ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.73 by root, Thu Jul 17 15:21:02 2008 UTC vs.
Revision 1.144 by root, Mon Jul 6 21:38:25 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.22; 19our $VERSION = 4.452;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
110and no read request is in the queue (unlike read queue callbacks, this 133and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 134callback will only be called when at least one octet of data is in the
112read buffer). 135read buffer).
113 136
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
116 141
117When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
135=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
136 161
137If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 166
142Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
146 172
147Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
148 174
149=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
150 176
154 180
155=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
156 182
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
160 186
161For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
165isn't finished). 191isn't finished).
166 192
167=item autocork => <boolean> 193=item autocork => <boolean>
168 194
169When disabled (the default), then C<push_write> will try to immediately 195When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 196write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 197a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 198be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
174 201
175When enabled, then writes will always be queued till the next event loop 202When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 203iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
178 206
179=item no_delay => <boolean> 207=item no_delay => <boolean>
180 208
181When doing small writes on sockets, your operating system kernel might 209When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 210wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 211the Nagle algorithm, and usually it is beneficial.
184 212
185In some situations you want as low a delay as possible, which cna be 213In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 214accomplishd by setting this option to a true value.
187 215
188The default is your opertaing system's default behaviour, this option 216The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 217enabled), this option explicitly enables or disables it, if possible.
190 218
191=item read_size => <bytes> 219=item read_size => <bytes>
192 220
193The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
195 224
196=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
197 226
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
200considered empty. 229considered empty.
201 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
202=item linger => <seconds> 236=item linger => <seconds>
203 237
204If non-zero (default: C<3600>), then the destructor of the 238If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 239AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 240write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 241socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 242system treats outstanding data at socket close time).
209 243
210This will not work for partial TLS data that could not yet been 244This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
255verification will be skipped when C<peername> is not specified or
256C<undef>.
212 257
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 258=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 259
215When this parameter is given, it enables TLS (SSL) mode, that means it 260When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 261AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 262established and will transparently encrypt/decrypt data afterwards.
263
264All TLS protocol errors will be signalled as C<EPROTO>, with an
265appropriate error message.
218 266
219TLS mode requires Net::SSLeay to be installed (it will be loaded 267TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 268automatically when you try to create a TLS handle): this module doesn't
269have a dependency on that module, so if your module requires it, you have
270to add the dependency yourself.
221 271
222For the TLS server side, use C<accept>, and for the TLS client side of a 272Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 273C<accept>, and for the TLS client side of a connection, use C<connect>
274mode.
224 275
225You can also provide your own TLS connection object, but you have 276You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 277to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 278or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 279AnyEvent::Handle. Also, this module will take ownership of this connection
280object.
229 281
282At some future point, AnyEvent::Handle might switch to another TLS
283implementation, then the option to use your own session object will go
284away.
285
286B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
287passing in the wrong integer will lead to certain crash. This most often
288happens when one uses a stylish C<< tls => 1 >> and is surprised about the
289segmentation fault.
290
230See the C<starttls> method if you need to start TLs negotiation later. 291See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 292
232=item tls_ctx => $ssl_ctx 293=item tls_ctx => $anyevent_tls
233 294
234Use the given Net::SSLeay::CTX object to create the new TLS connection 295Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 296(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 297missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 298
299Instead of an object, you can also specify a hash reference with C<< key
300=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
301new TLS context object.
302
303=item on_starttls => $cb->($handle, $success[, $error_message])
304
305This callback will be invoked when the TLS/SSL handshake has finished. If
306C<$success> is true, then the TLS handshake succeeded, otherwise it failed
307(C<on_stoptls> will not be called in this case).
308
309The session in C<< $handle->{tls} >> can still be examined in this
310callback, even when the handshake was not successful.
311
312TLS handshake failures will not cause C<on_error> to be invoked when this
313callback is in effect, instead, the error message will be passed to C<on_starttls>.
314
315Without this callback, handshake failures lead to C<on_error> being
316called, as normal.
317
318Note that you cannot call C<starttls> right again in this callback. If you
319need to do that, start an zero-second timer instead whose callback can
320then call C<< ->starttls >> again.
321
322=item on_stoptls => $cb->($handle)
323
324When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
325set, then it will be invoked after freeing the TLS session. If it is not,
326then a TLS shutdown condition will be treated like a normal EOF condition
327on the handle.
328
329The session in C<< $handle->{tls} >> can still be examined in this
330callback.
331
332This callback will only be called on TLS shutdowns, not when the
333underlying handle signals EOF.
334
238=item json => JSON or JSON::XS object 335=item json => JSON or JSON::XS object
239 336
240This is the json coder object used by the C<json> read and write types. 337This is the json coder object used by the C<json> read and write types.
241 338
242If you don't supply it, then AnyEvent::Handle will create and use a 339If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 340suitable one (on demand), which will write and expect UTF-8 encoded JSON
341texts.
244 342
245Note that you are responsible to depend on the JSON module if you want to 343Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 344use this functionality, as AnyEvent does not have a dependency itself.
247 345
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 346=back
255 347
256=cut 348=cut
257 349
258sub new { 350sub new {
259 my $class = shift; 351 my $class = shift;
260
261 my $self = bless { @_ }, $class; 352 my $self = bless { @_ }, $class;
262 353
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 354 $self->{fh} or Carp::croak "mandatory argument fh is missing";
264 355
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 356 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266
267 if ($self->{tls}) {
268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271 357
272 $self->{_activity} = AnyEvent->now; 358 $self->{_activity} = AnyEvent->now;
273 $self->_timeout; 359 $self->_timeout;
274 360
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 361 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
362
363 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
364 if $self->{tls};
365
366 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
277 367
278 $self->start_read 368 $self->start_read
279 if $self->{on_read}; 369 if $self->{on_read};
280 370
281 $self 371 $self->{fh} && $self
282} 372}
283 373
284sub _shutdown { 374sub _shutdown {
285 my ($self) = @_; 375 my ($self) = @_;
286 376
287 delete $self->{_tw}; 377 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 378 $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww};
290 delete $self->{fh};
291 379
292 $self->stoptls; 380 &_freetls;
293} 381}
294 382
295sub _error { 383sub _error {
296 my ($self, $errno, $fatal) = @_; 384 my ($self, $errno, $fatal, $message) = @_;
297 385
298 $self->_shutdown 386 $self->_shutdown
299 if $fatal; 387 if $fatal;
300 388
301 $! = $errno; 389 $! = $errno;
390 $message ||= "$!";
302 391
303 if ($self->{on_error}) { 392 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 393 $self->{on_error}($self, $fatal, $message);
305 } else { 394 } elsif ($self->{fh}) {
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 395 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 396 }
308} 397}
309 398
310=item $fh = $handle->fh 399=item $fh = $handle->fh
311 400
312This method returns the file handle of the L<AnyEvent::Handle> object. 401This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 402
314=cut 403=cut
315 404
316sub fh { $_[0]{fh} } 405sub fh { $_[0]{fh} }
317 406
335 $_[0]{on_eof} = $_[1]; 424 $_[0]{on_eof} = $_[1];
336} 425}
337 426
338=item $handle->on_timeout ($cb) 427=item $handle->on_timeout ($cb)
339 428
340Replace the current C<on_timeout> callback, or disables the callback 429Replace the current C<on_timeout> callback, or disables the callback (but
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 430not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
342argument. 431argument and method.
343 432
344=cut 433=cut
345 434
346sub on_timeout { 435sub on_timeout {
347 $_[0]{on_timeout} = $_[1]; 436 $_[0]{on_timeout} = $_[1];
348} 437}
349 438
350=item $handle->autocork ($boolean) 439=item $handle->autocork ($boolean)
351 440
352Enables or disables the current autocork behaviour (see C<autocork> 441Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 442constructor argument). Changes will only take effect on the next write.
354 443
355=cut 444=cut
445
446sub autocork {
447 $_[0]{autocork} = $_[1];
448}
356 449
357=item $handle->no_delay ($boolean) 450=item $handle->no_delay ($boolean)
358 451
359Enables or disables the C<no_delay> setting (see constructor argument of 452Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 453the same name for details).
366 459
367 eval { 460 eval {
368 local $SIG{__DIE__}; 461 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 462 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
370 }; 463 };
464}
465
466=item $handle->on_starttls ($cb)
467
468Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
469
470=cut
471
472sub on_starttls {
473 $_[0]{on_starttls} = $_[1];
474}
475
476=item $handle->on_stoptls ($cb)
477
478Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
479
480=cut
481
482sub on_starttls {
483 $_[0]{on_stoptls} = $_[1];
371} 484}
372 485
373############################################################################# 486#############################################################################
374 487
375=item $handle->timeout ($seconds) 488=item $handle->timeout ($seconds)
453 my ($self, $cb) = @_; 566 my ($self, $cb) = @_;
454 567
455 $self->{on_drain} = $cb; 568 $self->{on_drain} = $cb;
456 569
457 $cb->($self) 570 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 571 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 572}
460 573
461=item $handle->push_write ($data) 574=item $handle->push_write ($data)
462 575
463Queues the given scalar to be written. You can push as much data as you 576Queues the given scalar to be written. You can push as much data as you
480 substr $self->{wbuf}, 0, $len, ""; 593 substr $self->{wbuf}, 0, $len, "";
481 594
482 $self->{_activity} = AnyEvent->now; 595 $self->{_activity} = AnyEvent->now;
483 596
484 $self->{on_drain}($self) 597 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 598 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 599 && $self->{on_drain};
487 600
488 delete $self->{_ww} unless length $self->{wbuf}; 601 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 602 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 603 $self->_error ($!, 1);
514 627
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 628 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 629 ->($self, @_);
517 } 630 }
518 631
519 if ($self->{filter_w}) { 632 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 633 $self->{_tls_wbuf} .= $_[0];
634
635 &_dotls ($self);
521 } else { 636 } else {
522 $self->{wbuf} .= $_[0]; 637 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 638 $self->_drain_wbuf;
524 } 639 }
525} 640}
542=cut 657=cut
543 658
544register_write_type netstring => sub { 659register_write_type netstring => sub {
545 my ($self, $string) = @_; 660 my ($self, $string) = @_;
546 661
547 sprintf "%d:%s,", (length $string), $string 662 (length $string) . ":$string,"
548}; 663};
549 664
550=item packstring => $format, $data 665=item packstring => $format, $data
551 666
552An octet string prefixed with an encoded length. The encoding C<$format> 667An octet string prefixed with an encoded length. The encoding C<$format>
617 732
618 pack "w/a*", Storable::nfreeze ($ref) 733 pack "w/a*", Storable::nfreeze ($ref)
619}; 734};
620 735
621=back 736=back
737
738=item $handle->push_shutdown
739
740Sometimes you know you want to close the socket after writing your data
741before it was actually written. One way to do that is to replace your
742C<on_drain> handler by a callback that shuts down the socket (and set
743C<low_water_mark> to C<0>). This method is a shorthand for just that, and
744replaces the C<on_drain> callback with:
745
746 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
747
748This simply shuts down the write side and signals an EOF condition to the
749the peer.
750
751You can rely on the normal read queue and C<on_eof> handling
752afterwards. This is the cleanest way to close a connection.
753
754=cut
755
756sub push_shutdown {
757 my ($self) = @_;
758
759 delete $self->{low_water_mark};
760 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
761}
622 762
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 763=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 764
625This function (not method) lets you add your own types to C<push_write>. 765This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 766Whenever the given C<type> is used, C<push_write> will invoke the code
726 866
727 if ( 867 if (
728 defined $self->{rbuf_max} 868 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf} 869 && $self->{rbuf_max} < length $self->{rbuf}
730 ) { 870 ) {
731 return $self->_error (&Errno::ENOSPC, 1); 871 $self->_error (&Errno::ENOSPC, 1), return;
732 } 872 }
733 873
734 while () { 874 while () {
735 no strict 'refs'; 875 # we need to use a separate tls read buffer, as we must not receive data while
876 # we are draining the buffer, and this can only happen with TLS.
877 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
736 878
737 my $len = length $self->{rbuf}; 879 my $len = length $self->{rbuf};
738 880
739 if (my $cb = shift @{ $self->{_queue} }) { 881 if (my $cb = shift @{ $self->{_queue} }) {
740 unless ($cb->($self)) { 882 unless ($cb->($self)) {
741 if ($self->{_eof}) { 883 if ($self->{_eof}) {
742 # no progress can be made (not enough data and no data forthcoming) 884 # no progress can be made (not enough data and no data forthcoming)
743 $self->_error (&Errno::EPIPE, 1), last; 885 $self->_error (&Errno::EPIPE, 1), return;
744 } 886 }
745 887
746 unshift @{ $self->{_queue} }, $cb; 888 unshift @{ $self->{_queue} }, $cb;
747 last; 889 last;
748 } 890 }
756 && !@{ $self->{_queue} } # and the queue is still empty 898 && !@{ $self->{_queue} } # and the queue is still empty
757 && $self->{on_read} # but we still have on_read 899 && $self->{on_read} # but we still have on_read
758 ) { 900 ) {
759 # no further data will arrive 901 # no further data will arrive
760 # so no progress can be made 902 # so no progress can be made
761 $self->_error (&Errno::EPIPE, 1), last 903 $self->_error (&Errno::EPIPE, 1), return
762 if $self->{_eof}; 904 if $self->{_eof};
763 905
764 last; # more data might arrive 906 last; # more data might arrive
765 } 907 }
766 } else { 908 } else {
767 # read side becomes idle 909 # read side becomes idle
768 delete $self->{_rw}; 910 delete $self->{_rw} unless $self->{tls};
769 last; 911 last;
770 } 912 }
771 } 913 }
772 914
915 if ($self->{_eof}) {
916 if ($self->{on_eof}) {
773 $self->{on_eof}($self) 917 $self->{on_eof}($self)
774 if $self->{_eof} && $self->{on_eof}; 918 } else {
919 $self->_error (0, 1, "Unexpected end-of-file");
920 }
921 }
775 922
776 # may need to restart read watcher 923 # may need to restart read watcher
777 unless ($self->{_rw}) { 924 unless ($self->{_rw}) {
778 $self->start_read 925 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} }; 926 if $self->{on_read} || @{ $self->{_queue} };
797 944
798=item $handle->rbuf 945=item $handle->rbuf
799 946
800Returns the read buffer (as a modifiable lvalue). 947Returns the read buffer (as a modifiable lvalue).
801 948
802You can access the read buffer directly as the C<< ->{rbuf} >> member, if 949You can access the read buffer directly as the C<< ->{rbuf} >>
803you want. 950member, if you want. However, the only operation allowed on the
951read buffer (apart from looking at it) is removing data from its
952beginning. Otherwise modifying or appending to it is not allowed and will
953lead to hard-to-track-down bugs.
804 954
805NOTE: The read buffer should only be used or modified if the C<on_read>, 955NOTE: The read buffer should only be used or modified if the C<on_read>,
806C<push_read> or C<unshift_read> methods are used. The other read methods 956C<push_read> or C<unshift_read> methods are used. The other read methods
807automatically manage the read buffer. 957automatically manage the read buffer.
808 958
905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1055 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 1 1056 1
907 } 1057 }
908}; 1058};
909 1059
910# compatibility with older API
911sub push_read_chunk {
912 $_[0]->push_read (chunk => $_[1], $_[2]);
913}
914
915sub unshift_read_chunk {
916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
917}
918
919=item line => [$eol, ]$cb->($handle, $line, $eol) 1060=item line => [$eol, ]$cb->($handle, $line, $eol)
920 1061
921The callback will be called only once a full line (including the end of 1062The callback will be called only once a full line (including the end of
922line marker, C<$eol>) has been read. This line (excluding the end of line 1063line marker, C<$eol>) has been read. This line (excluding the end of line
923marker) will be passed to the callback as second argument (C<$line>), and 1064marker) will be passed to the callback as second argument (C<$line>), and
938=cut 1079=cut
939 1080
940register_read_type line => sub { 1081register_read_type line => sub {
941 my ($self, $cb, $eol) = @_; 1082 my ($self, $cb, $eol) = @_;
942 1083
943 $eol = qr|(\015?\012)| if @_ < 3; 1084 if (@_ < 3) {
1085 # this is more than twice as fast as the generic code below
1086 sub {
1087 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1088
1089 $cb->($_[0], $1, $2);
1090 1
1091 }
1092 } else {
944 $eol = quotemeta $eol unless ref $eol; 1093 $eol = quotemeta $eol unless ref $eol;
945 $eol = qr|^(.*?)($eol)|s; 1094 $eol = qr|^(.*?)($eol)|s;
946 1095
947 sub { 1096 sub {
948 $_[0]{rbuf} =~ s/$eol// or return; 1097 $_[0]{rbuf} =~ s/$eol// or return;
949 1098
950 $cb->($_[0], $1, $2); 1099 $cb->($_[0], $1, $2);
1100 1
951 1 1101 }
952 } 1102 }
953}; 1103};
954
955# compatibility with older API
956sub push_read_line {
957 my $self = shift;
958 $self->push_read (line => @_);
959}
960
961sub unshift_read_line {
962 my $self = shift;
963 $self->unshift_read (line => @_);
964}
965 1104
966=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1105=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
967 1106
968Makes a regex match against the regex object C<$accept> and returns 1107Makes a regex match against the regex object C<$accept> and returns
969everything up to and including the match. 1108everything up to and including the match.
1074An octet string prefixed with an encoded length. The encoding C<$format> 1213An octet string prefixed with an encoded length. The encoding C<$format>
1075uses the same format as a Perl C<pack> format, but must specify a single 1214uses the same format as a Perl C<pack> format, but must specify a single
1076integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1215integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1077optional C<!>, C<< < >> or C<< > >> modifier). 1216optional C<!>, C<< < >> or C<< > >> modifier).
1078 1217
1079DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1218For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1219EPP uses a prefix of C<N> (4 octtes).
1080 1220
1081Example: read a block of data prefixed by its length in BER-encoded 1221Example: read a block of data prefixed by its length in BER-encoded
1082format (very efficient). 1222format (very efficient).
1083 1223
1084 $handle->push_read (packstring => "w", sub { 1224 $handle->push_read (packstring => "w", sub {
1090register_read_type packstring => sub { 1230register_read_type packstring => sub {
1091 my ($self, $cb, $format) = @_; 1231 my ($self, $cb, $format) = @_;
1092 1232
1093 sub { 1233 sub {
1094 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1234 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1095 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1235 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1096 or return; 1236 or return;
1097 1237
1238 $format = length pack $format, $len;
1239
1240 # bypass unshift if we already have the remaining chunk
1241 if ($format + $len <= length $_[0]{rbuf}) {
1242 my $data = substr $_[0]{rbuf}, $format, $len;
1243 substr $_[0]{rbuf}, 0, $format + $len, "";
1244 $cb->($_[0], $data);
1245 } else {
1098 # remove prefix 1246 # remove prefix
1099 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1247 substr $_[0]{rbuf}, 0, $format, "";
1100 1248
1101 # read rest 1249 # read remaining chunk
1102 $_[0]->unshift_read (chunk => $len, $cb); 1250 $_[0]->unshift_read (chunk => $len, $cb);
1251 }
1103 1252
1104 1 1253 1
1105 } 1254 }
1106}; 1255};
1107 1256
1108=item json => $cb->($handle, $hash_or_arrayref) 1257=item json => $cb->($handle, $hash_or_arrayref)
1109 1258
1110Reads a JSON object or array, decodes it and passes it to the callback. 1259Reads a JSON object or array, decodes it and passes it to the
1260callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1111 1261
1112If a C<json> object was passed to the constructor, then that will be used 1262If a C<json> object was passed to the constructor, then that will be used
1113for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1263for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1114 1264
1115This read type uses the incremental parser available with JSON version 1265This read type uses the incremental parser available with JSON version
1124=cut 1274=cut
1125 1275
1126register_read_type json => sub { 1276register_read_type json => sub {
1127 my ($self, $cb) = @_; 1277 my ($self, $cb) = @_;
1128 1278
1129 require JSON; 1279 my $json = $self->{json} ||=
1280 eval { require JSON::XS; JSON::XS->new->utf8 }
1281 || do { require JSON; JSON->new->utf8 };
1130 1282
1131 my $data; 1283 my $data;
1132 my $rbuf = \$self->{rbuf}; 1284 my $rbuf = \$self->{rbuf};
1133 1285
1134 my $json = $self->{json} ||= JSON->new->utf8;
1135
1136 sub { 1286 sub {
1137 my $ref = $json->incr_parse ($self->{rbuf}); 1287 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1138 1288
1139 if ($ref) { 1289 if ($ref) {
1140 $self->{rbuf} = $json->incr_text; 1290 $self->{rbuf} = $json->incr_text;
1141 $json->incr_text = ""; 1291 $json->incr_text = "";
1142 $cb->($self, $ref); 1292 $cb->($self, $ref);
1143 1293
1144 1 1294 1
1295 } elsif ($@) {
1296 # error case
1297 $json->incr_skip;
1298
1299 $self->{rbuf} = $json->incr_text;
1300 $json->incr_text = "";
1301
1302 $self->_error (&Errno::EBADMSG);
1303
1304 ()
1145 } else { 1305 } else {
1146 $self->{rbuf} = ""; 1306 $self->{rbuf} = "";
1307
1147 () 1308 ()
1148 } 1309 }
1149 } 1310 }
1150}; 1311};
1151 1312
1164 1325
1165 require Storable; 1326 require Storable;
1166 1327
1167 sub { 1328 sub {
1168 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1329 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1169 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1330 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1170 or return; 1331 or return;
1171 1332
1333 my $format = length pack "w", $len;
1334
1335 # bypass unshift if we already have the remaining chunk
1336 if ($format + $len <= length $_[0]{rbuf}) {
1337 my $data = substr $_[0]{rbuf}, $format, $len;
1338 substr $_[0]{rbuf}, 0, $format + $len, "";
1339 $cb->($_[0], Storable::thaw ($data));
1340 } else {
1172 # remove prefix 1341 # remove prefix
1173 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1342 substr $_[0]{rbuf}, 0, $format, "";
1174 1343
1175 # read rest 1344 # read remaining chunk
1176 $_[0]->unshift_read (chunk => $len, sub { 1345 $_[0]->unshift_read (chunk => $len, sub {
1177 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1346 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1178 $cb->($_[0], $ref); 1347 $cb->($_[0], $ref);
1179 } else { 1348 } else {
1180 $self->_error (&Errno::EBADMSG); 1349 $self->_error (&Errno::EBADMSG);
1350 }
1181 } 1351 });
1182 }); 1352 }
1353
1354 1
1183 } 1355 }
1184}; 1356};
1185 1357
1186=back 1358=back
1187 1359
1217Note that AnyEvent::Handle will automatically C<start_read> for you when 1389Note that AnyEvent::Handle will automatically C<start_read> for you when
1218you change the C<on_read> callback or push/unshift a read callback, and it 1390you change the C<on_read> callback or push/unshift a read callback, and it
1219will automatically C<stop_read> for you when neither C<on_read> is set nor 1391will automatically C<stop_read> for you when neither C<on_read> is set nor
1220there are any read requests in the queue. 1392there are any read requests in the queue.
1221 1393
1394These methods will have no effect when in TLS mode (as TLS doesn't support
1395half-duplex connections).
1396
1222=cut 1397=cut
1223 1398
1224sub stop_read { 1399sub stop_read {
1225 my ($self) = @_; 1400 my ($self) = @_;
1226 1401
1227 delete $self->{_rw}; 1402 delete $self->{_rw} unless $self->{tls};
1228} 1403}
1229 1404
1230sub start_read { 1405sub start_read {
1231 my ($self) = @_; 1406 my ($self) = @_;
1232 1407
1233 unless ($self->{_rw} || $self->{_eof}) { 1408 unless ($self->{_rw} || $self->{_eof}) {
1234 Scalar::Util::weaken $self; 1409 Scalar::Util::weaken $self;
1235 1410
1236 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1411 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1237 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1412 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1238 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1413 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1239 1414
1240 if ($len > 0) { 1415 if ($len > 0) {
1241 $self->{_activity} = AnyEvent->now; 1416 $self->{_activity} = AnyEvent->now;
1242 1417
1243 $self->{filter_r} 1418 if ($self->{tls}) {
1244 ? $self->{filter_r}($self, $rbuf) 1419 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1245 : $self->{_in_drain} || $self->_drain_rbuf; 1420
1421 &_dotls ($self);
1422 } else {
1423 $self->_drain_rbuf unless $self->{_in_drain};
1424 }
1246 1425
1247 } elsif (defined $len) { 1426 } elsif (defined $len) {
1248 delete $self->{_rw}; 1427 delete $self->{_rw};
1249 $self->{_eof} = 1; 1428 $self->{_eof} = 1;
1250 $self->_drain_rbuf unless $self->{_in_drain}; 1429 $self->_drain_rbuf unless $self->{_in_drain};
1254 } 1433 }
1255 }); 1434 });
1256 } 1435 }
1257} 1436}
1258 1437
1438our $ERROR_SYSCALL;
1439our $ERROR_WANT_READ;
1440
1441sub _tls_error {
1442 my ($self, $err) = @_;
1443
1444 return $self->_error ($!, 1)
1445 if $err == Net::SSLeay::ERROR_SYSCALL ();
1446
1447 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1448
1449 # reduce error string to look less scary
1450 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1451
1452 if ($self->{_on_starttls}) {
1453 (delete $self->{_on_starttls})->($self, undef, $err);
1454 &_freetls;
1455 } else {
1456 &_freetls;
1457 $self->_error (&Errno::EPROTO, 1, $err);
1458 }
1459}
1460
1461# poll the write BIO and send the data if applicable
1462# also decode read data if possible
1463# this is basiclaly our TLS state machine
1464# more efficient implementations are possible with openssl,
1465# but not with the buggy and incomplete Net::SSLeay.
1259sub _dotls { 1466sub _dotls {
1260 my ($self) = @_; 1467 my ($self) = @_;
1261 1468
1262 my $buf; 1469 my $tmp;
1263 1470
1264 if (length $self->{_tls_wbuf}) { 1471 if (length $self->{_tls_wbuf}) {
1265 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1472 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1266 substr $self->{_tls_wbuf}, 0, $len, ""; 1473 substr $self->{_tls_wbuf}, 0, $tmp, "";
1267 } 1474 }
1268 }
1269 1475
1476 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1477 return $self->_tls_error ($tmp)
1478 if $tmp != $ERROR_WANT_READ
1479 && ($tmp != $ERROR_SYSCALL || $!);
1480 }
1481
1482 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1483 unless (length $tmp) {
1484 $self->{_on_starttls}
1485 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1486 &_freetls;
1487
1488 if ($self->{on_stoptls}) {
1489 $self->{on_stoptls}($self);
1490 return;
1491 } else {
1492 # let's treat SSL-eof as we treat normal EOF
1493 delete $self->{_rw};
1494 $self->{_eof} = 1;
1495 }
1496 }
1497
1498 $self->{_tls_rbuf} .= $tmp;
1499 $self->_drain_rbuf unless $self->{_in_drain};
1500 $self->{tls} or return; # tls session might have gone away in callback
1501 }
1502
1503 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1504 return $self->_tls_error ($tmp)
1505 if $tmp != $ERROR_WANT_READ
1506 && ($tmp != $ERROR_SYSCALL || $!);
1507
1270 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1508 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1271 $self->{wbuf} .= $buf; 1509 $self->{wbuf} .= $tmp;
1272 $self->_drain_wbuf; 1510 $self->_drain_wbuf;
1273 } 1511 }
1274 1512
1275 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1513 $self->{_on_starttls}
1276 if (length $buf) { 1514 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1277 $self->{rbuf} .= $buf; 1515 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279 } else {
1280 # let's treat SSL-eof as we treat normal EOF
1281 $self->{_eof} = 1;
1282 $self->_shutdown;
1283 return;
1284 }
1285 }
1286
1287 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1288
1289 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1290 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1291 return $self->_error ($!, 1);
1292 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1293 return $self->_error (&Errno::EIO, 1);
1294 }
1295
1296 # all others are fine for our purposes
1297 }
1298} 1516}
1299 1517
1300=item $handle->starttls ($tls[, $tls_ctx]) 1518=item $handle->starttls ($tls[, $tls_ctx])
1301 1519
1302Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1520Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1304C<starttls>. 1522C<starttls>.
1305 1523
1306The first argument is the same as the C<tls> constructor argument (either 1524The first argument is the same as the C<tls> constructor argument (either
1307C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1525C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1308 1526
1309The second argument is the optional C<Net::SSLeay::CTX> object that is 1527The second argument is the optional C<AnyEvent::TLS> object that is used
1310used when AnyEvent::Handle has to create its own TLS connection object. 1528when AnyEvent::Handle has to create its own TLS connection object, or
1529a hash reference with C<< key => value >> pairs that will be used to
1530construct a new context.
1311 1531
1312The TLS connection object will end up in C<< $handle->{tls} >> after this 1532The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1313call and can be used or changed to your liking. Note that the handshake 1533context in C<< $handle->{tls_ctx} >> after this call and can be used or
1314might have already started when this function returns. 1534changed to your liking. Note that the handshake might have already started
1535when this function returns.
1315 1536
1537If it an error to start a TLS handshake more than once per
1538AnyEvent::Handle object (this is due to bugs in OpenSSL).
1539
1316=cut 1540=cut
1541
1542our %TLS_CACHE; #TODO not yet documented, should we?
1317 1543
1318sub starttls { 1544sub starttls {
1319 my ($self, $ssl, $ctx) = @_; 1545 my ($self, $ssl, $ctx) = @_;
1320 1546
1321 $self->stoptls; 1547 require Net::SSLeay;
1322 1548
1323 if ($ssl eq "accept") { 1549 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1324 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1550 if $self->{tls};
1325 Net::SSLeay::set_accept_state ($ssl); 1551
1326 } elsif ($ssl eq "connect") { 1552 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1327 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1328 Net::SSLeay::set_connect_state ($ssl); 1554
1555 $ctx ||= $self->{tls_ctx};
1556
1557 if ("HASH" eq ref $ctx) {
1558 require AnyEvent::TLS;
1559
1560 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1561
1562 if ($ctx->{cache}) {
1563 my $key = $ctx+0;
1564 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1565 } else {
1566 $ctx = new AnyEvent::TLS %$ctx;
1567 }
1568 }
1329 } 1569
1330 1570 $self->{tls_ctx} = $ctx || TLS_CTX ();
1331 $self->{tls} = $ssl; 1571 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1332 1572
1333 # basically, this is deep magic (because SSL_read should have the same issues) 1573 # basically, this is deep magic (because SSL_read should have the same issues)
1334 # but the openssl maintainers basically said: "trust us, it just works". 1574 # but the openssl maintainers basically said: "trust us, it just works".
1335 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1575 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1336 # and mismaintained ssleay-module doesn't even offer them). 1576 # and mismaintained ssleay-module doesn't even offer them).
1337 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1577 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1578 #
1579 # in short: this is a mess.
1580 #
1581 # note that we do not try to keep the length constant between writes as we are required to do.
1582 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1583 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1584 # have identity issues in that area.
1338 Net::SSLeay::CTX_set_mode ($self->{tls}, 1585# Net::SSLeay::CTX_set_mode ($ssl,
1339 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1586# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1340 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1587# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1588 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1341 1589
1342 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1590 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1343 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1344 1592
1345 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1593 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1346 1594
1347 $self->{filter_w} = sub { 1595 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1348 $_[0]{_tls_wbuf} .= ${$_[1]}; 1596 if $self->{on_starttls};
1349 &_dotls; 1597
1350 }; 1598 &_dotls; # need to trigger the initial handshake
1351 $self->{filter_r} = sub { 1599 $self->start_read; # make sure we actually do read
1352 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1353 &_dotls;
1354 };
1355} 1600}
1356 1601
1357=item $handle->stoptls 1602=item $handle->stoptls
1358 1603
1359Destroys the SSL connection, if any. Partial read or write data will be 1604Shuts down the SSL connection - this makes a proper EOF handshake by
1360lost. 1605sending a close notify to the other side, but since OpenSSL doesn't
1606support non-blocking shut downs, it is not possible to re-use the stream
1607afterwards.
1361 1608
1362=cut 1609=cut
1363 1610
1364sub stoptls { 1611sub stoptls {
1365 my ($self) = @_; 1612 my ($self) = @_;
1366 1613
1367 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1614 if ($self->{tls}) {
1615 Net::SSLeay::shutdown ($self->{tls});
1368 1616
1369 delete $self->{_rbio}; 1617 &_dotls;
1370 delete $self->{_wbio}; 1618
1371 delete $self->{_tls_wbuf}; 1619# # we don't give a shit. no, we do, but we can't. no...#d#
1372 delete $self->{filter_r}; 1620# # we, we... have to use openssl :/#d#
1373 delete $self->{filter_w}; 1621# &_freetls;#d#
1622 }
1623}
1624
1625sub _freetls {
1626 my ($self) = @_;
1627
1628 return unless $self->{tls};
1629
1630 $self->{tls_ctx}->_put_session (delete $self->{tls});
1631
1632 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1374} 1633}
1375 1634
1376sub DESTROY { 1635sub DESTROY {
1377 my $self = shift; 1636 my ($self) = @_;
1378 1637
1379 $self->stoptls; 1638 &_freetls;
1380 1639
1381 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1640 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1382 1641
1383 if ($linger && length $self->{wbuf}) { 1642 if ($linger && length $self->{wbuf}) {
1384 my $fh = delete $self->{fh}; 1643 my $fh = delete $self->{fh};
1399 @linger = (); 1658 @linger = ();
1400 }); 1659 });
1401 } 1660 }
1402} 1661}
1403 1662
1663=item $handle->destroy
1664
1665Shuts down the handle object as much as possible - this call ensures that
1666no further callbacks will be invoked and as many resources as possible
1667will be freed. You must not call any methods on the object afterwards.
1668
1669Normally, you can just "forget" any references to an AnyEvent::Handle
1670object and it will simply shut down. This works in fatal error and EOF
1671callbacks, as well as code outside. It does I<NOT> work in a read or write
1672callback, so when you want to destroy the AnyEvent::Handle object from
1673within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1674that case.
1675
1676The handle might still linger in the background and write out remaining
1677data, as specified by the C<linger> option, however.
1678
1679=cut
1680
1681sub destroy {
1682 my ($self) = @_;
1683
1684 $self->DESTROY;
1685 %$self = ();
1686}
1687
1404=item AnyEvent::Handle::TLS_CTX 1688=item AnyEvent::Handle::TLS_CTX
1405 1689
1406This function creates and returns the Net::SSLeay::CTX object used by 1690This function creates and returns the AnyEvent::TLS object used by default
1407default for TLS mode. 1691for TLS mode.
1408 1692
1409The context is created like this: 1693The context is created by calling L<AnyEvent::TLS> without any arguments.
1410
1411 Net::SSLeay::load_error_strings;
1412 Net::SSLeay::SSLeay_add_ssl_algorithms;
1413 Net::SSLeay::randomize;
1414
1415 my $CTX = Net::SSLeay::CTX_new;
1416
1417 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1418 1694
1419=cut 1695=cut
1420 1696
1421our $TLS_CTX; 1697our $TLS_CTX;
1422 1698
1423sub TLS_CTX() { 1699sub TLS_CTX() {
1424 $TLS_CTX || do { 1700 $TLS_CTX ||= do {
1425 require Net::SSLeay; 1701 require AnyEvent::TLS;
1426 1702
1427 Net::SSLeay::load_error_strings (); 1703 new AnyEvent::TLS
1428 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1429 Net::SSLeay::randomize ();
1430
1431 $TLS_CTX = Net::SSLeay::CTX_new ();
1432
1433 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1434
1435 $TLS_CTX
1436 } 1704 }
1437} 1705}
1438 1706
1439=back 1707=back
1708
1709
1710=head1 NONFREQUENTLY ASKED QUESTIONS
1711
1712=over 4
1713
1714=item I C<undef> the AnyEvent::Handle reference inside my callback and
1715still get further invocations!
1716
1717That's because AnyEvent::Handle keeps a reference to itself when handling
1718read or write callbacks.
1719
1720It is only safe to "forget" the reference inside EOF or error callbacks,
1721from within all other callbacks, you need to explicitly call the C<<
1722->destroy >> method.
1723
1724=item I get different callback invocations in TLS mode/Why can't I pause
1725reading?
1726
1727Unlike, say, TCP, TLS connections do not consist of two independent
1728communication channels, one for each direction. Or put differently. The
1729read and write directions are not independent of each other: you cannot
1730write data unless you are also prepared to read, and vice versa.
1731
1732This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1733callback invocations when you are not expecting any read data - the reason
1734is that AnyEvent::Handle always reads in TLS mode.
1735
1736During the connection, you have to make sure that you always have a
1737non-empty read-queue, or an C<on_read> watcher. At the end of the
1738connection (or when you no longer want to use it) you can call the
1739C<destroy> method.
1740
1741=item How do I read data until the other side closes the connection?
1742
1743If you just want to read your data into a perl scalar, the easiest way
1744to achieve this is by setting an C<on_read> callback that does nothing,
1745clearing the C<on_eof> callback and in the C<on_error> callback, the data
1746will be in C<$_[0]{rbuf}>:
1747
1748 $handle->on_read (sub { });
1749 $handle->on_eof (undef);
1750 $handle->on_error (sub {
1751 my $data = delete $_[0]{rbuf};
1752 undef $handle;
1753 });
1754
1755The reason to use C<on_error> is that TCP connections, due to latencies
1756and packets loss, might get closed quite violently with an error, when in
1757fact, all data has been received.
1758
1759It is usually better to use acknowledgements when transferring data,
1760to make sure the other side hasn't just died and you got the data
1761intact. This is also one reason why so many internet protocols have an
1762explicit QUIT command.
1763
1764=item I don't want to destroy the handle too early - how do I wait until
1765all data has been written?
1766
1767After writing your last bits of data, set the C<on_drain> callback
1768and destroy the handle in there - with the default setting of
1769C<low_water_mark> this will be called precisely when all data has been
1770written to the socket:
1771
1772 $handle->push_write (...);
1773 $handle->on_drain (sub {
1774 warn "all data submitted to the kernel\n";
1775 undef $handle;
1776 });
1777
1778If you just want to queue some data and then signal EOF to the other side,
1779consider using C<< ->push_shutdown >> instead.
1780
1781=item I want to contact a TLS/SSL server, I don't care about security.
1782
1783If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1784simply connect to it and then create the AnyEvent::Handle with the C<tls>
1785parameter:
1786
1787 tcp_connect $host, $port, sub {
1788 my ($fh) = @_;
1789
1790 my $handle = new AnyEvent::Handle
1791 fh => $fh,
1792 tls => "connect",
1793 on_error => sub { ... };
1794
1795 $handle->push_write (...);
1796 };
1797
1798=item I want to contact a TLS/SSL server, I do care about security.
1799
1800Then you should additionally enable certificate verification, including
1801peername verification, if the protocol you use supports it (see
1802L<AnyEvent::TLS>, C<verify_peername>).
1803
1804E.g. for HTTPS:
1805
1806 tcp_connect $host, $port, sub {
1807 my ($fh) = @_;
1808
1809 my $handle = new AnyEvent::Handle
1810 fh => $fh,
1811 peername => $host,
1812 tls => "connect",
1813 tls_ctx => { verify => 1, verify_peername => "https" },
1814 ...
1815
1816Note that you must specify the hostname you connected to (or whatever
1817"peername" the protocol needs) as the C<peername> argument, otherwise no
1818peername verification will be done.
1819
1820The above will use the system-dependent default set of trusted CA
1821certificates. If you want to check against a specific CA, add the
1822C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1823
1824 tls_ctx => {
1825 verify => 1,
1826 verify_peername => "https",
1827 ca_file => "my-ca-cert.pem",
1828 },
1829
1830=item I want to create a TLS/SSL server, how do I do that?
1831
1832Well, you first need to get a server certificate and key. You have
1833three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1834self-signed certificate (cheap. check the search engine of your choice,
1835there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1836nice program for that purpose).
1837
1838Then create a file with your private key (in PEM format, see
1839L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1840file should then look like this:
1841
1842 -----BEGIN RSA PRIVATE KEY-----
1843 ...header data
1844 ... lots of base64'y-stuff
1845 -----END RSA PRIVATE KEY-----
1846
1847 -----BEGIN CERTIFICATE-----
1848 ... lots of base64'y-stuff
1849 -----END CERTIFICATE-----
1850
1851The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1852specify this file as C<cert_file>:
1853
1854 tcp_server undef, $port, sub {
1855 my ($fh) = @_;
1856
1857 my $handle = new AnyEvent::Handle
1858 fh => $fh,
1859 tls => "accept",
1860 tls_ctx => { cert_file => "my-server-keycert.pem" },
1861 ...
1862
1863When you have intermediate CA certificates that your clients might not
1864know about, just append them to the C<cert_file>.
1865
1866=back
1867
1440 1868
1441=head1 SUBCLASSING AnyEvent::Handle 1869=head1 SUBCLASSING AnyEvent::Handle
1442 1870
1443In many cases, you might want to subclass AnyEvent::Handle. 1871In many cases, you might want to subclass AnyEvent::Handle.
1444 1872
1448=over 4 1876=over 4
1449 1877
1450=item * all constructor arguments become object members. 1878=item * all constructor arguments become object members.
1451 1879
1452At least initially, when you pass a C<tls>-argument to the constructor it 1880At least initially, when you pass a C<tls>-argument to the constructor it
1453will end up in C<< $handle->{tls} >>. Those members might be changes or 1881will end up in C<< $handle->{tls} >>. Those members might be changed or
1454mutated later on (for example C<tls> will hold the TLS connection object). 1882mutated later on (for example C<tls> will hold the TLS connection object).
1455 1883
1456=item * other object member names are prefixed with an C<_>. 1884=item * other object member names are prefixed with an C<_>.
1457 1885
1458All object members not explicitly documented (internal use) are prefixed 1886All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines