $_[0]->unshift_read_line (sub { 784 $_[0]->unshift_read (line => sub {
603 my $response = $_[1]; 785 my $response = $_[1];
604 ... 786 ...
605 }); 787 });
606 } 788 }
607 }); 789 });
608 790
609 # request two 791 # request two, simply returns 64 octets
610 $handle->push_write ("request 2\015\012"); 792 $handle->push_write ("request 2\015\012");
611 793
612 # simply read 64 bytes, always 794 # simply read 64 bytes, always
613 $handle->push_read_chunk (64, sub { 795 $handle->push_read (chunk => 64, sub {
614 my $response = $_[1]; 796 my $response = $_[1];
615 ... 797 ...
616 }); 798 });
617 799
618=over 4 800=over 4
619 801
620=cut 802=cut
621 803
622sub _drain_rbuf { 804sub _drain_rbuf {
623 my ($self) = @_; 805 my ($self) = @_;
806
807 local $self->{_in_drain} = 1;
624 808
625 if ( 809 if (
626 defined $self->{rbuf_max} 810 defined $self->{rbuf_max}
627 && $self->{rbuf_max} < length $self->{rbuf} 811 && $self->{rbuf_max} < length $self->{rbuf}
628 ) { 812 ) {
629 $! = &Errno::ENOSPC; 813 $self->_error (&Errno::ENOSPC, 1), return;
630 $self->error;
631 } 814 }
632 815
633 return if $self->{in_drain}; 816 while () {
634 local $self->{in_drain} = 1; 817 # we need to use a separate tls read buffer, as we must not receive data while
818 # we are draining the buffer, and this can only happen with TLS.
819 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
635 820
636 while (my $len = length $self->{rbuf}) { 821 my $len = length $self->{rbuf};
637 no strict 'refs'; 822
638 if (my $cb = shift @{ $self->{_queue} }) { 823 if (my $cb = shift @{ $self->{_queue} }) {
639 unless ($cb->($self)) { 824 unless ($cb->($self)) {
640 if ($self->{_eof}) { 825 if ($self->{_eof}) {
641 # no progress can be made (not enough data and no data forthcoming) 826 # no progress can be made (not enough data and no data forthcoming)
642 $! = &Errno::EPIPE; 827 $self->_error (&Errno::EPIPE, 1), return;
643 $self->error;
644 } 828 }
645 829
646 unshift @{ $self->{_queue} }, $cb; 830 unshift @{ $self->{_queue} }, $cb;
647 return; 831 last;
648 } 832 }
649 } elsif ($self->{on_read}) { 833 } elsif ($self->{on_read}) {
834 last unless $len;
835
650 $self->{on_read}($self); 836 $self->{on_read}($self);
651 837
652 if ( 838 if (
653 $self->{_eof} # if no further data will arrive
654 && $len == length $self->{rbuf} # and no data has been consumed 839 $len == length $self->{rbuf} # if no data has been consumed
655 && !@{ $self->{_queue} } # and the queue is still empty 840 && !@{ $self->{_queue} } # and the queue is still empty
656 && $self->{on_read} # and we still want to read data 841 && $self->{on_read} # but we still have on_read
657 ) { 842 ) {
843 # no further data will arrive
658 # then no progress can be made 844 # so no progress can be made
659 $! = &Errno::EPIPE; 845 $self->_error (&Errno::EPIPE, 1), return
660 $self->error; 846 if $self->{_eof};
847
848 last; # more data might arrive
661 } 849 }
662 } else { 850 } else {
663 # read side becomes idle 851 # read side becomes idle
664 delete $self->{_rw}; 852 delete $self->{_rw} unless $self->{tls};
665 return; 853 last;
666 } 854 }
667 } 855 }
668 856
669 if ($self->{_eof}) { 857 if ($self->{_eof}) {
670 $self->_shutdown; 858 if ($self->{on_eof}) {
671 $self->{on_eof}($self) 859 $self->{on_eof}($self)
672 if $self->{on_eof}; 860 } else {
861 $self->_error (0, 1);
862 }
863 }
864
865 # may need to restart read watcher
866 unless ($self->{_rw}) {
867 $self->start_read
868 if $self->{on_read} || @{ $self->{_queue} };
673 } 869 }
674} 870}
675 871
676=item $handle->on_read ($cb) 872=item $handle->on_read ($cb)
677 873
683 879
684sub on_read { 880sub on_read {
685 my ($self, $cb) = @_; 881 my ($self, $cb) = @_;
686 882
687 $self->{on_read} = $cb; 883 $self->{on_read} = $cb;
884 $self->_drain_rbuf if $cb && !$self->{_in_drain};
688} 885}
689 886
690=item $handle->rbuf 887=item $handle->rbuf
691 888
692Returns the read buffer (as a modifiable lvalue). 889Returns the read buffer (as a modifiable lvalue).
693 890
694You can access the read buffer directly as the C<< ->{rbuf} >> member, if 891You can access the read buffer directly as the C<< ->{rbuf} >>
695you want. 892member, if you want. However, the only operation allowed on the
893read buffer (apart from looking at it) is removing data from its
894beginning. Otherwise modifying or appending to it is not allowed and will
895lead to hard-to-track-down bugs.
696 896
697NOTE: The read buffer should only be used or modified if the C<on_read>, 897NOTE: The read buffer should only be used or modified if the C<on_read>,
698C<push_read> or C<unshift_read> methods are used. The other read methods 898C<push_read> or C<unshift_read> methods are used. The other read methods
699automatically manage the read buffer. 899automatically manage the read buffer.
700 900
741 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 941 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
742 ->($self, $cb, @_); 942 ->($self, $cb, @_);
743 } 943 }
744 944
745 push @{ $self->{_queue} }, $cb; 945 push @{ $self->{_queue} }, $cb;
746 $self->_drain_rbuf; 946 $self->_drain_rbuf unless $self->{_in_drain};
747} 947}
748 948
749sub unshift_read { 949sub unshift_read {
750 my $self = shift; 950 my $self = shift;
751 my $cb = pop; 951 my $cb = pop;
757 ->($self, $cb, @_); 957 ->($self, $cb, @_);
758 } 958 }
759 959
760 960
761 unshift @{ $self->{_queue} }, $cb; 961 unshift @{ $self->{_queue} }, $cb;
762 $self->_drain_rbuf; 962 $self->_drain_rbuf unless $self->{_in_drain};
763} 963}
764 964
765=item $handle->push_read (type => @args, $cb) 965=item $handle->push_read (type => @args, $cb)
766 966
767=item $handle->unshift_read (type => @args, $cb) 967=item $handle->unshift_read (type => @args, $cb)
797 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 997 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
798 1 998 1
799 } 999 }
800}; 1000};
801 1001
802# compatibility with older API
803sub push_read_chunk {
804 $_[0]->push_read (chunk => $_[1], $_[2]);
805}
806
807sub unshift_read_chunk {
808 $_[0]->unshift_read (chunk => $_[1], $_[2]);
809}
810
811=item line => [$eol, ]$cb->($handle, $line, $eol) 1002=item line => [$eol, ]$cb->($handle, $line, $eol)
812 1003
813The callback will be called only once a full line (including the end of 1004The callback will be called only once a full line (including the end of
814line marker, C<$eol>) has been read. This line (excluding the end of line 1005line marker, C<$eol>) has been read. This line (excluding the end of line
815marker) will be passed to the callback as second argument (C<$line>), and 1006marker) will be passed to the callback as second argument (C<$line>), and
830=cut 1021=cut
831 1022
832register_read_type line => sub { 1023register_read_type line => sub {
833 my ($self, $cb, $eol) = @_; 1024 my ($self, $cb, $eol) = @_;
834 1025
835 $eol = qr|(\015?\012)| if @_ < 3; 1026 if (@_ < 3) {
836 $eol = quotemeta $eol unless ref $eol; 1027 # this is more than twice as fast as the generic code below
837 $eol = qr|^(.*?)($eol)|s;
838
839 sub { 1028 sub {
840 $_[0]{rbuf} =~ s/$eol// or return; 1029 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
841 1030
842 $cb->($_[0], $1, $2); 1031 $cb->($_[0], $1, $2);
843 1
844 }
845};
846
847# compatibility with older API
848sub push_read_line {
849 my $self = shift;
850 $self->push_read (line => @_);
851}
852
853sub unshift_read_line {
854 my $self = shift;
855 $self->unshift_read (line => @_);
856}
857
858=item netstring => $cb->($handle, $string)
859
860A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
861
862Throws an error with C<$!> set to EBADMSG on format violations.
863
864=cut
865
866register_read_type netstring => sub {
867 my ($self, $cb) = @_;
868
869 sub {
870 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
871 if ($_[0]{rbuf} =~ /[^0-9]/) {
872 $! = &Errno::EBADMSG;
873 $self->error;
874 } 1032 1
875 return;
876 } 1033 }
1034 } else {
1035 $eol = quotemeta $eol unless ref $eol;
1036 $eol = qr|^(.*?)($eol)|s;
877 1037
878 my $len = $1; 1038 sub {
1039 $_[0]{rbuf} =~ s/$eol// or return;
879 1040
880 $self->unshift_read (chunk => $len, sub { 1041 $cb->($_[0], $1, $2);
881 my $string = $_[1];
882 $_[0]->unshift_read (chunk => 1, sub {
883 if ($_[1] eq ",") {
884 $cb->($_[0], $string);
885 } else {
886 $! = &Errno::EBADMSG;
887 $self->error;
888 }
889 }); 1042 1
890 }); 1043 }
891
892 1
893 } 1044 }
894}; 1045};
895 1046
896=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1047=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
897 1048
949 return 1; 1100 return 1;
950 } 1101 }
951 1102
952 # reject 1103 # reject
953 if ($reject && $$rbuf =~ $reject) { 1104 if ($reject && $$rbuf =~ $reject) {
954 $! = &Errno::EBADMSG; 1105 $self->_error (&Errno::EBADMSG);
955 $self->error;
956 } 1106 }
957 1107
958 # skip 1108 # skip
959 if ($skip && $$rbuf =~ $skip) { 1109 if ($skip && $$rbuf =~ $skip) {
960 $data .= substr $$rbuf, 0, $+[0], ""; 1110 $data .= substr $$rbuf, 0, $+[0], "";
962 1112
963 () 1113 ()
964 } 1114 }
965}; 1115};
966 1116
1117=item netstring => $cb->($handle, $string)
1118
1119A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1120
1121Throws an error with C<$!> set to EBADMSG on format violations.
1122
1123=cut
1124
1125register_read_type netstring => sub {
1126 my ($self, $cb) = @_;
1127
1128 sub {
1129 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1130 if ($_[0]{rbuf} =~ /[^0-9]/) {
1131 $self->_error (&Errno::EBADMSG);
1132 }
1133 return;
1134 }
1135
1136 my $len = $1;
1137
1138 $self->unshift_read (chunk => $len, sub {
1139 my $string = $_[1];
1140 $_[0]->unshift_read (chunk => 1, sub {
1141 if ($_[1] eq ",") {
1142 $cb->($_[0], $string);
1143 } else {
1144 $self->_error (&Errno::EBADMSG);
1145 }
1146 });
1147 });
1148
1149 1
1150 }
1151};
1152
1153=item packstring => $format, $cb->($handle, $string)
1154
1155An octet string prefixed with an encoded length. The encoding C<$format>
1156uses the same format as a Perl C<pack> format, but must specify a single
1157integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1158optional C<!>, C<< < >> or C<< > >> modifier).
1159
1160For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161EPP uses a prefix of C<N> (4 octtes).
1162
1163Example: read a block of data prefixed by its length in BER-encoded
1164format (very efficient).
1165
1166 $handle->push_read (packstring => "w", sub {
1167 my ($handle, $data) = @_;
1168 });
1169
1170=cut
1171
1172register_read_type packstring => sub {
1173 my ($self, $cb, $format) = @_;
1174
1175 sub {
1176 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1177 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1178 or return;
1179
1180 $format = length pack $format, $len;
1181
1182 # bypass unshift if we already have the remaining chunk
1183 if ($format + $len <= length $_[0]{rbuf}) {
1184 my $data = substr $_[0]{rbuf}, $format, $len;
1185 substr $_[0]{rbuf}, 0, $format + $len, "";
1186 $cb->($_[0], $data);
1187 } else {
1188 # remove prefix
1189 substr $_[0]{rbuf}, 0, $format, "";
1190
1191 # read remaining chunk
1192 $_[0]->unshift_read (chunk => $len, $cb);
1193 }
1194
1195 1
1196 }
1197};
1198
967=item json => $cb->($handle, $hash_or_arrayref) 1199=item json => $cb->($handle, $hash_or_arrayref)
968 1200
969Reads a JSON object or array, decodes it and passes it to the callback. 1201Reads a JSON object or array, decodes it and passes it to the
1202callback. When a parse error occurs, an C<EBADMSG> error will be raised.
970 1203
971If a C<json> object was passed to the constructor, then that will be used 1204If a C<json> object was passed to the constructor, then that will be used
972for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1205for the final decode, otherwise it will create a JSON coder expecting UTF-8.
973 1206
974This read type uses the incremental parser available with JSON version 1207This read type uses the incremental parser available with JSON version
981the C<json> write type description, above, for an actual example. 1214the C<json> write type description, above, for an actual example.
982 1215
983=cut 1216=cut
984 1217
985register_read_type json => sub { 1218register_read_type json => sub {
986 my ($self, $cb, $accept, $reject, $skip) = @_; 1219 my ($self, $cb) = @_;
987 1220
988 require JSON; 1221 require JSON;
989 1222
990 my $data; 1223 my $data;
991 my $rbuf = \$self->{rbuf}; 1224 my $rbuf = \$self->{rbuf};
992 1225
993 my $json = $self->{json} ||= JSON->new->utf8; 1226 my $json = $self->{json} ||= JSON->new->utf8;
994 1227
995 sub { 1228 sub {
996 my $ref = $json->incr_parse ($self->{rbuf}); 1229 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
997 1230
998 if ($ref) { 1231 if ($ref) {
999 $self->{rbuf} = $json->incr_text; 1232 $self->{rbuf} = $json->incr_text;
1000 $json->incr_text = ""; 1233 $json->incr_text = "";
1001 $cb->($self, $ref); 1234 $cb->($self, $ref);
1002 1235
1003 1 1236 1
1237 } elsif ($@) {
1238 # error case
1239 $json->incr_skip;
1240
1241 $self->{rbuf} = $json->incr_text;
1242 $json->incr_text = "";
1243
1244 $self->_error (&Errno::EBADMSG);
1245
1246 ()
1004 } else { 1247 } else {
1005 $self->{rbuf} = ""; 1248 $self->{rbuf} = "";
1249
1006 () 1250 ()
1007 } 1251 }
1252 }
1253};
1254
1255=item storable => $cb->($handle, $ref)
1256
1257Deserialises a L<Storable> frozen representation as written by the
1258C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1259data).
1260
1261Raises C<EBADMSG> error if the data could not be decoded.
1262
1263=cut
1264
1265register_read_type storable => sub {
1266 my ($self, $cb) = @_;
1267
1268 require Storable;
1269
1270 sub {
1271 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1272 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1273 or return;
1274
1275 my $format = length pack "w", $len;
1276
1277 # bypass unshift if we already have the remaining chunk
1278 if ($format + $len <= length $_[0]{rbuf}) {
1279 my $data = substr $_[0]{rbuf}, $format, $len;
1280 substr $_[0]{rbuf}, 0, $format + $len, "";
1281 $cb->($_[0], Storable::thaw ($data));
1282 } else {
1283 # remove prefix
1284 substr $_[0]{rbuf}, 0, $format, "";
1285
1286 # read remaining chunk
1287 $_[0]->unshift_read (chunk => $len, sub {
1288 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1289 $cb->($_[0], $ref);
1290 } else {
1291 $self->_error (&Errno::EBADMSG);
1292 }
1293 });
1294 }
1295
1296 1
1008 } 1297 }
1009}; 1298};
1010 1299
1011=back 1300=back
1012 1301
1033=item $handle->stop_read 1322=item $handle->stop_read
1034 1323
1035=item $handle->start_read 1324=item $handle->start_read
1036 1325
1037In rare cases you actually do not want to read anything from the 1326In rare cases you actually do not want to read anything from the
1038socket. In this case you can call C<stop_read>. Neither C<on_read> no 1327socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1039any queued callbacks will be executed then. To start reading again, call 1328any queued callbacks will be executed then. To start reading again, call
1040C<start_read>. 1329C<start_read>.
1041 1330
1331Note that AnyEvent::Handle will automatically C<start_read> for you when
1332you change the C<on_read> callback or push/unshift a read callback, and it
1333will automatically C<stop_read> for you when neither C<on_read> is set nor
1334there are any read requests in the queue.
1335
1336These methods will have no effect when in TLS mode (as TLS doesn't support
1337half-duplex connections).
1338
1042=cut 1339=cut
1043 1340
1044sub stop_read { 1341sub stop_read {
1045 my ($self) = @_; 1342 my ($self) = @_;
1046 1343
1047 delete $self->{_rw}; 1344 delete $self->{_rw} unless $self->{tls};
1048} 1345}
1049 1346
1050sub start_read { 1347sub start_read {
1051 my ($self) = @_; 1348 my ($self) = @_;
1052 1349
1053 unless ($self->{_rw} || $self->{_eof}) { 1350 unless ($self->{_rw} || $self->{_eof}) {
1054 Scalar::Util::weaken $self; 1351 Scalar::Util::weaken $self;
1055 1352
1056 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1353 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1057 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1354 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1058 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1355 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1059 1356
1060 if ($len > 0) { 1357 if ($len > 0) {
1061 $self->{_activity} = time; 1358 $self->{_activity} = AnyEvent->now;
1062 1359
1063 $self->{filter_r} 1360 if ($self->{tls}) {
1064 ? $self->{filter_r}->($self, $rbuf) 1361 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1065 : $self->_drain_rbuf; 1362
1363 &_dotls ($self);
1364 } else {
1365 $self->_drain_rbuf unless $self->{_in_drain};
1366 }
1066 1367
1067 } elsif (defined $len) { 1368 } elsif (defined $len) {
1068 delete $self->{_rw}; 1369 delete $self->{_rw};
1069 delete $self->{_ww};
1070 delete $self->{_tw};
1071 $self->{_eof} = 1; 1370 $self->{_eof} = 1;
1072 $self->_drain_rbuf; 1371 $self->_drain_rbuf unless $self->{_in_drain};
1073 1372
1074 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1373 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1075 return $self->error; 1374 return $self->_error ($!, 1);
1076 } 1375 }
1077 }); 1376 });
1078 } 1377 }
1079} 1378}
1080 1379
1380our $ERROR_SYSCALL;
1381our $ERROR_WANT_READ;
1382our $ERROR_ZERO_RETURN;
1383
1384sub _tls_error {
1385 my ($self, $err) = @_;
1386 warn "$err,$!\n";#d#
1387
1388 return $self->_error ($!, 1)
1389 if $err == Net::SSLeay::ERROR_SYSCALL ();
1390
1391 $self->_error (&Errno::EPROTO, 1,
1392 Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ()));
1393}
1394
1395# poll the write BIO and send the data if applicable
1396# also decode read data if possible
1397# this is basiclaly our TLS state machine
1398# more efficient implementations are possible with openssl,
1399# but not with the buggy and incomplete Net::SSLeay.
1081sub _dotls { 1400sub _dotls {
1082 my ($self) = @_; 1401 my ($self) = @_;
1083 1402
1403 my $tmp;
1404
1084 if (length $self->{_tls_wbuf}) { 1405 if (length $self->{_tls_wbuf}) {
1085 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1406 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1086 substr $self->{_tls_wbuf}, 0, $len, ""; 1407 substr $self->{_tls_wbuf}, 0, $tmp, "";
1087 } 1408 }
1088 }
1089 1409
1410 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1411 return $self->_tls_error ($tmp)
1412 if $tmp != $ERROR_WANT_READ
1413 && ($tmp != $ERROR_SYSCALL || $!)
1414 && $tmp != $ERROR_ZERO_RETURN;
1415 }
1416
1417 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1418 unless (length $tmp) {
1419 # let's treat SSL-eof as we treat normal EOF
1420 delete $self->{_rw};
1421 $self->{_eof} = 1;
1422 &_freetls;
1423 }
1424
1425 $self->{_tls_rbuf} .= $tmp;
1426 $self->_drain_rbuf unless $self->{_in_drain};
1427 $self->{tls} or return; # tls session might have gone away in callback
1428 }
1429
1430 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1431 return $self->_tls_error ($tmp)
1432 if $tmp != $ERROR_WANT_READ
1433 && ($tmp != $ERROR_SYSCALL || $!)
1434 && $tmp != $ERROR_ZERO_RETURN;
1435
1090 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1436 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1091 $self->{wbuf} .= $buf; 1437 $self->{wbuf} .= $tmp;
1092 $self->_drain_wbuf; 1438 $self->_drain_wbuf;
1093 }
1094
1095 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
1096 $self->{rbuf} .= $buf;
1097 $self->_drain_rbuf;
1098 }
1099
1100 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1101
1102 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1103 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1104 $self->error;
1105 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1106 $! = &Errno::EIO;
1107 $self->error;
1108 }
1109
1110 # all others are fine for our purposes
1111 } 1439 }
1112} 1440}
1113 1441
1114=item $handle->starttls ($tls[, $tls_ctx]) 1442=item $handle->starttls ($tls[, $tls_ctx])
1115 1443
1118C<starttls>. 1446C<starttls>.
1119 1447
1120The first argument is the same as the C<tls> constructor argument (either 1448The first argument is the same as the C<tls> constructor argument (either
1121C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1449C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1122 1450
1123The second argument is the optional C<Net::SSLeay::CTX> object that is 1451The second argument is the optional C<AnyEvent::TLS> object that is used
1124used when AnyEvent::Handle has to create its own TLS connection object. 1452when AnyEvent::Handle has to create its own TLS connection object, or
1453a hash reference with C<< key => value >> pairs that will be used to
1454construct a new context.
1125 1455
1126The TLS connection object will end up in C<< $handle->{tls} >> after this 1456The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1127call and can be used or changed to your liking. Note that the handshake 1457context in C<< $handle->{tls_ctx} >> after this call and can be used or
1128might have already started when this function returns. 1458changed to your liking. Note that the handshake might have already started
1459when this function returns.
1129 1460
1130=cut 1461If it an error to start a TLS handshake more than once per
1462AnyEvent::Handle object (this is due to bugs in OpenSSL).
1131 1463
1132# TODO: maybe document... 1464=cut
1465
1133sub starttls { 1466sub starttls {
1134 my ($self, $ssl, $ctx) = @_; 1467 my ($self, $ssl, $ctx) = @_;
1135 1468
1136 $self->stoptls; 1469 require Net::SSLeay;
1137 1470
1138 if ($ssl eq "accept") { 1471 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1139 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1472 if $self->{tls};
1140 Net::SSLeay::set_accept_state ($ssl); 1473
1141 } elsif ($ssl eq "connect") { 1474 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1142 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1475 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1143 Net::SSLeay::set_connect_state ($ssl); 1476 $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1477
1478 $ctx ||= $self->{tls_ctx};
1479
1480 if ("HASH" eq ref $ctx) {
1481 require AnyEvent::TLS;
1482
1483 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1484 $ctx = new AnyEvent::TLS %$ctx;
1485 }
1144 } 1486
1145 1487 $self->{tls_ctx} = $ctx || TLS_CTX ();
1146 $self->{tls} = $ssl; 1488 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1147 1489
1148 # basically, this is deep magic (because SSL_read should have the same issues) 1490 # basically, this is deep magic (because SSL_read should have the same issues)
1149 # but the openssl maintainers basically said: "trust us, it just works". 1491 # but the openssl maintainers basically said: "trust us, it just works".
1150 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1492 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1151 # and mismaintained ssleay-module doesn't even offer them). 1493 # and mismaintained ssleay-module doesn't even offer them).
1152 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1494 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1495 #
1496 # in short: this is a mess.
1497 #
1498 # note that we do not try to keep the length constant between writes as we are required to do.
1499 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1500 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1501 # have identity issues in that area.
1153 Net::SSLeay::CTX_set_mode ($self->{tls}, 1502# Net::SSLeay::CTX_set_mode ($ssl,
1154 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1503# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1155 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1504# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1505 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1156 1506
1157 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1507 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1158 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1508 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1159 1509
1160 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1510 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1161 1511
1162 $self->{filter_w} = sub { 1512 &_dotls; # need to trigger the initial handshake
1163 $_[0]{_tls_wbuf} .= ${$_[1]}; 1513 $self->start_read; # make sure we actually do read
1164 &_dotls;
1165 };
1166 $self->{filter_r} = sub {
1167 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1168 &_dotls;
1169 };
1170} 1514}
1171 1515
1172=item $handle->stoptls 1516=item $handle->stoptls
1173 1517
1174Destroys the SSL connection, if any. Partial read or write data will be 1518Shuts down the SSL connection - this makes a proper EOF handshake by
1175lost. 1519sending a close notify to the other side, but since OpenSSL doesn't
1520support non-blocking shut downs, it is not possible to re-use the stream
1521afterwards.
1176 1522
1177=cut 1523=cut
1178 1524
1179sub stoptls { 1525sub stoptls {
1180 my ($self) = @_; 1526 my ($self) = @_;
1181 1527
1182 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1528 if ($self->{tls}) {
1529 Net::SSLeay::shutdown ($self->{tls});
1183 1530
1184 delete $self->{_rbio}; 1531 &_dotls;
1185 delete $self->{_wbio}; 1532
1186 delete $self->{_tls_wbuf}; 1533 # we don't give a shit. no, we do, but we can't. no...
1187 delete $self->{filter_r}; 1534 # we, we... have to use openssl :/
1188 delete $self->{filter_w}; 1535 &_freetls;
1536 }
1537}
1538
1539sub _freetls {
1540 my ($self) = @_;
1541
1542 return unless $self->{tls};
1543
1544 $self->{tls_ctx}->_put_session (delete $self->{tls});
1545
1546 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1189} 1547}
1190 1548
1191sub DESTROY { 1549sub DESTROY {
1192 my $self = shift; 1550 my ($self) = @_;
1193 1551
1194 $self->stoptls; 1552 &_freetls;
1553
1554 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1555
1556 if ($linger && length $self->{wbuf}) {
1557 my $fh = delete $self->{fh};
1558 my $wbuf = delete $self->{wbuf};
1559
1560 my @linger;
1561
1562 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1563 my $len = syswrite $fh, $wbuf, length $wbuf;
1564
1565 if ($len > 0) {
1566 substr $wbuf, 0, $len, "";
1567 } else {
1568 @linger = (); # end
1569 }
1570 });
1571 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1572 @linger = ();
1573 });
1574 }
1575}
1576
1577=item $handle->destroy
1578
1579Shuts down the handle object as much as possible - this call ensures that
1580no further callbacks will be invoked and resources will be freed as much
1581as possible. You must not call any methods on the object afterwards.
1582
1583Normally, you can just "forget" any references to an AnyEvent::Handle
1584object and it will simply shut down. This works in fatal error and EOF
1585callbacks, as well as code outside. It does I<NOT> work in a read or write
1586callback, so when you want to destroy the AnyEvent::Handle object from
1587within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1588that case.
1589
1590The handle might still linger in the background and write out remaining
1591data, as specified by the C<linger> option, however.
1592
1593=cut
1594
1595sub destroy {
1596 my ($self) = @_;
1597
1598 $self->DESTROY;
1599 %$self = ();
1195} 1600}
1196 1601
1197=item AnyEvent::Handle::TLS_CTX 1602=item AnyEvent::Handle::TLS_CTX
1198 1603
1199This function creates and returns the Net::SSLeay::CTX object used by 1604This function creates and returns the AnyEvent::TLS object used by default
1200default for TLS mode. 1605for TLS mode.
1201 1606
1202The context is created like this: 1607The context is created by calling L<AnyEvent::TLS> without any arguments.
1203
1204 Net::SSLeay::load_error_strings;
1205 Net::SSLeay::SSLeay_add_ssl_algorithms;
1206 Net::SSLeay::randomize;
1207
1208 my $CTX = Net::SSLeay::CTX_new;
1209
1210 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1211 1608
1212=cut 1609=cut
1213 1610
1214our $TLS_CTX; 1611our $TLS_CTX;
1215 1612
1216sub TLS_CTX() { 1613sub TLS_CTX() {
1217 $TLS_CTX || do { 1614 $TLS_CTX ||= do {
1218 require Net::SSLeay; 1615 require AnyEvent::TLS;
1219 1616
1220 Net::SSLeay::load_error_strings (); 1617 new AnyEvent::TLS
1221 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1222 Net::SSLeay::randomize ();
1223
1224 $TLS_CTX = Net::SSLeay::CTX_new ();
1225
1226 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1227
1228 $TLS_CTX
1229 } 1618 }
1230} 1619}
1231 1620
1232=back 1621=back
1622
1623
1624=head1 NONFREQUENTLY ASKED QUESTIONS
1625
1626=over 4
1627
1628=item I C<undef> the AnyEvent::Handle reference inside my callback and
1629still get further invocations!
1630
1631That's because AnyEvent::Handle keeps a reference to itself when handling
1632read or write callbacks.
1633
1634It is only safe to "forget" the reference inside EOF or error callbacks,
1635from within all other callbacks, you need to explicitly call the C<<
1636->destroy >> method.
1637
1638=item I get different callback invocations in TLS mode/Why can't I pause
1639reading?
1640
1641Unlike, say, TCP, TLS connections do not consist of two independent
1642communication channels, one for each direction. Or put differently. The
1643read and write directions are not independent of each other: you cannot
1644write data unless you are also prepared to read, and vice versa.
1645
1646This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1647callback invocations when you are not expecting any read data - the reason
1648is that AnyEvent::Handle always reads in TLS mode.
1649
1650During the connection, you have to make sure that you always have a
1651non-empty read-queue, or an C<on_read> watcher. At the end of the
1652connection (or when you no longer want to use it) you can call the
1653C<destroy> method.
1654
1655=item How do I read data until the other side closes the connection?
1656
1657If you just want to read your data into a perl scalar, the easiest way
1658to achieve this is by setting an C<on_read> callback that does nothing,
1659clearing the C<on_eof> callback and in the C<on_error> callback, the data
1660will be in C<$_[0]{rbuf}>:
1661
1662 $handle->on_read (sub { });
1663 $handle->on_eof (undef);
1664 $handle->on_error (sub {
1665 my $data = delete $_[0]{rbuf};
1666 undef $handle;
1667 });
1668
1669The reason to use C<on_error> is that TCP connections, due to latencies
1670and packets loss, might get closed quite violently with an error, when in
1671fact, all data has been received.
1672
1673It is usually better to use acknowledgements when transferring data,
1674to make sure the other side hasn't just died and you got the data
1675intact. This is also one reason why so many internet protocols have an
1676explicit QUIT command.
1677
1678=item I don't want to destroy the handle too early - how do I wait until
1679all data has been written?
1680
1681After writing your last bits of data, set the C<on_drain> callback
1682and destroy the handle in there - with the default setting of
1683C<low_water_mark> this will be called precisely when all data has been
1684written to the socket:
1685
1686 $handle->push_write (...);
1687 $handle->on_drain (sub {
1688 warn "all data submitted to the kernel\n";
1689 undef $handle;
1690 });
1691
1692=back
1693
1233 1694
1234=head1 SUBCLASSING AnyEvent::Handle 1695=head1 SUBCLASSING AnyEvent::Handle
1235 1696
1236In many cases, you might want to subclass AnyEvent::Handle. 1697In many cases, you might want to subclass AnyEvent::Handle.
1237 1698
1241=over 4 1702=over 4
1242 1703
1243=item * all constructor arguments become object members. 1704=item * all constructor arguments become object members.
1244 1705
1245At least initially, when you pass a C<tls>-argument to the constructor it 1706At least initially, when you pass a C<tls>-argument to the constructor it
1246will end up in C<< $handle->{tls} >>. Those members might be changes or 1707will end up in C<< $handle->{tls} >>. Those members might be changed or
1247mutated later on (for example C<tls> will hold the TLS connection object). 1708mutated later on (for example C<tls> will hold the TLS connection object).
1248 1709
1249=item * other object member names are prefixed with an C<_>. 1710=item * other object member names are prefixed with an C<_>.
1250 1711
1251All object members not explicitly documented (internal use) are prefixed 1712All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines