ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.139 by root, Sun Jul 5 23:39:48 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.151; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
110and no read request is in the queue (unlike read queue callbacks, this 133and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 134callback will only be called when at least one octet of data is in the
112read buffer). 135read buffer).
113 136
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
116 141
117When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
135=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
136 161
137If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 166
142Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
146 172
147Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
148 174
149=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
150 176
154 180
155=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
156 182
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
160 186
161For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
165isn't finished). 191isn't finished).
166 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
167=item read_size => <bytes> 219=item read_size => <bytes>
168 220
169The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
171 224
172=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
173 226
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
176considered empty. 229considered empty.
177 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
178=item linger => <seconds> 236=item linger => <seconds>
179 237
180If non-zero (default: C<3600>), then the destructor of the 238If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 239AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 240write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 241socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 242system treats outstanding data at socket close time).
185 243
186This will not work for partial TLS data that could not yet been 244This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>).
188 255
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 257
191When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
194 264
195TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
197 269
198For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
200 273
201You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
205 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
206See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 290
208=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
209 292
210Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
214=item json => JSON or JSON::XS object 301=item json => JSON or JSON::XS object
215 302
216This is the json coder object used by the C<json> read and write types. 303This is the json coder object used by the C<json> read and write types.
217 304
218If you don't supply it, then AnyEvent::Handle will create and use a 305If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 306suitable one (on demand), which will write and expect UTF-8 encoded JSON
307texts.
220 308
221Note that you are responsible to depend on the JSON module if you want to 309Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 310use this functionality, as AnyEvent does not have a dependency itself.
223 311
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 312=back
231 313
232=cut 314=cut
233 315
234sub new { 316sub new {
235 my $class = shift; 317 my $class = shift;
236
237 my $self = bless { @_ }, $class; 318 my $self = bless { @_ }, $class;
238 319
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 320 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240 321
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 322 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 323
248 $self->{_activity} = AnyEvent->now; 324 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 325 $self->_timeout;
250 326
327 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
328
329 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
330 if $self->{tls};
331
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 332 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
252 333
253 $self->start_read 334 $self->start_read
254 if $self->{on_read}; 335 if $self->{on_read};
255 336
256 $self 337 $self->{fh} && $self
257} 338}
258 339
259sub _shutdown { 340sub _shutdown {
260 my ($self) = @_; 341 my ($self) = @_;
261 342
262 delete $self->{_tw}; 343 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 344 $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww};
265 delete $self->{fh};
266 345
267 $self->stoptls; 346 &_freetls;
268} 347}
269 348
270sub _error { 349sub _error {
271 my ($self, $errno, $fatal) = @_; 350 my ($self, $errno, $fatal, $message) = @_;
272 351
273 $self->_shutdown 352 $self->_shutdown
274 if $fatal; 353 if $fatal;
275 354
276 $! = $errno; 355 $! = $errno;
356 $message ||= "$!";
277 357
278 if ($self->{on_error}) { 358 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 359 $self->{on_error}($self, $fatal, $message);
280 } else { 360 } elsif ($self->{fh}) {
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 361 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 362 }
283} 363}
284 364
285=item $fh = $handle->fh 365=item $fh = $handle->fh
286 366
287This method returns the file handle of the L<AnyEvent::Handle> object. 367This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 368
289=cut 369=cut
290 370
291sub fh { $_[0]{fh} } 371sub fh { $_[0]{fh} }
292 372
310 $_[0]{on_eof} = $_[1]; 390 $_[0]{on_eof} = $_[1];
311} 391}
312 392
313=item $handle->on_timeout ($cb) 393=item $handle->on_timeout ($cb)
314 394
315Replace the current C<on_timeout> callback, or disables the callback 395Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 396not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 397argument and method.
318 398
319=cut 399=cut
320 400
321sub on_timeout { 401sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 402 $_[0]{on_timeout} = $_[1];
403}
404
405=item $handle->autocork ($boolean)
406
407Enables or disables the current autocork behaviour (see C<autocork>
408constructor argument). Changes will only take effect on the next write.
409
410=cut
411
412sub autocork {
413 $_[0]{autocork} = $_[1];
414}
415
416=item $handle->no_delay ($boolean)
417
418Enables or disables the C<no_delay> setting (see constructor argument of
419the same name for details).
420
421=cut
422
423sub no_delay {
424 $_[0]{no_delay} = $_[1];
425
426 eval {
427 local $SIG{__DIE__};
428 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
429 };
323} 430}
324 431
325############################################################################# 432#############################################################################
326 433
327=item $handle->timeout ($seconds) 434=item $handle->timeout ($seconds)
405 my ($self, $cb) = @_; 512 my ($self, $cb) = @_;
406 513
407 $self->{on_drain} = $cb; 514 $self->{on_drain} = $cb;
408 515
409 $cb->($self) 516 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 517 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 518}
412 519
413=item $handle->push_write ($data) 520=item $handle->push_write ($data)
414 521
415Queues the given scalar to be written. You can push as much data as you 522Queues the given scalar to be written. You can push as much data as you
432 substr $self->{wbuf}, 0, $len, ""; 539 substr $self->{wbuf}, 0, $len, "";
433 540
434 $self->{_activity} = AnyEvent->now; 541 $self->{_activity} = AnyEvent->now;
435 542
436 $self->{on_drain}($self) 543 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 544 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 545 && $self->{on_drain};
439 546
440 delete $self->{_ww} unless length $self->{wbuf}; 547 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 548 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 549 $self->_error ($!, 1);
443 } 550 }
444 }; 551 };
445 552
446 # try to write data immediately 553 # try to write data immediately
447 $cb->(); 554 $cb->() unless $self->{autocork};
448 555
449 # if still data left in wbuf, we need to poll 556 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 557 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 558 if length $self->{wbuf};
452 }; 559 };
466 573
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 574 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 575 ->($self, @_);
469 } 576 }
470 577
471 if ($self->{filter_w}) { 578 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 579 $self->{_tls_wbuf} .= $_[0];
580
581 &_dotls ($self);
473 } else { 582 } else {
474 $self->{wbuf} .= $_[0]; 583 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 584 $self->_drain_wbuf;
476 } 585 }
477} 586}
494=cut 603=cut
495 604
496register_write_type netstring => sub { 605register_write_type netstring => sub {
497 my ($self, $string) = @_; 606 my ($self, $string) = @_;
498 607
499 sprintf "%d:%s,", (length $string), $string 608 (length $string) . ":$string,"
500}; 609};
501 610
502=item packstring => $format, $data 611=item packstring => $format, $data
503 612
504An octet string prefixed with an encoded length. The encoding C<$format> 613An octet string prefixed with an encoded length. The encoding C<$format>
569 678
570 pack "w/a*", Storable::nfreeze ($ref) 679 pack "w/a*", Storable::nfreeze ($ref)
571}; 680};
572 681
573=back 682=back
683
684=item $handle->push_shutdown
685
686Sometimes you know you want to close the socket after writing your data
687before it was actually written. One way to do that is to replace your
688C<on_drain> handler by a callback that shuts down the socket. This method
689is a shorthand for just that, and replaces the C<on_drain> callback with:
690
691 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
692
693This simply shuts down the write side and signals an EOF condition to the
694the peer.
695
696You can rely on the normal read queue and C<on_eof> handling
697afterwards. This is the cleanest way to close a connection.
698
699=cut
700
701sub push_shutdown {
702 $_[0]->{on_drain} = sub { shutdown $_[0]{fh}, 1 };
703}
574 704
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 705=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 706
577This function (not method) lets you add your own types to C<push_write>. 707This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 708Whenever the given C<type> is used, C<push_write> will invoke the code
678 808
679 if ( 809 if (
680 defined $self->{rbuf_max} 810 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 811 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 812 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 813 $self->_error (&Errno::ENOSPC, 1), return;
684 } 814 }
685 815
686 while () { 816 while () {
687 no strict 'refs'; 817 # we need to use a separate tls read buffer, as we must not receive data while
818 # we are draining the buffer, and this can only happen with TLS.
819 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
688 820
689 my $len = length $self->{rbuf}; 821 my $len = length $self->{rbuf};
690 822
691 if (my $cb = shift @{ $self->{_queue} }) { 823 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 824 unless ($cb->($self)) {
693 if ($self->{_eof}) { 825 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming) 826 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 827 $self->_error (&Errno::EPIPE, 1), return;
696 } 828 }
697 829
698 unshift @{ $self->{_queue} }, $cb; 830 unshift @{ $self->{_queue} }, $cb;
699 last; 831 last;
700 } 832 }
708 && !@{ $self->{_queue} } # and the queue is still empty 840 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 841 && $self->{on_read} # but we still have on_read
710 ) { 842 ) {
711 # no further data will arrive 843 # no further data will arrive
712 # so no progress can be made 844 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 845 $self->_error (&Errno::EPIPE, 1), return
714 if $self->{_eof}; 846 if $self->{_eof};
715 847
716 last; # more data might arrive 848 last; # more data might arrive
717 } 849 }
718 } else { 850 } else {
719 # read side becomes idle 851 # read side becomes idle
720 delete $self->{_rw}; 852 delete $self->{_rw} unless $self->{tls};
721 last; 853 last;
722 } 854 }
723 } 855 }
724 856
857 if ($self->{_eof}) {
858 if ($self->{on_eof}) {
725 $self->{on_eof}($self) 859 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 860 } else {
861 $self->_error (0, 1);
862 }
863 }
727 864
728 # may need to restart read watcher 865 # may need to restart read watcher
729 unless ($self->{_rw}) { 866 unless ($self->{_rw}) {
730 $self->start_read 867 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 868 if $self->{on_read} || @{ $self->{_queue} };
749 886
750=item $handle->rbuf 887=item $handle->rbuf
751 888
752Returns the read buffer (as a modifiable lvalue). 889Returns the read buffer (as a modifiable lvalue).
753 890
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 891You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 892member, if you want. However, the only operation allowed on the
893read buffer (apart from looking at it) is removing data from its
894beginning. Otherwise modifying or appending to it is not allowed and will
895lead to hard-to-track-down bugs.
756 896
757NOTE: The read buffer should only be used or modified if the C<on_read>, 897NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 898C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 899automatically manage the read buffer.
760 900
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 997 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 998 1
859 } 999 }
860}; 1000};
861 1001
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1002=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1003
873The callback will be called only once a full line (including the end of 1004The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1005line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1006marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1021=cut
891 1022
892register_read_type line => sub { 1023register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1024 my ($self, $cb, $eol) = @_;
894 1025
895 $eol = qr|(\015?\012)| if @_ < 3; 1026 if (@_ < 3) {
1027 # this is more than twice as fast as the generic code below
1028 sub {
1029 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1030
1031 $cb->($_[0], $1, $2);
1032 1
1033 }
1034 } else {
896 $eol = quotemeta $eol unless ref $eol; 1035 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1036 $eol = qr|^(.*?)($eol)|s;
898 1037
899 sub { 1038 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1039 $_[0]{rbuf} =~ s/$eol// or return;
901 1040
902 $cb->($_[0], $1, $2); 1041 $cb->($_[0], $1, $2);
1042 1
903 1 1043 }
904 } 1044 }
905}; 1045};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1046
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1047=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1048
920Makes a regex match against the regex object C<$accept> and returns 1049Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1050everything up to and including the match.
1026An octet string prefixed with an encoded length. The encoding C<$format> 1155An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1156uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1157integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1158optional C<!>, C<< < >> or C<< > >> modifier).
1030 1159
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1160For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1161EPP uses a prefix of C<N> (4 octtes).
1032 1162
1033Example: read a block of data prefixed by its length in BER-encoded 1163Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1164format (very efficient).
1035 1165
1036 $handle->push_read (packstring => "w", sub { 1166 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1172register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1173 my ($self, $cb, $format) = @_;
1044 1174
1045 sub { 1175 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1176 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1177 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1178 or return;
1049 1179
1180 $format = length pack $format, $len;
1181
1182 # bypass unshift if we already have the remaining chunk
1183 if ($format + $len <= length $_[0]{rbuf}) {
1184 my $data = substr $_[0]{rbuf}, $format, $len;
1185 substr $_[0]{rbuf}, 0, $format + $len, "";
1186 $cb->($_[0], $data);
1187 } else {
1050 # remove prefix 1188 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1189 substr $_[0]{rbuf}, 0, $format, "";
1052 1190
1053 # read rest 1191 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1192 $_[0]->unshift_read (chunk => $len, $cb);
1193 }
1055 1194
1056 1 1195 1
1057 } 1196 }
1058}; 1197};
1059 1198
1060=item json => $cb->($handle, $hash_or_arrayref) 1199=item json => $cb->($handle, $hash_or_arrayref)
1061 1200
1062Reads a JSON object or array, decodes it and passes it to the callback. 1201Reads a JSON object or array, decodes it and passes it to the
1202callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1203
1064If a C<json> object was passed to the constructor, then that will be used 1204If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1205for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1206
1067This read type uses the incremental parser available with JSON version 1207This read type uses the incremental parser available with JSON version
1076=cut 1216=cut
1077 1217
1078register_read_type json => sub { 1218register_read_type json => sub {
1079 my ($self, $cb) = @_; 1219 my ($self, $cb) = @_;
1080 1220
1081 require JSON; 1221 my $json = $self->{json} ||=
1222 eval { require JSON::XS; JSON::XS->new->utf8 }
1223 || do { require JSON; JSON->new->utf8 };
1082 1224
1083 my $data; 1225 my $data;
1084 my $rbuf = \$self->{rbuf}; 1226 my $rbuf = \$self->{rbuf};
1085 1227
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1228 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1229 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1230
1091 if ($ref) { 1231 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1232 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1233 $json->incr_text = "";
1094 $cb->($self, $ref); 1234 $cb->($self, $ref);
1095 1235
1096 1 1236 1
1237 } elsif ($@) {
1238 # error case
1239 $json->incr_skip;
1240
1241 $self->{rbuf} = $json->incr_text;
1242 $json->incr_text = "";
1243
1244 $self->_error (&Errno::EBADMSG);
1245
1246 ()
1097 } else { 1247 } else {
1098 $self->{rbuf} = ""; 1248 $self->{rbuf} = "";
1249
1099 () 1250 ()
1100 } 1251 }
1101 } 1252 }
1102}; 1253};
1103 1254
1116 1267
1117 require Storable; 1268 require Storable;
1118 1269
1119 sub { 1270 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1271 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1272 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1273 or return;
1123 1274
1275 my $format = length pack "w", $len;
1276
1277 # bypass unshift if we already have the remaining chunk
1278 if ($format + $len <= length $_[0]{rbuf}) {
1279 my $data = substr $_[0]{rbuf}, $format, $len;
1280 substr $_[0]{rbuf}, 0, $format + $len, "";
1281 $cb->($_[0], Storable::thaw ($data));
1282 } else {
1124 # remove prefix 1283 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1284 substr $_[0]{rbuf}, 0, $format, "";
1126 1285
1127 # read rest 1286 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1287 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1288 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1289 $cb->($_[0], $ref);
1131 } else { 1290 } else {
1132 $self->_error (&Errno::EBADMSG); 1291 $self->_error (&Errno::EBADMSG);
1292 }
1133 } 1293 });
1134 }); 1294 }
1295
1296 1
1135 } 1297 }
1136}; 1298};
1137 1299
1138=back 1300=back
1139 1301
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1331Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1332you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1333will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1334there are any read requests in the queue.
1173 1335
1336These methods will have no effect when in TLS mode (as TLS doesn't support
1337half-duplex connections).
1338
1174=cut 1339=cut
1175 1340
1176sub stop_read { 1341sub stop_read {
1177 my ($self) = @_; 1342 my ($self) = @_;
1178 1343
1179 delete $self->{_rw}; 1344 delete $self->{_rw} unless $self->{tls};
1180} 1345}
1181 1346
1182sub start_read { 1347sub start_read {
1183 my ($self) = @_; 1348 my ($self) = @_;
1184 1349
1185 unless ($self->{_rw} || $self->{_eof}) { 1350 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1351 Scalar::Util::weaken $self;
1187 1352
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1353 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1354 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1355 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1356
1192 if ($len > 0) { 1357 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1358 $self->{_activity} = AnyEvent->now;
1194 1359
1195 $self->{filter_r} 1360 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1361 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1362
1363 &_dotls ($self);
1364 } else {
1365 $self->_drain_rbuf unless $self->{_in_drain};
1366 }
1198 1367
1199 } elsif (defined $len) { 1368 } elsif (defined $len) {
1200 delete $self->{_rw}; 1369 delete $self->{_rw};
1201 $self->{_eof} = 1; 1370 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1371 $self->_drain_rbuf unless $self->{_in_drain};
1206 } 1375 }
1207 }); 1376 });
1208 } 1377 }
1209} 1378}
1210 1379
1380our $ERROR_SYSCALL;
1381our $ERROR_WANT_READ;
1382our $ERROR_ZERO_RETURN;
1383
1384sub _tls_error {
1385 my ($self, $err) = @_;
1386
1387 return $self->_error ($!, 1)
1388 if $err == Net::SSLeay::ERROR_SYSCALL ();
1389
1390 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1391
1392 # reduce error string to look less scary
1393 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1394
1395 $self->_error (&Errno::EPROTO, 1, $err);
1396}
1397
1398# poll the write BIO and send the data if applicable
1399# also decode read data if possible
1400# this is basiclaly our TLS state machine
1401# more efficient implementations are possible with openssl,
1402# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1403sub _dotls {
1212 my ($self) = @_; 1404 my ($self) = @_;
1213 1405
1214 my $buf; 1406 my $tmp;
1215 1407
1216 if (length $self->{_tls_wbuf}) { 1408 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1409 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1410 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1411 }
1220 }
1221 1412
1413 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1414 return $self->_tls_error ($tmp)
1415 if $tmp != $ERROR_WANT_READ
1416 && ($tmp != $ERROR_SYSCALL || $!)
1417 && $tmp != $ERROR_ZERO_RETURN;
1418 }
1419
1420 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1421 unless (length $tmp) {
1422 # let's treat SSL-eof as we treat normal EOF
1423 delete $self->{_rw};
1424 $self->{_eof} = 1;
1425 &_freetls;
1426 }
1427
1428 $self->{_tls_rbuf} .= $tmp;
1429 $self->_drain_rbuf unless $self->{_in_drain};
1430 $self->{tls} or return; # tls session might have gone away in callback
1431 }
1432
1433 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1434 return $self->_tls_error ($tmp)
1435 if $tmp != $ERROR_WANT_READ
1436 && ($tmp != $ERROR_SYSCALL || $!)
1437 && $tmp != $ERROR_ZERO_RETURN;
1438
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1439 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1440 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1441 $self->_drain_wbuf;
1225 }
1226
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1228 if (length $buf) {
1229 $self->{rbuf} .= $buf;
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 } 1442 }
1250} 1443}
1251 1444
1252=item $handle->starttls ($tls[, $tls_ctx]) 1445=item $handle->starttls ($tls[, $tls_ctx])
1253 1446
1256C<starttls>. 1449C<starttls>.
1257 1450
1258The first argument is the same as the C<tls> constructor argument (either 1451The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1452C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1453
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1454The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1455when AnyEvent::Handle has to create its own TLS connection object, or
1456a hash reference with C<< key => value >> pairs that will be used to
1457construct a new context.
1263 1458
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1459The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1460context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1461changed to your liking. Note that the handshake might have already started
1462when this function returns.
1267 1463
1464If it an error to start a TLS handshake more than once per
1465AnyEvent::Handle object (this is due to bugs in OpenSSL).
1466
1268=cut 1467=cut
1468
1469our %TLS_CACHE; #TODO not yet documented, should we?
1269 1470
1270sub starttls { 1471sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1472 my ($self, $ssl, $ctx) = @_;
1272 1473
1273 $self->stoptls; 1474 require Net::SSLeay;
1274 1475
1275 if ($ssl eq "accept") { 1476 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1477 if $self->{tls};
1277 Net::SSLeay::set_accept_state ($ssl); 1478
1278 } elsif ($ssl eq "connect") { 1479 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1480 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1280 Net::SSLeay::set_connect_state ($ssl); 1481 $ERROR_ZERO_RETURN = Net::SSLeay::ERROR_ZERO_RETURN ();
1482
1483 $ctx ||= $self->{tls_ctx};
1484
1485 if ("HASH" eq ref $ctx) {
1486 require AnyEvent::TLS;
1487
1488 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1489
1490 if ($ctx->{cache}) {
1491 my $key = $ctx+0;
1492 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1493 } else {
1494 $ctx = new AnyEvent::TLS %$ctx;
1495 }
1496 }
1281 } 1497
1282 1498 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1499 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1284 1500
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1501 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1502 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1503 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1504 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1505 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1506 #
1507 # in short: this is a mess.
1508 #
1509 # note that we do not try to keep the length constant between writes as we are required to do.
1510 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1511 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1512 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1513# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1514# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1515# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1516 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1293 1517
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1518 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1519 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1520
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1521 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 1522
1299 $self->{filter_w} = sub { 1523 &_dotls; # need to trigger the initial handshake
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1524 $self->start_read; # make sure we actually do read
1301 &_dotls;
1302 };
1303 $self->{filter_r} = sub {
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1525}
1308 1526
1309=item $handle->stoptls 1527=item $handle->stoptls
1310 1528
1311Destroys the SSL connection, if any. Partial read or write data will be 1529Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1530sending a close notify to the other side, but since OpenSSL doesn't
1531support non-blocking shut downs, it is not possible to re-use the stream
1532afterwards.
1313 1533
1314=cut 1534=cut
1315 1535
1316sub stoptls { 1536sub stoptls {
1317 my ($self) = @_; 1537 my ($self) = @_;
1318 1538
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1539 if ($self->{tls}) {
1540 Net::SSLeay::shutdown ($self->{tls});
1320 1541
1321 delete $self->{_rbio}; 1542 &_dotls;
1322 delete $self->{_wbio}; 1543
1323 delete $self->{_tls_wbuf}; 1544 # we don't give a shit. no, we do, but we can't. no...
1324 delete $self->{filter_r}; 1545 # we, we... have to use openssl :/
1325 delete $self->{filter_w}; 1546 &_freetls;
1547 }
1548}
1549
1550sub _freetls {
1551 my ($self) = @_;
1552
1553 return unless $self->{tls};
1554
1555 $self->{tls_ctx}->_put_session (delete $self->{tls});
1556
1557 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1326} 1558}
1327 1559
1328sub DESTROY { 1560sub DESTROY {
1329 my $self = shift; 1561 my ($self) = @_;
1330 1562
1331 $self->stoptls; 1563 &_freetls;
1332 1564
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1565 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1566
1335 if ($linger && length $self->{wbuf}) { 1567 if ($linger && length $self->{wbuf}) {
1336 my $fh = delete $self->{fh}; 1568 my $fh = delete $self->{fh};
1351 @linger = (); 1583 @linger = ();
1352 }); 1584 });
1353 } 1585 }
1354} 1586}
1355 1587
1588=item $handle->destroy
1589
1590Shuts down the handle object as much as possible - this call ensures that
1591no further callbacks will be invoked and resources will be freed as much
1592as possible. You must not call any methods on the object afterwards.
1593
1594Normally, you can just "forget" any references to an AnyEvent::Handle
1595object and it will simply shut down. This works in fatal error and EOF
1596callbacks, as well as code outside. It does I<NOT> work in a read or write
1597callback, so when you want to destroy the AnyEvent::Handle object from
1598within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1599that case.
1600
1601The handle might still linger in the background and write out remaining
1602data, as specified by the C<linger> option, however.
1603
1604=cut
1605
1606sub destroy {
1607 my ($self) = @_;
1608
1609 $self->DESTROY;
1610 %$self = ();
1611}
1612
1356=item AnyEvent::Handle::TLS_CTX 1613=item AnyEvent::Handle::TLS_CTX
1357 1614
1358This function creates and returns the Net::SSLeay::CTX object used by 1615This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1616for TLS mode.
1360 1617
1361The context is created like this: 1618The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1619
1371=cut 1620=cut
1372 1621
1373our $TLS_CTX; 1622our $TLS_CTX;
1374 1623
1375sub TLS_CTX() { 1624sub TLS_CTX() {
1376 $TLS_CTX || do { 1625 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1626 require AnyEvent::TLS;
1378 1627
1379 Net::SSLeay::load_error_strings (); 1628 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1629 }
1389} 1630}
1390 1631
1391=back 1632=back
1633
1634
1635=head1 NONFREQUENTLY ASKED QUESTIONS
1636
1637=over 4
1638
1639=item I C<undef> the AnyEvent::Handle reference inside my callback and
1640still get further invocations!
1641
1642That's because AnyEvent::Handle keeps a reference to itself when handling
1643read or write callbacks.
1644
1645It is only safe to "forget" the reference inside EOF or error callbacks,
1646from within all other callbacks, you need to explicitly call the C<<
1647->destroy >> method.
1648
1649=item I get different callback invocations in TLS mode/Why can't I pause
1650reading?
1651
1652Unlike, say, TCP, TLS connections do not consist of two independent
1653communication channels, one for each direction. Or put differently. The
1654read and write directions are not independent of each other: you cannot
1655write data unless you are also prepared to read, and vice versa.
1656
1657This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1658callback invocations when you are not expecting any read data - the reason
1659is that AnyEvent::Handle always reads in TLS mode.
1660
1661During the connection, you have to make sure that you always have a
1662non-empty read-queue, or an C<on_read> watcher. At the end of the
1663connection (or when you no longer want to use it) you can call the
1664C<destroy> method.
1665
1666=item How do I read data until the other side closes the connection?
1667
1668If you just want to read your data into a perl scalar, the easiest way
1669to achieve this is by setting an C<on_read> callback that does nothing,
1670clearing the C<on_eof> callback and in the C<on_error> callback, the data
1671will be in C<$_[0]{rbuf}>:
1672
1673 $handle->on_read (sub { });
1674 $handle->on_eof (undef);
1675 $handle->on_error (sub {
1676 my $data = delete $_[0]{rbuf};
1677 undef $handle;
1678 });
1679
1680The reason to use C<on_error> is that TCP connections, due to latencies
1681and packets loss, might get closed quite violently with an error, when in
1682fact, all data has been received.
1683
1684It is usually better to use acknowledgements when transferring data,
1685to make sure the other side hasn't just died and you got the data
1686intact. This is also one reason why so many internet protocols have an
1687explicit QUIT command.
1688
1689=item I don't want to destroy the handle too early - how do I wait until
1690all data has been written?
1691
1692After writing your last bits of data, set the C<on_drain> callback
1693and destroy the handle in there - with the default setting of
1694C<low_water_mark> this will be called precisely when all data has been
1695written to the socket:
1696
1697 $handle->push_write (...);
1698 $handle->on_drain (sub {
1699 warn "all data submitted to the kernel\n";
1700 undef $handle;
1701 });
1702
1703=back
1704
1392 1705
1393=head1 SUBCLASSING AnyEvent::Handle 1706=head1 SUBCLASSING AnyEvent::Handle
1394 1707
1395In many cases, you might want to subclass AnyEvent::Handle. 1708In many cases, you might want to subclass AnyEvent::Handle.
1396 1709
1400=over 4 1713=over 4
1401 1714
1402=item * all constructor arguments become object members. 1715=item * all constructor arguments become object members.
1403 1716
1404At least initially, when you pass a C<tls>-argument to the constructor it 1717At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 1718will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 1719mutated later on (for example C<tls> will hold the TLS connection object).
1407 1720
1408=item * other object member names are prefixed with an C<_>. 1721=item * other object member names are prefixed with an C<_>.
1409 1722
1410All object members not explicitly documented (internal use) are prefixed 1723All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines