ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.53 by root, Mon Jun 2 09:12:14 2008 UTC vs.
Revision 1.142 by root, Mon Jul 6 20:24:47 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.1; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
107=item on_read => $cb->($handle) 130=item on_read => $cb->($handle)
108 131
109This sets the default read callback, which is called when data arrives 132This sets the default read callback, which is called when data arrives
110and no read request is in the queue. 133and no read request is in the queue (unlike read queue callbacks, this
134callback will only be called when at least one octet of data is in the
135read buffer).
111 136
112To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
113method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
114 141
115When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
116feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
117calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
118error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
122This sets the callback that is called when the write buffer becomes empty 149This sets the callback that is called when the write buffer becomes empty
123(or when the callback is set and the buffer is empty already). 150(or when the callback is set and the buffer is empty already).
124 151
125To append to the write buffer, use the C<< ->push_write >> method. 152To append to the write buffer, use the C<< ->push_write >> method.
126 153
154This callback is useful when you don't want to put all of your write data
155into the queue at once, for example, when you want to write the contents
156of some file to the socket you might not want to read the whole file into
157memory and push it into the queue, but instead only read more data from
158the file when the write queue becomes empty.
159
127=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
128 161
129If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
130seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
131handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
132missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
133 166
134Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
135any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
136idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
137in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
138 172
139Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
140 174
141=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
142 176
146 180
147=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
148 182
149If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
150when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
151avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
152 186
153For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
154be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
155(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
156amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
157isn't finished). 191isn't finished).
158 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
159=item read_size => <bytes> 219=item read_size => <bytes>
160 220
161The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
162during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
163 224
164=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
165 226
166Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
167buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
168considered empty. 229considered empty.
169 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
236=item linger => <seconds>
237
238If non-zero (default: C<3600>), then the destructor of the
239AnyEvent::Handle object will check whether there is still outstanding
240write data and will install a watcher that will write this data to the
241socket. No errors will be reported (this mostly matches how the operating
242system treats outstanding data at socket close time).
243
244This will not work for partial TLS data that could not be encoded
245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>).
255
170=item tls => "accept" | "connect" | Net::SSLeay::SSL object 256=item tls => "accept" | "connect" | Net::SSLeay::SSL object
171 257
172When this parameter is given, it enables TLS (SSL) mode, that means it 258When this parameter is given, it enables TLS (SSL) mode, that means
173will start making tls handshake and will transparently encrypt/decrypt 259AnyEvent will start a TLS handshake as soon as the conenction has been
174data. 260established and will transparently encrypt/decrypt data afterwards.
261
262All TLS protocol errors will be signalled as C<EPROTO>, with an
263appropriate error message.
175 264
176TLS mode requires Net::SSLeay to be installed (it will be loaded 265TLS mode requires Net::SSLeay to be installed (it will be loaded
177automatically when you try to create a TLS handle). 266automatically when you try to create a TLS handle): this module doesn't
267have a dependency on that module, so if your module requires it, you have
268to add the dependency yourself.
178 269
179For the TLS server side, use C<accept>, and for the TLS client side of a 270Unlike TCP, TLS has a server and client side: for the TLS server side, use
180connection, use C<connect> mode. 271C<accept>, and for the TLS client side of a connection, use C<connect>
272mode.
181 273
182You can also provide your own TLS connection object, but you have 274You can also provide your own TLS connection object, but you have
183to make sure that you call either C<Net::SSLeay::set_connect_state> 275to make sure that you call either C<Net::SSLeay::set_connect_state>
184or C<Net::SSLeay::set_accept_state> on it before you pass it to 276or C<Net::SSLeay::set_accept_state> on it before you pass it to
185AnyEvent::Handle. 277AnyEvent::Handle. Also, this module will take ownership of this connection
278object.
186 279
280At some future point, AnyEvent::Handle might switch to another TLS
281implementation, then the option to use your own session object will go
282away.
283
284B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
285passing in the wrong integer will lead to certain crash. This most often
286happens when one uses a stylish C<< tls => 1 >> and is surprised about the
287segmentation fault.
288
187See the C<starttls> method if you need to start TLs negotiation later. 289See the C<< ->starttls >> method for when need to start TLS negotiation later.
188 290
189=item tls_ctx => $ssl_ctx 291=item tls_ctx => $anyevent_tls
190 292
191Use the given Net::SSLeay::CTX object to create the new TLS connection 293Use the given C<AnyEvent::TLS> object to create the new TLS connection
192(unless a connection object was specified directly). If this parameter is 294(unless a connection object was specified directly). If this parameter is
193missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 295missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
194 296
297Instead of an object, you can also specify a hash reference with C<< key
298=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
299new TLS context object.
300
301=item on_starttls => $cb->($handle, $success)
302
303This callback will be invoked when the TLS/SSL handshake has finished. If
304C<$success> is true, then the TLS handshake succeeded, otherwise it failed
305(C<on_stoptls> will not be called in this case).
306
307The session in C<< $handle->{tls} >> can still be examined in this
308callback, even when the handshake was not successful.
309
310=item on_stoptls => $cb->($handle)
311
312When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
313set, then it will be invoked after freeing the TLS session. If it is not,
314then a TLS shutdown condition will be treated like a normal EOF condition
315on the handle.
316
317The session in C<< $handle->{tls} >> can still be examined in this
318callback.
319
320This callback will only be called on TLS shutdowns, not when the
321underlying handle signals EOF.
322
195=item json => JSON or JSON::XS object 323=item json => JSON or JSON::XS object
196 324
197This is the json coder object used by the C<json> read and write types. 325This is the json coder object used by the C<json> read and write types.
198 326
199If you don't supply it, then AnyEvent::Handle will create and use a 327If you don't supply it, then AnyEvent::Handle will create and use a
200suitable one, which will write and expect UTF-8 encoded JSON texts. 328suitable one (on demand), which will write and expect UTF-8 encoded JSON
329texts.
201 330
202Note that you are responsible to depend on the JSON module if you want to 331Note that you are responsible to depend on the JSON module if you want to
203use this functionality, as AnyEvent does not have a dependency itself. 332use this functionality, as AnyEvent does not have a dependency itself.
204 333
205=item filter_r => $cb
206
207=item filter_w => $cb
208
209These exist, but are undocumented at this time.
210
211=back 334=back
212 335
213=cut 336=cut
214 337
215sub new { 338sub new {
216 my $class = shift; 339 my $class = shift;
217
218 my $self = bless { @_ }, $class; 340 my $self = bless { @_ }, $class;
219 341
220 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 342 $self->{fh} or Carp::croak "mandatory argument fh is missing";
221 343
222 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 344 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
223
224 if ($self->{tls}) {
225 require Net::SSLeay;
226 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
227 }
228
229# $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof}; # nop
230# $self->on_error (delete $self->{on_error}) if $self->{on_error}; # nop
231# $self->on_read (delete $self->{on_read} ) if $self->{on_read}; # nop
232 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
233 345
234 $self->{_activity} = AnyEvent->now; 346 $self->{_activity} = AnyEvent->now;
235 $self->_timeout; 347 $self->_timeout;
236 348
349 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
350
351 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
352 if $self->{tls};
353
354 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
355
237 $self->start_read; 356 $self->start_read
357 if $self->{on_read};
238 358
239 $self 359 $self->{fh} && $self
240} 360}
241 361
242sub _shutdown { 362sub _shutdown {
243 my ($self) = @_; 363 my ($self) = @_;
244 364
245 delete $self->{_tw}; 365 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
246 delete $self->{_rw}; 366 $self->{_eof} = 1; # tell starttls et. al to stop trying
247 delete $self->{_ww};
248 delete $self->{fh};
249 367
250 $self->stoptls; 368 &_freetls;
251} 369}
252 370
253sub _error { 371sub _error {
254 my ($self, $errno, $fatal) = @_; 372 my ($self, $errno, $fatal, $message) = @_;
255 373
256 $self->_shutdown 374 $self->_shutdown
257 if $fatal; 375 if $fatal;
258 376
259 $! = $errno; 377 $! = $errno;
378 $message ||= "$!";
260 379
261 if ($self->{on_error}) { 380 if ($self->{on_error}) {
262 $self->{on_error}($self, $fatal); 381 $self->{on_error}($self, $fatal, $message);
263 } else { 382 } elsif ($self->{fh}) {
264 Carp::croak "AnyEvent::Handle uncaught error: $!"; 383 Carp::croak "AnyEvent::Handle uncaught error: $message";
265 } 384 }
266} 385}
267 386
268=item $fh = $handle->fh 387=item $fh = $handle->fh
269 388
270This method returns the file handle of the L<AnyEvent::Handle> object. 389This method returns the file handle used to create the L<AnyEvent::Handle> object.
271 390
272=cut 391=cut
273 392
274sub fh { $_[0]{fh} } 393sub fh { $_[0]{fh} }
275 394
293 $_[0]{on_eof} = $_[1]; 412 $_[0]{on_eof} = $_[1];
294} 413}
295 414
296=item $handle->on_timeout ($cb) 415=item $handle->on_timeout ($cb)
297 416
298Replace the current C<on_timeout> callback, or disables the callback 417Replace the current C<on_timeout> callback, or disables the callback (but
299(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 418not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
300argument. 419argument and method.
301 420
302=cut 421=cut
303 422
304sub on_timeout { 423sub on_timeout {
305 $_[0]{on_timeout} = $_[1]; 424 $_[0]{on_timeout} = $_[1];
425}
426
427=item $handle->autocork ($boolean)
428
429Enables or disables the current autocork behaviour (see C<autocork>
430constructor argument). Changes will only take effect on the next write.
431
432=cut
433
434sub autocork {
435 $_[0]{autocork} = $_[1];
436}
437
438=item $handle->no_delay ($boolean)
439
440Enables or disables the C<no_delay> setting (see constructor argument of
441the same name for details).
442
443=cut
444
445sub no_delay {
446 $_[0]{no_delay} = $_[1];
447
448 eval {
449 local $SIG{__DIE__};
450 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
451 };
452}
453
454=item $handle->on_starttls ($cb)
455
456Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
457
458=cut
459
460sub on_starttls {
461 $_[0]{on_starttls} = $_[1];
462}
463
464=item $handle->on_stoptls ($cb)
465
466Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
467
468=cut
469
470sub on_starttls {
471 $_[0]{on_stoptls} = $_[1];
306} 472}
307 473
308############################################################################# 474#############################################################################
309 475
310=item $handle->timeout ($seconds) 476=item $handle->timeout ($seconds)
339 $self->{on_timeout}($self); 505 $self->{on_timeout}($self);
340 } else { 506 } else {
341 $self->_error (&Errno::ETIMEDOUT); 507 $self->_error (&Errno::ETIMEDOUT);
342 } 508 }
343 509
344 # callbakx could have changed timeout value, optimise 510 # callback could have changed timeout value, optimise
345 return unless $self->{timeout}; 511 return unless $self->{timeout};
346 512
347 # calculate new after 513 # calculate new after
348 $after = $self->{timeout}; 514 $after = $self->{timeout};
349 } 515 }
350 516
351 Scalar::Util::weaken $self; 517 Scalar::Util::weaken $self;
518 return unless $self; # ->error could have destroyed $self
352 519
353 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub { 520 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
354 delete $self->{_tw}; 521 delete $self->{_tw};
355 $self->_timeout; 522 $self->_timeout;
356 }); 523 });
387 my ($self, $cb) = @_; 554 my ($self, $cb) = @_;
388 555
389 $self->{on_drain} = $cb; 556 $self->{on_drain} = $cb;
390 557
391 $cb->($self) 558 $cb->($self)
392 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 559 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
393} 560}
394 561
395=item $handle->push_write ($data) 562=item $handle->push_write ($data)
396 563
397Queues the given scalar to be written. You can push as much data as you 564Queues the given scalar to be written. You can push as much data as you
414 substr $self->{wbuf}, 0, $len, ""; 581 substr $self->{wbuf}, 0, $len, "";
415 582
416 $self->{_activity} = AnyEvent->now; 583 $self->{_activity} = AnyEvent->now;
417 584
418 $self->{on_drain}($self) 585 $self->{on_drain}($self)
419 if $self->{low_water_mark} >= length $self->{wbuf} 586 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
420 && $self->{on_drain}; 587 && $self->{on_drain};
421 588
422 delete $self->{_ww} unless length $self->{wbuf}; 589 delete $self->{_ww} unless length $self->{wbuf};
423 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 590 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
424 $self->_error ($!, 1); 591 $self->_error ($!, 1);
425 } 592 }
426 }; 593 };
427 594
428 # try to write data immediately 595 # try to write data immediately
429 $cb->(); 596 $cb->() unless $self->{autocork};
430 597
431 # if still data left in wbuf, we need to poll 598 # if still data left in wbuf, we need to poll
432 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 599 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
433 if length $self->{wbuf}; 600 if length $self->{wbuf};
434 }; 601 };
448 615
449 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 616 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
450 ->($self, @_); 617 ->($self, @_);
451 } 618 }
452 619
453 if ($self->{filter_w}) { 620 if ($self->{tls}) {
454 $self->{filter_w}($self, \$_[0]); 621 $self->{_tls_wbuf} .= $_[0];
622
623 &_dotls ($self);
455 } else { 624 } else {
456 $self->{wbuf} .= $_[0]; 625 $self->{wbuf} .= $_[0];
457 $self->_drain_wbuf; 626 $self->_drain_wbuf;
458 } 627 }
459} 628}
476=cut 645=cut
477 646
478register_write_type netstring => sub { 647register_write_type netstring => sub {
479 my ($self, $string) = @_; 648 my ($self, $string) = @_;
480 649
481 sprintf "%d:%s,", (length $string), $string 650 (length $string) . ":$string,"
651};
652
653=item packstring => $format, $data
654
655An octet string prefixed with an encoded length. The encoding C<$format>
656uses the same format as a Perl C<pack> format, but must specify a single
657integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
658optional C<!>, C<< < >> or C<< > >> modifier).
659
660=cut
661
662register_write_type packstring => sub {
663 my ($self, $format, $string) = @_;
664
665 pack "$format/a*", $string
482}; 666};
483 667
484=item json => $array_or_hashref 668=item json => $array_or_hashref
485 669
486Encodes the given hash or array reference into a JSON object. Unless you 670Encodes the given hash or array reference into a JSON object. Unless you
520 704
521 $self->{json} ? $self->{json}->encode ($ref) 705 $self->{json} ? $self->{json}->encode ($ref)
522 : JSON::encode_json ($ref) 706 : JSON::encode_json ($ref)
523}; 707};
524 708
709=item storable => $reference
710
711Freezes the given reference using L<Storable> and writes it to the
712handle. Uses the C<nfreeze> format.
713
714=cut
715
716register_write_type storable => sub {
717 my ($self, $ref) = @_;
718
719 require Storable;
720
721 pack "w/a*", Storable::nfreeze ($ref)
722};
723
525=back 724=back
725
726=item $handle->push_shutdown
727
728Sometimes you know you want to close the socket after writing your data
729before it was actually written. One way to do that is to replace your
730C<on_drain> handler by a callback that shuts down the socket (and set
731C<low_water_mark> to C<0>). This method is a shorthand for just that, and
732replaces the C<on_drain> callback with:
733
734 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
735
736This simply shuts down the write side and signals an EOF condition to the
737the peer.
738
739You can rely on the normal read queue and C<on_eof> handling
740afterwards. This is the cleanest way to close a connection.
741
742=cut
743
744sub push_shutdown {
745 my ($self) = @_;
746
747 delete $self->{low_water_mark};
748 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
749}
526 750
527=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 751=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
528 752
529This function (not method) lets you add your own types to C<push_write>. 753This function (not method) lets you add your own types to C<push_write>.
530Whenever the given C<type> is used, C<push_write> will invoke the code 754Whenever the given C<type> is used, C<push_write> will invoke the code
551ways, the "simple" way, using only C<on_read> and the "complex" way, using 775ways, the "simple" way, using only C<on_read> and the "complex" way, using
552a queue. 776a queue.
553 777
554In the simple case, you just install an C<on_read> callback and whenever 778In the simple case, you just install an C<on_read> callback and whenever
555new data arrives, it will be called. You can then remove some data (if 779new data arrives, it will be called. You can then remove some data (if
556enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 780enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
557or not. 781leave the data there if you want to accumulate more (e.g. when only a
782partial message has been received so far).
558 783
559In the more complex case, you want to queue multiple callbacks. In this 784In the more complex case, you want to queue multiple callbacks. In this
560case, AnyEvent::Handle will call the first queued callback each time new 785case, AnyEvent::Handle will call the first queued callback each time new
561data arrives and removes it when it has done its job (see C<push_read>, 786data arrives (also the first time it is queued) and removes it when it has
562below). 787done its job (see C<push_read>, below).
563 788
564This way you can, for example, push three line-reads, followed by reading 789This way you can, for example, push three line-reads, followed by reading
565a chunk of data, and AnyEvent::Handle will execute them in order. 790a chunk of data, and AnyEvent::Handle will execute them in order.
566 791
567Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by 792Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
580 # handle xml 805 # handle xml
581 }); 806 });
582 }); 807 });
583 }); 808 });
584 809
585Example 2: Implement a client for a protocol that replies either with 810Example 2: Implement a client for a protocol that replies either with "OK"
586"OK" and another line or "ERROR" for one request, and 64 bytes for the 811and another line or "ERROR" for the first request that is sent, and 64
587second request. Due tot he availability of a full queue, we can just 812bytes for the second request. Due to the availability of a queue, we can
588pipeline sending both requests and manipulate the queue as necessary in 813just pipeline sending both requests and manipulate the queue as necessary
589the callbacks: 814in the callbacks.
590 815
591 # request one 816When the first callback is called and sees an "OK" response, it will
817C<unshift> another line-read. This line-read will be queued I<before> the
81864-byte chunk callback.
819
820 # request one, returns either "OK + extra line" or "ERROR"
592 $handle->push_write ("request 1\015\012"); 821 $handle->push_write ("request 1\015\012");
593 822
594 # we expect "ERROR" or "OK" as response, so push a line read 823 # we expect "ERROR" or "OK" as response, so push a line read
595 $handle->push_read (line => sub { 824 $handle->push_read (line => sub {
596 # if we got an "OK", we have to _prepend_ another line, 825 # if we got an "OK", we have to _prepend_ another line,
603 ... 832 ...
604 }); 833 });
605 } 834 }
606 }); 835 });
607 836
608 # request two 837 # request two, simply returns 64 octets
609 $handle->push_write ("request 2\015\012"); 838 $handle->push_write ("request 2\015\012");
610 839
611 # simply read 64 bytes, always 840 # simply read 64 bytes, always
612 $handle->push_read (chunk => 64, sub { 841 $handle->push_read (chunk => 64, sub {
613 my $response = $_[1]; 842 my $response = $_[1];
619=cut 848=cut
620 849
621sub _drain_rbuf { 850sub _drain_rbuf {
622 my ($self) = @_; 851 my ($self) = @_;
623 852
853 local $self->{_in_drain} = 1;
854
624 if ( 855 if (
625 defined $self->{rbuf_max} 856 defined $self->{rbuf_max}
626 && $self->{rbuf_max} < length $self->{rbuf} 857 && $self->{rbuf_max} < length $self->{rbuf}
627 ) { 858 ) {
628 return $self->_error (&Errno::ENOSPC, 1); 859 $self->_error (&Errno::ENOSPC, 1), return;
629 } 860 }
630 861
631 return if $self->{in_drain}; 862 while () {
632 local $self->{in_drain} = 1; 863 # we need to use a separate tls read buffer, as we must not receive data while
864 # we are draining the buffer, and this can only happen with TLS.
865 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
633 866
634 while (my $len = length $self->{rbuf}) { 867 my $len = length $self->{rbuf};
635 no strict 'refs'; 868
636 if (my $cb = shift @{ $self->{_queue} }) { 869 if (my $cb = shift @{ $self->{_queue} }) {
637 unless ($cb->($self)) { 870 unless ($cb->($self)) {
638 if ($self->{_eof}) { 871 if ($self->{_eof}) {
639 # no progress can be made (not enough data and no data forthcoming) 872 # no progress can be made (not enough data and no data forthcoming)
640 return $self->_error (&Errno::EPIPE, 1); 873 $self->_error (&Errno::EPIPE, 1), return;
641 } 874 }
642 875
643 unshift @{ $self->{_queue} }, $cb; 876 unshift @{ $self->{_queue} }, $cb;
644 return; 877 last;
645 } 878 }
646 } elsif ($self->{on_read}) { 879 } elsif ($self->{on_read}) {
880 last unless $len;
881
647 $self->{on_read}($self); 882 $self->{on_read}($self);
648 883
649 if ( 884 if (
650 $self->{_eof} # if no further data will arrive
651 && $len == length $self->{rbuf} # and no data has been consumed 885 $len == length $self->{rbuf} # if no data has been consumed
652 && !@{ $self->{_queue} } # and the queue is still empty 886 && !@{ $self->{_queue} } # and the queue is still empty
653 && $self->{on_read} # and we still want to read data 887 && $self->{on_read} # but we still have on_read
654 ) { 888 ) {
889 # no further data will arrive
655 # then no progress can be made 890 # so no progress can be made
656 return $self->_error (&Errno::EPIPE, 1); 891 $self->_error (&Errno::EPIPE, 1), return
892 if $self->{_eof};
893
894 last; # more data might arrive
657 } 895 }
658 } else { 896 } else {
659 # read side becomes idle 897 # read side becomes idle
660 delete $self->{_rw}; 898 delete $self->{_rw} unless $self->{tls};
661 return; 899 last;
662 } 900 }
663 } 901 }
664 902
903 if ($self->{_eof}) {
904 if ($self->{on_eof}) {
665 $self->{on_eof}($self) 905 $self->{on_eof}($self)
666 if $self->{_eof} && $self->{on_eof}; 906 } else {
907 $self->_error (0, 1, "Unexpected end-of-file");
908 }
909 }
910
911 # may need to restart read watcher
912 unless ($self->{_rw}) {
913 $self->start_read
914 if $self->{on_read} || @{ $self->{_queue} };
915 }
667} 916}
668 917
669=item $handle->on_read ($cb) 918=item $handle->on_read ($cb)
670 919
671This replaces the currently set C<on_read> callback, or clears it (when 920This replaces the currently set C<on_read> callback, or clears it (when
676 925
677sub on_read { 926sub on_read {
678 my ($self, $cb) = @_; 927 my ($self, $cb) = @_;
679 928
680 $self->{on_read} = $cb; 929 $self->{on_read} = $cb;
930 $self->_drain_rbuf if $cb && !$self->{_in_drain};
681} 931}
682 932
683=item $handle->rbuf 933=item $handle->rbuf
684 934
685Returns the read buffer (as a modifiable lvalue). 935Returns the read buffer (as a modifiable lvalue).
686 936
687You can access the read buffer directly as the C<< ->{rbuf} >> member, if 937You can access the read buffer directly as the C<< ->{rbuf} >>
688you want. 938member, if you want. However, the only operation allowed on the
939read buffer (apart from looking at it) is removing data from its
940beginning. Otherwise modifying or appending to it is not allowed and will
941lead to hard-to-track-down bugs.
689 942
690NOTE: The read buffer should only be used or modified if the C<on_read>, 943NOTE: The read buffer should only be used or modified if the C<on_read>,
691C<push_read> or C<unshift_read> methods are used. The other read methods 944C<push_read> or C<unshift_read> methods are used. The other read methods
692automatically manage the read buffer. 945automatically manage the read buffer.
693 946
734 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 987 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
735 ->($self, $cb, @_); 988 ->($self, $cb, @_);
736 } 989 }
737 990
738 push @{ $self->{_queue} }, $cb; 991 push @{ $self->{_queue} }, $cb;
739 $self->_drain_rbuf; 992 $self->_drain_rbuf unless $self->{_in_drain};
740} 993}
741 994
742sub unshift_read { 995sub unshift_read {
743 my $self = shift; 996 my $self = shift;
744 my $cb = pop; 997 my $cb = pop;
750 ->($self, $cb, @_); 1003 ->($self, $cb, @_);
751 } 1004 }
752 1005
753 1006
754 unshift @{ $self->{_queue} }, $cb; 1007 unshift @{ $self->{_queue} }, $cb;
755 $self->_drain_rbuf; 1008 $self->_drain_rbuf unless $self->{_in_drain};
756} 1009}
757 1010
758=item $handle->push_read (type => @args, $cb) 1011=item $handle->push_read (type => @args, $cb)
759 1012
760=item $handle->unshift_read (type => @args, $cb) 1013=item $handle->unshift_read (type => @args, $cb)
790 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1043 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
791 1 1044 1
792 } 1045 }
793}; 1046};
794 1047
795# compatibility with older API
796sub push_read_chunk {
797 $_[0]->push_read (chunk => $_[1], $_[2]);
798}
799
800sub unshift_read_chunk {
801 $_[0]->unshift_read (chunk => $_[1], $_[2]);
802}
803
804=item line => [$eol, ]$cb->($handle, $line, $eol) 1048=item line => [$eol, ]$cb->($handle, $line, $eol)
805 1049
806The callback will be called only once a full line (including the end of 1050The callback will be called only once a full line (including the end of
807line marker, C<$eol>) has been read. This line (excluding the end of line 1051line marker, C<$eol>) has been read. This line (excluding the end of line
808marker) will be passed to the callback as second argument (C<$line>), and 1052marker) will be passed to the callback as second argument (C<$line>), and
823=cut 1067=cut
824 1068
825register_read_type line => sub { 1069register_read_type line => sub {
826 my ($self, $cb, $eol) = @_; 1070 my ($self, $cb, $eol) = @_;
827 1071
828 $eol = qr|(\015?\012)| if @_ < 3; 1072 if (@_ < 3) {
829 $eol = quotemeta $eol unless ref $eol; 1073 # this is more than twice as fast as the generic code below
830 $eol = qr|^(.*?)($eol)|s;
831
832 sub { 1074 sub {
833 $_[0]{rbuf} =~ s/$eol// or return; 1075 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
834 1076
835 $cb->($_[0], $1, $2); 1077 $cb->($_[0], $1, $2);
836 1
837 }
838};
839
840# compatibility with older API
841sub push_read_line {
842 my $self = shift;
843 $self->push_read (line => @_);
844}
845
846sub unshift_read_line {
847 my $self = shift;
848 $self->unshift_read (line => @_);
849}
850
851=item netstring => $cb->($handle, $string)
852
853A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
854
855Throws an error with C<$!> set to EBADMSG on format violations.
856
857=cut
858
859register_read_type netstring => sub {
860 my ($self, $cb) = @_;
861
862 sub {
863 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
864 if ($_[0]{rbuf} =~ /[^0-9]/) {
865 $self->_error (&Errno::EBADMSG);
866 } 1078 1
867 return;
868 } 1079 }
1080 } else {
1081 $eol = quotemeta $eol unless ref $eol;
1082 $eol = qr|^(.*?)($eol)|s;
869 1083
870 my $len = $1; 1084 sub {
1085 $_[0]{rbuf} =~ s/$eol// or return;
871 1086
872 $self->unshift_read (chunk => $len, sub { 1087 $cb->($_[0], $1, $2);
873 my $string = $_[1];
874 $_[0]->unshift_read (chunk => 1, sub {
875 if ($_[1] eq ",") {
876 $cb->($_[0], $string);
877 } else {
878 $self->_error (&Errno::EBADMSG);
879 }
880 }); 1088 1
881 }); 1089 }
882
883 1
884 } 1090 }
885}; 1091};
886 1092
887=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1093=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
888 1094
952 1158
953 () 1159 ()
954 } 1160 }
955}; 1161};
956 1162
1163=item netstring => $cb->($handle, $string)
1164
1165A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1166
1167Throws an error with C<$!> set to EBADMSG on format violations.
1168
1169=cut
1170
1171register_read_type netstring => sub {
1172 my ($self, $cb) = @_;
1173
1174 sub {
1175 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1176 if ($_[0]{rbuf} =~ /[^0-9]/) {
1177 $self->_error (&Errno::EBADMSG);
1178 }
1179 return;
1180 }
1181
1182 my $len = $1;
1183
1184 $self->unshift_read (chunk => $len, sub {
1185 my $string = $_[1];
1186 $_[0]->unshift_read (chunk => 1, sub {
1187 if ($_[1] eq ",") {
1188 $cb->($_[0], $string);
1189 } else {
1190 $self->_error (&Errno::EBADMSG);
1191 }
1192 });
1193 });
1194
1195 1
1196 }
1197};
1198
1199=item packstring => $format, $cb->($handle, $string)
1200
1201An octet string prefixed with an encoded length. The encoding C<$format>
1202uses the same format as a Perl C<pack> format, but must specify a single
1203integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1204optional C<!>, C<< < >> or C<< > >> modifier).
1205
1206For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1207EPP uses a prefix of C<N> (4 octtes).
1208
1209Example: read a block of data prefixed by its length in BER-encoded
1210format (very efficient).
1211
1212 $handle->push_read (packstring => "w", sub {
1213 my ($handle, $data) = @_;
1214 });
1215
1216=cut
1217
1218register_read_type packstring => sub {
1219 my ($self, $cb, $format) = @_;
1220
1221 sub {
1222 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1223 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1224 or return;
1225
1226 $format = length pack $format, $len;
1227
1228 # bypass unshift if we already have the remaining chunk
1229 if ($format + $len <= length $_[0]{rbuf}) {
1230 my $data = substr $_[0]{rbuf}, $format, $len;
1231 substr $_[0]{rbuf}, 0, $format + $len, "";
1232 $cb->($_[0], $data);
1233 } else {
1234 # remove prefix
1235 substr $_[0]{rbuf}, 0, $format, "";
1236
1237 # read remaining chunk
1238 $_[0]->unshift_read (chunk => $len, $cb);
1239 }
1240
1241 1
1242 }
1243};
1244
957=item json => $cb->($handle, $hash_or_arrayref) 1245=item json => $cb->($handle, $hash_or_arrayref)
958 1246
959Reads a JSON object or array, decodes it and passes it to the callback. 1247Reads a JSON object or array, decodes it and passes it to the
1248callback. When a parse error occurs, an C<EBADMSG> error will be raised.
960 1249
961If a C<json> object was passed to the constructor, then that will be used 1250If a C<json> object was passed to the constructor, then that will be used
962for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1251for the final decode, otherwise it will create a JSON coder expecting UTF-8.
963 1252
964This read type uses the incremental parser available with JSON version 1253This read type uses the incremental parser available with JSON version
971the C<json> write type description, above, for an actual example. 1260the C<json> write type description, above, for an actual example.
972 1261
973=cut 1262=cut
974 1263
975register_read_type json => sub { 1264register_read_type json => sub {
976 my ($self, $cb, $accept, $reject, $skip) = @_; 1265 my ($self, $cb) = @_;
977 1266
978 require JSON; 1267 my $json = $self->{json} ||=
1268 eval { require JSON::XS; JSON::XS->new->utf8 }
1269 || do { require JSON; JSON->new->utf8 };
979 1270
980 my $data; 1271 my $data;
981 my $rbuf = \$self->{rbuf}; 1272 my $rbuf = \$self->{rbuf};
982 1273
983 my $json = $self->{json} ||= JSON->new->utf8;
984
985 sub { 1274 sub {
986 my $ref = $json->incr_parse ($self->{rbuf}); 1275 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
987 1276
988 if ($ref) { 1277 if ($ref) {
989 $self->{rbuf} = $json->incr_text; 1278 $self->{rbuf} = $json->incr_text;
990 $json->incr_text = ""; 1279 $json->incr_text = "";
991 $cb->($self, $ref); 1280 $cb->($self, $ref);
992 1281
993 1 1282 1
1283 } elsif ($@) {
1284 # error case
1285 $json->incr_skip;
1286
1287 $self->{rbuf} = $json->incr_text;
1288 $json->incr_text = "";
1289
1290 $self->_error (&Errno::EBADMSG);
1291
1292 ()
994 } else { 1293 } else {
995 $self->{rbuf} = ""; 1294 $self->{rbuf} = "";
1295
996 () 1296 ()
997 } 1297 }
1298 }
1299};
1300
1301=item storable => $cb->($handle, $ref)
1302
1303Deserialises a L<Storable> frozen representation as written by the
1304C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1305data).
1306
1307Raises C<EBADMSG> error if the data could not be decoded.
1308
1309=cut
1310
1311register_read_type storable => sub {
1312 my ($self, $cb) = @_;
1313
1314 require Storable;
1315
1316 sub {
1317 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1318 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1319 or return;
1320
1321 my $format = length pack "w", $len;
1322
1323 # bypass unshift if we already have the remaining chunk
1324 if ($format + $len <= length $_[0]{rbuf}) {
1325 my $data = substr $_[0]{rbuf}, $format, $len;
1326 substr $_[0]{rbuf}, 0, $format + $len, "";
1327 $cb->($_[0], Storable::thaw ($data));
1328 } else {
1329 # remove prefix
1330 substr $_[0]{rbuf}, 0, $format, "";
1331
1332 # read remaining chunk
1333 $_[0]->unshift_read (chunk => $len, sub {
1334 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1335 $cb->($_[0], $ref);
1336 } else {
1337 $self->_error (&Errno::EBADMSG);
1338 }
1339 });
1340 }
1341
1342 1
998 } 1343 }
999}; 1344};
1000 1345
1001=back 1346=back
1002 1347
1023=item $handle->stop_read 1368=item $handle->stop_read
1024 1369
1025=item $handle->start_read 1370=item $handle->start_read
1026 1371
1027In rare cases you actually do not want to read anything from the 1372In rare cases you actually do not want to read anything from the
1028socket. In this case you can call C<stop_read>. Neither C<on_read> no 1373socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1029any queued callbacks will be executed then. To start reading again, call 1374any queued callbacks will be executed then. To start reading again, call
1030C<start_read>. 1375C<start_read>.
1031 1376
1377Note that AnyEvent::Handle will automatically C<start_read> for you when
1378you change the C<on_read> callback or push/unshift a read callback, and it
1379will automatically C<stop_read> for you when neither C<on_read> is set nor
1380there are any read requests in the queue.
1381
1382These methods will have no effect when in TLS mode (as TLS doesn't support
1383half-duplex connections).
1384
1032=cut 1385=cut
1033 1386
1034sub stop_read { 1387sub stop_read {
1035 my ($self) = @_; 1388 my ($self) = @_;
1036 1389
1037 delete $self->{_rw}; 1390 delete $self->{_rw} unless $self->{tls};
1038} 1391}
1039 1392
1040sub start_read { 1393sub start_read {
1041 my ($self) = @_; 1394 my ($self) = @_;
1042 1395
1043 unless ($self->{_rw} || $self->{_eof}) { 1396 unless ($self->{_rw} || $self->{_eof}) {
1044 Scalar::Util::weaken $self; 1397 Scalar::Util::weaken $self;
1045 1398
1046 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1399 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1047 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1400 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1048 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1401 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1049 1402
1050 if ($len > 0) { 1403 if ($len > 0) {
1051 $self->{_activity} = AnyEvent->now; 1404 $self->{_activity} = AnyEvent->now;
1052 1405
1053 $self->{filter_r} 1406 if ($self->{tls}) {
1054 ? $self->{filter_r}($self, $rbuf) 1407 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1055 : $self->_drain_rbuf; 1408
1409 &_dotls ($self);
1410 } else {
1411 $self->_drain_rbuf unless $self->{_in_drain};
1412 }
1056 1413
1057 } elsif (defined $len) { 1414 } elsif (defined $len) {
1058 delete $self->{_rw}; 1415 delete $self->{_rw};
1059 $self->{_eof} = 1; 1416 $self->{_eof} = 1;
1060 $self->_drain_rbuf; 1417 $self->_drain_rbuf unless $self->{_in_drain};
1061 1418
1062 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1419 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1063 return $self->_error ($!, 1); 1420 return $self->_error ($!, 1);
1064 } 1421 }
1065 }); 1422 });
1066 } 1423 }
1067} 1424}
1068 1425
1426our $ERROR_SYSCALL;
1427our $ERROR_WANT_READ;
1428
1429sub _tls_error {
1430 my ($self, $err) = @_;
1431
1432 return $self->_error ($!, 1)
1433 if $err == Net::SSLeay::ERROR_SYSCALL ();
1434
1435 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1436
1437 # reduce error string to look less scary
1438 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1439
1440 $self->_error (&Errno::EPROTO, 1, $err);
1441}
1442
1443# poll the write BIO and send the data if applicable
1444# also decode read data if possible
1445# this is basiclaly our TLS state machine
1446# more efficient implementations are possible with openssl,
1447# but not with the buggy and incomplete Net::SSLeay.
1069sub _dotls { 1448sub _dotls {
1070 my ($self) = @_; 1449 my ($self) = @_;
1071 1450
1451 my $tmp;
1452
1072 if (length $self->{_tls_wbuf}) { 1453 if (length $self->{_tls_wbuf}) {
1073 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1454 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1074 substr $self->{_tls_wbuf}, 0, $len, ""; 1455 substr $self->{_tls_wbuf}, 0, $tmp, "";
1075 } 1456 }
1076 }
1077 1457
1458 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1459 return $self->_tls_error ($tmp)
1460 if $tmp != $ERROR_WANT_READ
1461 && ($tmp != $ERROR_SYSCALL || $!);
1462 }
1463
1464 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1465 unless (length $tmp) {
1466 &_freetls;
1467 if ($self->{on_stoptls}) {
1468 $self->{on_stoptls}($self);
1469 return;
1470 } else {
1471 # let's treat SSL-eof as we treat normal EOF
1472 delete $self->{_rw};
1473 $self->{_eof} = 1;
1474 }
1475 }
1476
1477 $self->{_tls_rbuf} .= $tmp;
1478 $self->_drain_rbuf unless $self->{_in_drain};
1479 $self->{tls} or return; # tls session might have gone away in callback
1480 }
1481
1482 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1483 return $self->_tls_error ($tmp)
1484 if $tmp != $ERROR_WANT_READ
1485 && ($tmp != $ERROR_SYSCALL || $!);
1486
1078 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1487 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1079 $self->{wbuf} .= $buf; 1488 $self->{wbuf} .= $tmp;
1080 $self->_drain_wbuf; 1489 $self->_drain_wbuf;
1081 } 1490 }
1082 1491
1083 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) { 1492 $self->{_on_starttls}
1084 $self->{rbuf} .= $buf; 1493 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1085 $self->_drain_rbuf; 1494 and (delete $self->{_on_starttls})->($self, 1);
1086 }
1087
1088 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1089
1090 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1091 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1092 return $self->_error ($!, 1);
1093 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1094 return $self->_error (&Errno::EIO, 1);
1095 }
1096
1097 # all others are fine for our purposes
1098 }
1099} 1495}
1100 1496
1101=item $handle->starttls ($tls[, $tls_ctx]) 1497=item $handle->starttls ($tls[, $tls_ctx])
1102 1498
1103Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1499Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1105C<starttls>. 1501C<starttls>.
1106 1502
1107The first argument is the same as the C<tls> constructor argument (either 1503The first argument is the same as the C<tls> constructor argument (either
1108C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1504C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1109 1505
1110The second argument is the optional C<Net::SSLeay::CTX> object that is 1506The second argument is the optional C<AnyEvent::TLS> object that is used
1111used when AnyEvent::Handle has to create its own TLS connection object. 1507when AnyEvent::Handle has to create its own TLS connection object, or
1508a hash reference with C<< key => value >> pairs that will be used to
1509construct a new context.
1112 1510
1113The TLS connection object will end up in C<< $handle->{tls} >> after this 1511The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1114call and can be used or changed to your liking. Note that the handshake 1512context in C<< $handle->{tls_ctx} >> after this call and can be used or
1115might have already started when this function returns. 1513changed to your liking. Note that the handshake might have already started
1514when this function returns.
1116 1515
1516If it an error to start a TLS handshake more than once per
1517AnyEvent::Handle object (this is due to bugs in OpenSSL).
1518
1117=cut 1519=cut
1520
1521our %TLS_CACHE; #TODO not yet documented, should we?
1118 1522
1119sub starttls { 1523sub starttls {
1120 my ($self, $ssl, $ctx) = @_; 1524 my ($self, $ssl, $ctx) = @_;
1121 1525
1122 $self->stoptls; 1526 require Net::SSLeay;
1123 1527
1124 if ($ssl eq "accept") { 1528 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1125 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1529 if $self->{tls};
1126 Net::SSLeay::set_accept_state ($ssl); 1530
1127 } elsif ($ssl eq "connect") { 1531 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1128 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1532 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1129 Net::SSLeay::set_connect_state ($ssl); 1533
1534 $ctx ||= $self->{tls_ctx};
1535
1536 if ("HASH" eq ref $ctx) {
1537 require AnyEvent::TLS;
1538
1539 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1540
1541 if ($ctx->{cache}) {
1542 my $key = $ctx+0;
1543 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1544 } else {
1545 $ctx = new AnyEvent::TLS %$ctx;
1546 }
1547 }
1130 } 1548
1131 1549 $self->{tls_ctx} = $ctx || TLS_CTX ();
1132 $self->{tls} = $ssl; 1550 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1133 1551
1134 # basically, this is deep magic (because SSL_read should have the same issues) 1552 # basically, this is deep magic (because SSL_read should have the same issues)
1135 # but the openssl maintainers basically said: "trust us, it just works". 1553 # but the openssl maintainers basically said: "trust us, it just works".
1136 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1554 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1137 # and mismaintained ssleay-module doesn't even offer them). 1555 # and mismaintained ssleay-module doesn't even offer them).
1138 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1556 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1557 #
1558 # in short: this is a mess.
1559 #
1560 # note that we do not try to keep the length constant between writes as we are required to do.
1561 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1562 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1563 # have identity issues in that area.
1139 Net::SSLeay::CTX_set_mode ($self->{tls}, 1564# Net::SSLeay::CTX_set_mode ($ssl,
1140 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1565# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1141 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1566# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1567 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1142 1568
1143 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1569 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1144 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1570 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1145 1571
1146 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1572 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1147 1573
1148 $self->{filter_w} = sub { 1574 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1149 $_[0]{_tls_wbuf} .= ${$_[1]}; 1575 if exists $self->{on_starttls};
1150 &_dotls; 1576
1151 }; 1577 &_dotls; # need to trigger the initial handshake
1152 $self->{filter_r} = sub { 1578 $self->start_read; # make sure we actually do read
1153 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1154 &_dotls;
1155 };
1156} 1579}
1157 1580
1158=item $handle->stoptls 1581=item $handle->stoptls
1159 1582
1160Destroys the SSL connection, if any. Partial read or write data will be 1583Shuts down the SSL connection - this makes a proper EOF handshake by
1161lost. 1584sending a close notify to the other side, but since OpenSSL doesn't
1585support non-blocking shut downs, it is not possible to re-use the stream
1586afterwards.
1162 1587
1163=cut 1588=cut
1164 1589
1165sub stoptls { 1590sub stoptls {
1166 my ($self) = @_; 1591 my ($self) = @_;
1167 1592
1168 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1593 if ($self->{tls}) {
1594 Net::SSLeay::shutdown ($self->{tls});
1169 1595
1170 delete $self->{_rbio}; 1596 &_dotls;
1171 delete $self->{_wbio}; 1597
1172 delete $self->{_tls_wbuf}; 1598# # we don't give a shit. no, we do, but we can't. no...#d#
1173 delete $self->{filter_r}; 1599# # we, we... have to use openssl :/#d#
1174 delete $self->{filter_w}; 1600# &_freetls;#d#
1601 }
1602}
1603
1604sub _freetls {
1605 my ($self) = @_;
1606
1607 return unless $self->{tls};
1608
1609 $self->{_on_starttls}
1610 and (delete $self->{_on_starttls})->($self, undef);
1611
1612 $self->{tls_ctx}->_put_session (delete $self->{tls});
1613
1614 delete @$self{qw(_rbio _wbio _tls_wbuf)};
1175} 1615}
1176 1616
1177sub DESTROY { 1617sub DESTROY {
1178 my $self = shift; 1618 my ($self) = @_;
1179 1619
1180 $self->stoptls; 1620 &_freetls;
1621
1622 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1623
1624 if ($linger && length $self->{wbuf}) {
1625 my $fh = delete $self->{fh};
1626 my $wbuf = delete $self->{wbuf};
1627
1628 my @linger;
1629
1630 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1631 my $len = syswrite $fh, $wbuf, length $wbuf;
1632
1633 if ($len > 0) {
1634 substr $wbuf, 0, $len, "";
1635 } else {
1636 @linger = (); # end
1637 }
1638 });
1639 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1640 @linger = ();
1641 });
1642 }
1643}
1644
1645=item $handle->destroy
1646
1647Shuts down the handle object as much as possible - this call ensures that
1648no further callbacks will be invoked and as many resources as possible
1649will be freed. You must not call any methods on the object afterwards.
1650
1651Normally, you can just "forget" any references to an AnyEvent::Handle
1652object and it will simply shut down. This works in fatal error and EOF
1653callbacks, as well as code outside. It does I<NOT> work in a read or write
1654callback, so when you want to destroy the AnyEvent::Handle object from
1655within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1656that case.
1657
1658The handle might still linger in the background and write out remaining
1659data, as specified by the C<linger> option, however.
1660
1661=cut
1662
1663sub destroy {
1664 my ($self) = @_;
1665
1666 $self->DESTROY;
1667 %$self = ();
1181} 1668}
1182 1669
1183=item AnyEvent::Handle::TLS_CTX 1670=item AnyEvent::Handle::TLS_CTX
1184 1671
1185This function creates and returns the Net::SSLeay::CTX object used by 1672This function creates and returns the AnyEvent::TLS object used by default
1186default for TLS mode. 1673for TLS mode.
1187 1674
1188The context is created like this: 1675The context is created by calling L<AnyEvent::TLS> without any arguments.
1189
1190 Net::SSLeay::load_error_strings;
1191 Net::SSLeay::SSLeay_add_ssl_algorithms;
1192 Net::SSLeay::randomize;
1193
1194 my $CTX = Net::SSLeay::CTX_new;
1195
1196 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1197 1676
1198=cut 1677=cut
1199 1678
1200our $TLS_CTX; 1679our $TLS_CTX;
1201 1680
1202sub TLS_CTX() { 1681sub TLS_CTX() {
1203 $TLS_CTX || do { 1682 $TLS_CTX ||= do {
1204 require Net::SSLeay; 1683 require AnyEvent::TLS;
1205 1684
1206 Net::SSLeay::load_error_strings (); 1685 new AnyEvent::TLS
1207 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1208 Net::SSLeay::randomize ();
1209
1210 $TLS_CTX = Net::SSLeay::CTX_new ();
1211
1212 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1213
1214 $TLS_CTX
1215 } 1686 }
1216} 1687}
1217 1688
1218=back 1689=back
1690
1691
1692=head1 NONFREQUENTLY ASKED QUESTIONS
1693
1694=over 4
1695
1696=item I C<undef> the AnyEvent::Handle reference inside my callback and
1697still get further invocations!
1698
1699That's because AnyEvent::Handle keeps a reference to itself when handling
1700read or write callbacks.
1701
1702It is only safe to "forget" the reference inside EOF or error callbacks,
1703from within all other callbacks, you need to explicitly call the C<<
1704->destroy >> method.
1705
1706=item I get different callback invocations in TLS mode/Why can't I pause
1707reading?
1708
1709Unlike, say, TCP, TLS connections do not consist of two independent
1710communication channels, one for each direction. Or put differently. The
1711read and write directions are not independent of each other: you cannot
1712write data unless you are also prepared to read, and vice versa.
1713
1714This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1715callback invocations when you are not expecting any read data - the reason
1716is that AnyEvent::Handle always reads in TLS mode.
1717
1718During the connection, you have to make sure that you always have a
1719non-empty read-queue, or an C<on_read> watcher. At the end of the
1720connection (or when you no longer want to use it) you can call the
1721C<destroy> method.
1722
1723=item How do I read data until the other side closes the connection?
1724
1725If you just want to read your data into a perl scalar, the easiest way
1726to achieve this is by setting an C<on_read> callback that does nothing,
1727clearing the C<on_eof> callback and in the C<on_error> callback, the data
1728will be in C<$_[0]{rbuf}>:
1729
1730 $handle->on_read (sub { });
1731 $handle->on_eof (undef);
1732 $handle->on_error (sub {
1733 my $data = delete $_[0]{rbuf};
1734 undef $handle;
1735 });
1736
1737The reason to use C<on_error> is that TCP connections, due to latencies
1738and packets loss, might get closed quite violently with an error, when in
1739fact, all data has been received.
1740
1741It is usually better to use acknowledgements when transferring data,
1742to make sure the other side hasn't just died and you got the data
1743intact. This is also one reason why so many internet protocols have an
1744explicit QUIT command.
1745
1746=item I don't want to destroy the handle too early - how do I wait until
1747all data has been written?
1748
1749After writing your last bits of data, set the C<on_drain> callback
1750and destroy the handle in there - with the default setting of
1751C<low_water_mark> this will be called precisely when all data has been
1752written to the socket:
1753
1754 $handle->push_write (...);
1755 $handle->on_drain (sub {
1756 warn "all data submitted to the kernel\n";
1757 undef $handle;
1758 });
1759
1760=back
1761
1219 1762
1220=head1 SUBCLASSING AnyEvent::Handle 1763=head1 SUBCLASSING AnyEvent::Handle
1221 1764
1222In many cases, you might want to subclass AnyEvent::Handle. 1765In many cases, you might want to subclass AnyEvent::Handle.
1223 1766
1227=over 4 1770=over 4
1228 1771
1229=item * all constructor arguments become object members. 1772=item * all constructor arguments become object members.
1230 1773
1231At least initially, when you pass a C<tls>-argument to the constructor it 1774At least initially, when you pass a C<tls>-argument to the constructor it
1232will end up in C<< $handle->{tls} >>. Those members might be changes or 1775will end up in C<< $handle->{tls} >>. Those members might be changed or
1233mutated later on (for example C<tls> will hold the TLS connection object). 1776mutated later on (for example C<tls> will hold the TLS connection object).
1234 1777
1235=item * other object member names are prefixed with an C<_>. 1778=item * other object member names are prefixed with an C<_>.
1236 1779
1237All object members not explicitly documented (internal use) are prefixed 1780All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines