ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.69 by root, Sun Jun 15 21:44:56 2008 UTC vs.
Revision 1.146 by root, Wed Jul 8 13:46:46 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings; 3no warnings;
4use strict; 4use strict qw(subs vars);
5 5
6use AnyEvent (); 6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK); 7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 8use Scalar::Util ();
9use Carp (); 9use Carp ();
14 14
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 16
17=cut 17=cut
18 18
19our $VERSION = 4.151; 19our $VERSION = 4.8;
20 20
21=head1 SYNOPSIS 21=head1 SYNOPSIS
22 22
23 use AnyEvent; 23 use AnyEvent;
24 use AnyEvent::Handle; 24 use AnyEvent::Handle;
27 27
28 my $handle = 28 my $handle =
29 AnyEvent::Handle->new ( 29 AnyEvent::Handle->new (
30 fh => \*STDIN, 30 fh => \*STDIN,
31 on_eof => sub { 31 on_eof => sub {
32 $cv->broadcast; 32 $cv->send;
33 }, 33 },
34 ); 34 );
35 35
36 # send some request line 36 # send some request line
37 $handle->push_write ("getinfo\015\012"); 37 $handle->push_write ("getinfo\015\012");
49 49
50This module is a helper module to make it easier to do event-based I/O on 50This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 51filehandles. For utility functions for doing non-blocking connects and accepts
52on sockets see L<AnyEvent::Util>. 52on sockets see L<AnyEvent::Util>.
53 53
54The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples.
56
54In the following, when the documentation refers to of "bytes" then this 57In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 58means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 59treatment of characters applies to this module as well.
57 60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74 77
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
78=item on_eof => $cb->($handle) 82=item on_eof => $cb->($handle)
79 83
80Set the callback to be called when an end-of-file condition is detcted, 84Set the callback to be called when an end-of-file condition is detected,
81i.e. in the case of a socket, when the other side has closed the 85i.e. in the case of a socket, when the other side has closed the
82connection cleanly. 86connection cleanly.
83 87
88For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut
91down.
92
84While not mandatory, it is highly recommended to set an eof callback, 93While not mandatory, it is I<highly> recommended to set an EOF callback,
85otherwise you might end up with a closed socket while you are still 94otherwise you might end up with a closed socket while you are still
86waiting for data. 95waiting for data.
87 96
97If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>.
99
88=item on_error => $cb->($handle, $fatal) 100=item on_error => $cb->($handle, $fatal, $message)
89 101
90This is the error callback, which is called when, well, some error 102This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 103occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 104connect or a read error.
93 105
94Some errors are fatal (which is indicated by C<$fatal> being true). On 106Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112AnyEvent::Handle tries to find an appropriate error code for you to check
113against, but in some cases (TLS errors), this does not work well. It is
114recommended to always output the C<$message> argument in human-readable
115error messages (it's usually the same as C<"$!">).
116
96usable. Non-fatal errors can be retried by simply returning, but it is 117Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 118to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 119when this callback is invoked. Examples of non-fatal errors are timeouts
120C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 121
100On callback entrance, the value of C<$!> contains the operating system 122On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 123error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
124C<EPROTO>).
102 125
103While not mandatory, it is I<highly> recommended to set this callback, as 126While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 127you will not be notified of errors otherwise. The default simply calls
105C<croak>. 128C<croak>.
106 129
110and no read request is in the queue (unlike read queue callbacks, this 133and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 134callback will only be called when at least one octet of data is in the
112read buffer). 135read buffer).
113 136
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 137To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 138method or access the C<< $handle->{rbuf} >> member directly. Note that you
139must not enlarge or modify the read buffer, you can only remove data at
140the beginning from it.
116 141
117When an EOF condition is detected then AnyEvent::Handle will first try to 142When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 143feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 144calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 145error will be raised (with C<$!> set to C<EPIPE>).
135=item timeout => $fractional_seconds 160=item timeout => $fractional_seconds
136 161
137If non-zero, then this enables an "inactivity" timeout: whenever this many 162If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 163seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 164handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 165missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 166
142Note that timeout processing is also active when you currently do not have 167Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 168any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 169idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 170in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
171restart the timeout.
146 172
147Zero (the default) disables this timeout. 173Zero (the default) disables this timeout.
148 174
149=item on_timeout => $cb->($handle) 175=item on_timeout => $cb->($handle)
150 176
154 180
155=item rbuf_max => <bytes> 181=item rbuf_max => <bytes>
156 182
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 183If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 184when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 185avoid some forms of denial-of-service attacks.
160 186
161For example, a server accepting connections from untrusted sources should 187For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 188be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 189(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 190amount of data without a callback ever being called as long as the line
165isn't finished). 191isn't finished).
166 192
193=item autocork => <boolean>
194
195When disabled (the default), then C<push_write> will try to immediately
196write the data to the handle, if possible. This avoids having to register
197a write watcher and wait for the next event loop iteration, but can
198be inefficient if you write multiple small chunks (on the wire, this
199disadvantage is usually avoided by your kernel's nagle algorithm, see
200C<no_delay>, but this option can save costly syscalls).
201
202When enabled, then writes will always be queued till the next event loop
203iteration. This is efficient when you do many small writes per iteration,
204but less efficient when you do a single write only per iteration (or when
205the write buffer often is full). It also increases write latency.
206
207=item no_delay => <boolean>
208
209When doing small writes on sockets, your operating system kernel might
210wait a bit for more data before actually sending it out. This is called
211the Nagle algorithm, and usually it is beneficial.
212
213In some situations you want as low a delay as possible, which can be
214accomplishd by setting this option to a true value.
215
216The default is your opertaing system's default behaviour (most likely
217enabled), this option explicitly enables or disables it, if possible.
218
167=item read_size => <bytes> 219=item read_size => <bytes>
168 220
169The default read block size (the amount of bytes this module will try to read 221The default read block size (the amount of bytes this module will
170during each (loop iteration). Default: C<8192>. 222try to read during each loop iteration, which affects memory
223requirements). Default: C<8192>.
171 224
172=item low_water_mark => <bytes> 225=item low_water_mark => <bytes>
173 226
174Sets the amount of bytes (default: C<0>) that make up an "empty" write 227Sets the amount of bytes (default: C<0>) that make up an "empty" write
175buffer: If the write reaches this size or gets even samller it is 228buffer: If the write reaches this size or gets even samller it is
176considered empty. 229considered empty.
177 230
231Sometimes it can be beneficial (for performance reasons) to add data to
232the write buffer before it is fully drained, but this is a rare case, as
233the operating system kernel usually buffers data as well, so the default
234is good in almost all cases.
235
178=item linger => <seconds> 236=item linger => <seconds>
179 237
180If non-zero (default: C<3600>), then the destructor of the 238If non-zero (default: C<3600>), then the destructor of the
181AnyEvent::Handle object will check wether there is still outstanding write 239AnyEvent::Handle object will check whether there is still outstanding
182data and will install a watcher that will write out this data. No errors 240write data and will install a watcher that will write this data to the
183will be reported (this mostly matches how the operating system treats 241socket. No errors will be reported (this mostly matches how the operating
184outstanding data at socket close time). 242system treats outstanding data at socket close time).
185 243
186This will not work for partial TLS data that could not yet been 244This will not work for partial TLS data that could not be encoded
187encoded. This data will be lost. 245yet. This data will be lost. Calling the C<stoptls> method in time might
246help.
247
248=item peername => $string
249
250A string used to identify the remote site - usually the DNS hostname
251(I<not> IDN!) used to create the connection, rarely the IP address.
252
253Apart from being useful in error messages, this string is also used in TLS
254peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
255verification will be skipped when C<peername> is not specified or
256C<undef>.
188 257
189=item tls => "accept" | "connect" | Net::SSLeay::SSL object 258=item tls => "accept" | "connect" | Net::SSLeay::SSL object
190 259
191When this parameter is given, it enables TLS (SSL) mode, that means it 260When this parameter is given, it enables TLS (SSL) mode, that means
192will start making tls handshake and will transparently encrypt/decrypt 261AnyEvent will start a TLS handshake as soon as the conenction has been
193data. 262established and will transparently encrypt/decrypt data afterwards.
263
264All TLS protocol errors will be signalled as C<EPROTO>, with an
265appropriate error message.
194 266
195TLS mode requires Net::SSLeay to be installed (it will be loaded 267TLS mode requires Net::SSLeay to be installed (it will be loaded
196automatically when you try to create a TLS handle). 268automatically when you try to create a TLS handle): this module doesn't
269have a dependency on that module, so if your module requires it, you have
270to add the dependency yourself.
197 271
198For the TLS server side, use C<accept>, and for the TLS client side of a 272Unlike TCP, TLS has a server and client side: for the TLS server side, use
199connection, use C<connect> mode. 273C<accept>, and for the TLS client side of a connection, use C<connect>
274mode.
200 275
201You can also provide your own TLS connection object, but you have 276You can also provide your own TLS connection object, but you have
202to make sure that you call either C<Net::SSLeay::set_connect_state> 277to make sure that you call either C<Net::SSLeay::set_connect_state>
203or C<Net::SSLeay::set_accept_state> on it before you pass it to 278or C<Net::SSLeay::set_accept_state> on it before you pass it to
204AnyEvent::Handle. 279AnyEvent::Handle. Also, this module will take ownership of this connection
280object.
205 281
282At some future point, AnyEvent::Handle might switch to another TLS
283implementation, then the option to use your own session object will go
284away.
285
286B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
287passing in the wrong integer will lead to certain crash. This most often
288happens when one uses a stylish C<< tls => 1 >> and is surprised about the
289segmentation fault.
290
206See the C<starttls> method if you need to start TLs negotiation later. 291See the C<< ->starttls >> method for when need to start TLS negotiation later.
207 292
208=item tls_ctx => $ssl_ctx 293=item tls_ctx => $anyevent_tls
209 294
210Use the given Net::SSLeay::CTX object to create the new TLS connection 295Use the given C<AnyEvent::TLS> object to create the new TLS connection
211(unless a connection object was specified directly). If this parameter is 296(unless a connection object was specified directly). If this parameter is
212missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 297missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
213 298
299Instead of an object, you can also specify a hash reference with C<< key
300=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
301new TLS context object.
302
303=item on_starttls => $cb->($handle, $success[, $error_message])
304
305This callback will be invoked when the TLS/SSL handshake has finished. If
306C<$success> is true, then the TLS handshake succeeded, otherwise it failed
307(C<on_stoptls> will not be called in this case).
308
309The session in C<< $handle->{tls} >> can still be examined in this
310callback, even when the handshake was not successful.
311
312TLS handshake failures will not cause C<on_error> to be invoked when this
313callback is in effect, instead, the error message will be passed to C<on_starttls>.
314
315Without this callback, handshake failures lead to C<on_error> being
316called, as normal.
317
318Note that you cannot call C<starttls> right again in this callback. If you
319need to do that, start an zero-second timer instead whose callback can
320then call C<< ->starttls >> again.
321
322=item on_stoptls => $cb->($handle)
323
324When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
325set, then it will be invoked after freeing the TLS session. If it is not,
326then a TLS shutdown condition will be treated like a normal EOF condition
327on the handle.
328
329The session in C<< $handle->{tls} >> can still be examined in this
330callback.
331
332This callback will only be called on TLS shutdowns, not when the
333underlying handle signals EOF.
334
214=item json => JSON or JSON::XS object 335=item json => JSON or JSON::XS object
215 336
216This is the json coder object used by the C<json> read and write types. 337This is the json coder object used by the C<json> read and write types.
217 338
218If you don't supply it, then AnyEvent::Handle will create and use a 339If you don't supply it, then AnyEvent::Handle will create and use a
219suitable one, which will write and expect UTF-8 encoded JSON texts. 340suitable one (on demand), which will write and expect UTF-8 encoded JSON
341texts.
220 342
221Note that you are responsible to depend on the JSON module if you want to 343Note that you are responsible to depend on the JSON module if you want to
222use this functionality, as AnyEvent does not have a dependency itself. 344use this functionality, as AnyEvent does not have a dependency itself.
223 345
224=item filter_r => $cb
225
226=item filter_w => $cb
227
228These exist, but are undocumented at this time.
229
230=back 346=back
231 347
232=cut 348=cut
233 349
234sub new { 350sub new {
235 my $class = shift; 351 my $class = shift;
236
237 my $self = bless { @_ }, $class; 352 my $self = bless { @_ }, $class;
238 353
239 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 354 $self->{fh} or Carp::croak "mandatory argument fh is missing";
240 355
241 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 356 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
242
243 if ($self->{tls}) {
244 require Net::SSLeay;
245 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
246 }
247 357
248 $self->{_activity} = AnyEvent->now; 358 $self->{_activity} = AnyEvent->now;
249 $self->_timeout; 359 $self->_timeout;
250 360
361 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
362
363 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
364 if $self->{tls};
365
251 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 366 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
252 367
253 $self->start_read 368 $self->start_read
254 if $self->{on_read}; 369 if $self->{on_read};
255 370
256 $self 371 $self->{fh} && $self
257} 372}
258 373
259sub _shutdown { 374sub _shutdown {
260 my ($self) = @_; 375 my ($self) = @_;
261 376
262 delete $self->{_tw}; 377 delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
263 delete $self->{_rw}; 378 $self->{_eof} = 1; # tell starttls et. al to stop trying
264 delete $self->{_ww};
265 delete $self->{fh};
266 379
267 $self->stoptls; 380 &_freetls;
268} 381}
269 382
270sub _error { 383sub _error {
271 my ($self, $errno, $fatal) = @_; 384 my ($self, $errno, $fatal, $message) = @_;
272 385
273 $self->_shutdown 386 $self->_shutdown
274 if $fatal; 387 if $fatal;
275 388
276 $! = $errno; 389 $! = $errno;
390 $message ||= "$!";
277 391
278 if ($self->{on_error}) { 392 if ($self->{on_error}) {
279 $self->{on_error}($self, $fatal); 393 $self->{on_error}($self, $fatal, $message);
280 } else { 394 } elsif ($self->{fh}) {
281 Carp::croak "AnyEvent::Handle uncaught error: $!"; 395 Carp::croak "AnyEvent::Handle uncaught error: $message";
282 } 396 }
283} 397}
284 398
285=item $fh = $handle->fh 399=item $fh = $handle->fh
286 400
287This method returns the file handle of the L<AnyEvent::Handle> object. 401This method returns the file handle used to create the L<AnyEvent::Handle> object.
288 402
289=cut 403=cut
290 404
291sub fh { $_[0]{fh} } 405sub fh { $_[0]{fh} }
292 406
310 $_[0]{on_eof} = $_[1]; 424 $_[0]{on_eof} = $_[1];
311} 425}
312 426
313=item $handle->on_timeout ($cb) 427=item $handle->on_timeout ($cb)
314 428
315Replace the current C<on_timeout> callback, or disables the callback 429Replace the current C<on_timeout> callback, or disables the callback (but
316(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 430not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
317argument. 431argument and method.
318 432
319=cut 433=cut
320 434
321sub on_timeout { 435sub on_timeout {
322 $_[0]{on_timeout} = $_[1]; 436 $_[0]{on_timeout} = $_[1];
437}
438
439=item $handle->autocork ($boolean)
440
441Enables or disables the current autocork behaviour (see C<autocork>
442constructor argument). Changes will only take effect on the next write.
443
444=cut
445
446sub autocork {
447 $_[0]{autocork} = $_[1];
448}
449
450=item $handle->no_delay ($boolean)
451
452Enables or disables the C<no_delay> setting (see constructor argument of
453the same name for details).
454
455=cut
456
457sub no_delay {
458 $_[0]{no_delay} = $_[1];
459
460 eval {
461 local $SIG{__DIE__};
462 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1];
463 };
464}
465
466=item $handle->on_starttls ($cb)
467
468Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
469
470=cut
471
472sub on_starttls {
473 $_[0]{on_starttls} = $_[1];
474}
475
476=item $handle->on_stoptls ($cb)
477
478Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
479
480=cut
481
482sub on_starttls {
483 $_[0]{on_stoptls} = $_[1];
323} 484}
324 485
325############################################################################# 486#############################################################################
326 487
327=item $handle->timeout ($seconds) 488=item $handle->timeout ($seconds)
405 my ($self, $cb) = @_; 566 my ($self, $cb) = @_;
406 567
407 $self->{on_drain} = $cb; 568 $self->{on_drain} = $cb;
408 569
409 $cb->($self) 570 $cb->($self)
410 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 571 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
411} 572}
412 573
413=item $handle->push_write ($data) 574=item $handle->push_write ($data)
414 575
415Queues the given scalar to be written. You can push as much data as you 576Queues the given scalar to be written. You can push as much data as you
426 Scalar::Util::weaken $self; 587 Scalar::Util::weaken $self;
427 588
428 my $cb = sub { 589 my $cb = sub {
429 my $len = syswrite $self->{fh}, $self->{wbuf}; 590 my $len = syswrite $self->{fh}, $self->{wbuf};
430 591
431 if ($len >= 0) { 592 if (defined $len) {
432 substr $self->{wbuf}, 0, $len, ""; 593 substr $self->{wbuf}, 0, $len, "";
433 594
434 $self->{_activity} = AnyEvent->now; 595 $self->{_activity} = AnyEvent->now;
435 596
436 $self->{on_drain}($self) 597 $self->{on_drain}($self)
437 if $self->{low_water_mark} >= length $self->{wbuf} 598 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
438 && $self->{on_drain}; 599 && $self->{on_drain};
439 600
440 delete $self->{_ww} unless length $self->{wbuf}; 601 delete $self->{_ww} unless length $self->{wbuf};
441 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 602 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
442 $self->_error ($!, 1); 603 $self->_error ($!, 1);
443 } 604 }
444 }; 605 };
445 606
446 # try to write data immediately 607 # try to write data immediately
447 $cb->(); 608 $cb->() unless $self->{autocork};
448 609
449 # if still data left in wbuf, we need to poll 610 # if still data left in wbuf, we need to poll
450 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 611 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
451 if length $self->{wbuf}; 612 if length $self->{wbuf};
452 }; 613 };
466 627
467 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 628 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
468 ->($self, @_); 629 ->($self, @_);
469 } 630 }
470 631
471 if ($self->{filter_w}) { 632 if ($self->{tls}) {
472 $self->{filter_w}($self, \$_[0]); 633 $self->{_tls_wbuf} .= $_[0];
634
635 &_dotls ($self);
473 } else { 636 } else {
474 $self->{wbuf} .= $_[0]; 637 $self->{wbuf} .= $_[0];
475 $self->_drain_wbuf; 638 $self->_drain_wbuf;
476 } 639 }
477} 640}
494=cut 657=cut
495 658
496register_write_type netstring => sub { 659register_write_type netstring => sub {
497 my ($self, $string) = @_; 660 my ($self, $string) = @_;
498 661
499 sprintf "%d:%s,", (length $string), $string 662 (length $string) . ":$string,"
500}; 663};
501 664
502=item packstring => $format, $data 665=item packstring => $format, $data
503 666
504An octet string prefixed with an encoded length. The encoding C<$format> 667An octet string prefixed with an encoded length. The encoding C<$format>
569 732
570 pack "w/a*", Storable::nfreeze ($ref) 733 pack "w/a*", Storable::nfreeze ($ref)
571}; 734};
572 735
573=back 736=back
737
738=item $handle->push_shutdown
739
740Sometimes you know you want to close the socket after writing your data
741before it was actually written. One way to do that is to replace your
742C<on_drain> handler by a callback that shuts down the socket (and set
743C<low_water_mark> to C<0>). This method is a shorthand for just that, and
744replaces the C<on_drain> callback with:
745
746 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
747
748This simply shuts down the write side and signals an EOF condition to the
749the peer.
750
751You can rely on the normal read queue and C<on_eof> handling
752afterwards. This is the cleanest way to close a connection.
753
754=cut
755
756sub push_shutdown {
757 my ($self) = @_;
758
759 delete $self->{low_water_mark};
760 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
761}
574 762
575=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 763=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
576 764
577This function (not method) lets you add your own types to C<push_write>. 765This function (not method) lets you add your own types to C<push_write>.
578Whenever the given C<type> is used, C<push_write> will invoke the code 766Whenever the given C<type> is used, C<push_write> will invoke the code
678 866
679 if ( 867 if (
680 defined $self->{rbuf_max} 868 defined $self->{rbuf_max}
681 && $self->{rbuf_max} < length $self->{rbuf} 869 && $self->{rbuf_max} < length $self->{rbuf}
682 ) { 870 ) {
683 return $self->_error (&Errno::ENOSPC, 1); 871 $self->_error (&Errno::ENOSPC, 1), return;
684 } 872 }
685 873
686 while () { 874 while () {
687 no strict 'refs'; 875 # we need to use a separate tls read buffer, as we must not receive data while
876 # we are draining the buffer, and this can only happen with TLS.
877 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
688 878
689 my $len = length $self->{rbuf}; 879 my $len = length $self->{rbuf};
690 880
691 if (my $cb = shift @{ $self->{_queue} }) { 881 if (my $cb = shift @{ $self->{_queue} }) {
692 unless ($cb->($self)) { 882 unless ($cb->($self)) {
693 if ($self->{_eof}) { 883 if ($self->{_eof}) {
694 # no progress can be made (not enough data and no data forthcoming) 884 # no progress can be made (not enough data and no data forthcoming)
695 $self->_error (&Errno::EPIPE, 1), last; 885 $self->_error (&Errno::EPIPE, 1), return;
696 } 886 }
697 887
698 unshift @{ $self->{_queue} }, $cb; 888 unshift @{ $self->{_queue} }, $cb;
699 last; 889 last;
700 } 890 }
708 && !@{ $self->{_queue} } # and the queue is still empty 898 && !@{ $self->{_queue} } # and the queue is still empty
709 && $self->{on_read} # but we still have on_read 899 && $self->{on_read} # but we still have on_read
710 ) { 900 ) {
711 # no further data will arrive 901 # no further data will arrive
712 # so no progress can be made 902 # so no progress can be made
713 $self->_error (&Errno::EPIPE, 1), last 903 $self->_error (&Errno::EPIPE, 1), return
714 if $self->{_eof}; 904 if $self->{_eof};
715 905
716 last; # more data might arrive 906 last; # more data might arrive
717 } 907 }
718 } else { 908 } else {
719 # read side becomes idle 909 # read side becomes idle
720 delete $self->{_rw}; 910 delete $self->{_rw} unless $self->{tls};
721 last; 911 last;
722 } 912 }
723 } 913 }
724 914
915 if ($self->{_eof}) {
916 if ($self->{on_eof}) {
725 $self->{on_eof}($self) 917 $self->{on_eof}($self)
726 if $self->{_eof} && $self->{on_eof}; 918 } else {
919 $self->_error (0, 1, "Unexpected end-of-file");
920 }
921 }
727 922
728 # may need to restart read watcher 923 # may need to restart read watcher
729 unless ($self->{_rw}) { 924 unless ($self->{_rw}) {
730 $self->start_read 925 $self->start_read
731 if $self->{on_read} || @{ $self->{_queue} }; 926 if $self->{on_read} || @{ $self->{_queue} };
749 944
750=item $handle->rbuf 945=item $handle->rbuf
751 946
752Returns the read buffer (as a modifiable lvalue). 947Returns the read buffer (as a modifiable lvalue).
753 948
754You can access the read buffer directly as the C<< ->{rbuf} >> member, if 949You can access the read buffer directly as the C<< ->{rbuf} >>
755you want. 950member, if you want. However, the only operation allowed on the
951read buffer (apart from looking at it) is removing data from its
952beginning. Otherwise modifying or appending to it is not allowed and will
953lead to hard-to-track-down bugs.
756 954
757NOTE: The read buffer should only be used or modified if the C<on_read>, 955NOTE: The read buffer should only be used or modified if the C<on_read>,
758C<push_read> or C<unshift_read> methods are used. The other read methods 956C<push_read> or C<unshift_read> methods are used. The other read methods
759automatically manage the read buffer. 957automatically manage the read buffer.
760 958
857 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1055 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
858 1 1056 1
859 } 1057 }
860}; 1058};
861 1059
862# compatibility with older API
863sub push_read_chunk {
864 $_[0]->push_read (chunk => $_[1], $_[2]);
865}
866
867sub unshift_read_chunk {
868 $_[0]->unshift_read (chunk => $_[1], $_[2]);
869}
870
871=item line => [$eol, ]$cb->($handle, $line, $eol) 1060=item line => [$eol, ]$cb->($handle, $line, $eol)
872 1061
873The callback will be called only once a full line (including the end of 1062The callback will be called only once a full line (including the end of
874line marker, C<$eol>) has been read. This line (excluding the end of line 1063line marker, C<$eol>) has been read. This line (excluding the end of line
875marker) will be passed to the callback as second argument (C<$line>), and 1064marker) will be passed to the callback as second argument (C<$line>), and
890=cut 1079=cut
891 1080
892register_read_type line => sub { 1081register_read_type line => sub {
893 my ($self, $cb, $eol) = @_; 1082 my ($self, $cb, $eol) = @_;
894 1083
895 $eol = qr|(\015?\012)| if @_ < 3; 1084 if (@_ < 3) {
1085 # this is more than twice as fast as the generic code below
1086 sub {
1087 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1088
1089 $cb->($_[0], $1, $2);
1090 1
1091 }
1092 } else {
896 $eol = quotemeta $eol unless ref $eol; 1093 $eol = quotemeta $eol unless ref $eol;
897 $eol = qr|^(.*?)($eol)|s; 1094 $eol = qr|^(.*?)($eol)|s;
898 1095
899 sub { 1096 sub {
900 $_[0]{rbuf} =~ s/$eol// or return; 1097 $_[0]{rbuf} =~ s/$eol// or return;
901 1098
902 $cb->($_[0], $1, $2); 1099 $cb->($_[0], $1, $2);
1100 1
903 1 1101 }
904 } 1102 }
905}; 1103};
906
907# compatibility with older API
908sub push_read_line {
909 my $self = shift;
910 $self->push_read (line => @_);
911}
912
913sub unshift_read_line {
914 my $self = shift;
915 $self->unshift_read (line => @_);
916}
917 1104
918=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1105=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
919 1106
920Makes a regex match against the regex object C<$accept> and returns 1107Makes a regex match against the regex object C<$accept> and returns
921everything up to and including the match. 1108everything up to and including the match.
1026An octet string prefixed with an encoded length. The encoding C<$format> 1213An octet string prefixed with an encoded length. The encoding C<$format>
1027uses the same format as a Perl C<pack> format, but must specify a single 1214uses the same format as a Perl C<pack> format, but must specify a single
1028integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1215integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1029optional C<!>, C<< < >> or C<< > >> modifier). 1216optional C<!>, C<< < >> or C<< > >> modifier).
1030 1217
1031DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1218For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1219EPP uses a prefix of C<N> (4 octtes).
1032 1220
1033Example: read a block of data prefixed by its length in BER-encoded 1221Example: read a block of data prefixed by its length in BER-encoded
1034format (very efficient). 1222format (very efficient).
1035 1223
1036 $handle->push_read (packstring => "w", sub { 1224 $handle->push_read (packstring => "w", sub {
1042register_read_type packstring => sub { 1230register_read_type packstring => sub {
1043 my ($self, $cb, $format) = @_; 1231 my ($self, $cb, $format) = @_;
1044 1232
1045 sub { 1233 sub {
1046 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1234 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1047 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1235 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1048 or return; 1236 or return;
1049 1237
1238 $format = length pack $format, $len;
1239
1240 # bypass unshift if we already have the remaining chunk
1241 if ($format + $len <= length $_[0]{rbuf}) {
1242 my $data = substr $_[0]{rbuf}, $format, $len;
1243 substr $_[0]{rbuf}, 0, $format + $len, "";
1244 $cb->($_[0], $data);
1245 } else {
1050 # remove prefix 1246 # remove prefix
1051 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1247 substr $_[0]{rbuf}, 0, $format, "";
1052 1248
1053 # read rest 1249 # read remaining chunk
1054 $_[0]->unshift_read (chunk => $len, $cb); 1250 $_[0]->unshift_read (chunk => $len, $cb);
1251 }
1055 1252
1056 1 1253 1
1057 } 1254 }
1058}; 1255};
1059 1256
1060=item json => $cb->($handle, $hash_or_arrayref) 1257=item json => $cb->($handle, $hash_or_arrayref)
1061 1258
1062Reads a JSON object or array, decodes it and passes it to the callback. 1259Reads a JSON object or array, decodes it and passes it to the
1260callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1063 1261
1064If a C<json> object was passed to the constructor, then that will be used 1262If a C<json> object was passed to the constructor, then that will be used
1065for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1263for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1066 1264
1067This read type uses the incremental parser available with JSON version 1265This read type uses the incremental parser available with JSON version
1076=cut 1274=cut
1077 1275
1078register_read_type json => sub { 1276register_read_type json => sub {
1079 my ($self, $cb) = @_; 1277 my ($self, $cb) = @_;
1080 1278
1081 require JSON; 1279 my $json = $self->{json} ||=
1280 eval { require JSON::XS; JSON::XS->new->utf8 }
1281 || do { require JSON; JSON->new->utf8 };
1082 1282
1083 my $data; 1283 my $data;
1084 my $rbuf = \$self->{rbuf}; 1284 my $rbuf = \$self->{rbuf};
1085 1285
1086 my $json = $self->{json} ||= JSON->new->utf8;
1087
1088 sub { 1286 sub {
1089 my $ref = $json->incr_parse ($self->{rbuf}); 1287 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1090 1288
1091 if ($ref) { 1289 if ($ref) {
1092 $self->{rbuf} = $json->incr_text; 1290 $self->{rbuf} = $json->incr_text;
1093 $json->incr_text = ""; 1291 $json->incr_text = "";
1094 $cb->($self, $ref); 1292 $cb->($self, $ref);
1095 1293
1096 1 1294 1
1295 } elsif ($@) {
1296 # error case
1297 $json->incr_skip;
1298
1299 $self->{rbuf} = $json->incr_text;
1300 $json->incr_text = "";
1301
1302 $self->_error (&Errno::EBADMSG);
1303
1304 ()
1097 } else { 1305 } else {
1098 $self->{rbuf} = ""; 1306 $self->{rbuf} = "";
1307
1099 () 1308 ()
1100 } 1309 }
1101 } 1310 }
1102}; 1311};
1103 1312
1116 1325
1117 require Storable; 1326 require Storable;
1118 1327
1119 sub { 1328 sub {
1120 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1329 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1121 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1330 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1122 or return; 1331 or return;
1123 1332
1333 my $format = length pack "w", $len;
1334
1335 # bypass unshift if we already have the remaining chunk
1336 if ($format + $len <= length $_[0]{rbuf}) {
1337 my $data = substr $_[0]{rbuf}, $format, $len;
1338 substr $_[0]{rbuf}, 0, $format + $len, "";
1339 $cb->($_[0], Storable::thaw ($data));
1340 } else {
1124 # remove prefix 1341 # remove prefix
1125 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1342 substr $_[0]{rbuf}, 0, $format, "";
1126 1343
1127 # read rest 1344 # read remaining chunk
1128 $_[0]->unshift_read (chunk => $len, sub { 1345 $_[0]->unshift_read (chunk => $len, sub {
1129 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1346 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1130 $cb->($_[0], $ref); 1347 $cb->($_[0], $ref);
1131 } else { 1348 } else {
1132 $self->_error (&Errno::EBADMSG); 1349 $self->_error (&Errno::EBADMSG);
1350 }
1133 } 1351 });
1134 }); 1352 }
1353
1354 1
1135 } 1355 }
1136}; 1356};
1137 1357
1138=back 1358=back
1139 1359
1169Note that AnyEvent::Handle will automatically C<start_read> for you when 1389Note that AnyEvent::Handle will automatically C<start_read> for you when
1170you change the C<on_read> callback or push/unshift a read callback, and it 1390you change the C<on_read> callback or push/unshift a read callback, and it
1171will automatically C<stop_read> for you when neither C<on_read> is set nor 1391will automatically C<stop_read> for you when neither C<on_read> is set nor
1172there are any read requests in the queue. 1392there are any read requests in the queue.
1173 1393
1394These methods will have no effect when in TLS mode (as TLS doesn't support
1395half-duplex connections).
1396
1174=cut 1397=cut
1175 1398
1176sub stop_read { 1399sub stop_read {
1177 my ($self) = @_; 1400 my ($self) = @_;
1178 1401
1179 delete $self->{_rw}; 1402 delete $self->{_rw} unless $self->{tls};
1180} 1403}
1181 1404
1182sub start_read { 1405sub start_read {
1183 my ($self) = @_; 1406 my ($self) = @_;
1184 1407
1185 unless ($self->{_rw} || $self->{_eof}) { 1408 unless ($self->{_rw} || $self->{_eof}) {
1186 Scalar::Util::weaken $self; 1409 Scalar::Util::weaken $self;
1187 1410
1188 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1411 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1189 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1412 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1190 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1413 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1191 1414
1192 if ($len > 0) { 1415 if ($len > 0) {
1193 $self->{_activity} = AnyEvent->now; 1416 $self->{_activity} = AnyEvent->now;
1194 1417
1195 $self->{filter_r} 1418 if ($self->{tls}) {
1196 ? $self->{filter_r}($self, $rbuf) 1419 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1197 : $self->{_in_drain} || $self->_drain_rbuf; 1420
1421 &_dotls ($self);
1422 } else {
1423 $self->_drain_rbuf unless $self->{_in_drain};
1424 }
1198 1425
1199 } elsif (defined $len) { 1426 } elsif (defined $len) {
1200 delete $self->{_rw}; 1427 delete $self->{_rw};
1201 $self->{_eof} = 1; 1428 $self->{_eof} = 1;
1202 $self->_drain_rbuf unless $self->{_in_drain}; 1429 $self->_drain_rbuf unless $self->{_in_drain};
1206 } 1433 }
1207 }); 1434 });
1208 } 1435 }
1209} 1436}
1210 1437
1438our $ERROR_SYSCALL;
1439our $ERROR_WANT_READ;
1440
1441sub _tls_error {
1442 my ($self, $err) = @_;
1443
1444 return $self->_error ($!, 1)
1445 if $err == Net::SSLeay::ERROR_SYSCALL ();
1446
1447 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1448
1449 # reduce error string to look less scary
1450 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1451
1452 if ($self->{_on_starttls}) {
1453 (delete $self->{_on_starttls})->($self, undef, $err);
1454 &_freetls;
1455 } else {
1456 &_freetls;
1457 $self->_error (&Errno::EPROTO, 1, $err);
1458 }
1459}
1460
1461# poll the write BIO and send the data if applicable
1462# also decode read data if possible
1463# this is basiclaly our TLS state machine
1464# more efficient implementations are possible with openssl,
1465# but not with the buggy and incomplete Net::SSLeay.
1211sub _dotls { 1466sub _dotls {
1212 my ($self) = @_; 1467 my ($self) = @_;
1213 1468
1214 my $buf; 1469 my $tmp;
1215 1470
1216 if (length $self->{_tls_wbuf}) { 1471 if (length $self->{_tls_wbuf}) {
1217 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1472 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1218 substr $self->{_tls_wbuf}, 0, $len, ""; 1473 substr $self->{_tls_wbuf}, 0, $tmp, "";
1219 } 1474 }
1220 }
1221 1475
1476 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1477 return $self->_tls_error ($tmp)
1478 if $tmp != $ERROR_WANT_READ
1479 && ($tmp != $ERROR_SYSCALL || $!);
1480 }
1481
1482 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1483 unless (length $tmp) {
1484 $self->{_on_starttls}
1485 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1486 &_freetls;
1487
1488 if ($self->{on_stoptls}) {
1489 $self->{on_stoptls}($self);
1490 return;
1491 } else {
1492 # let's treat SSL-eof as we treat normal EOF
1493 delete $self->{_rw};
1494 $self->{_eof} = 1;
1495 }
1496 }
1497
1498 $self->{_tls_rbuf} .= $tmp;
1499 $self->_drain_rbuf unless $self->{_in_drain};
1500 $self->{tls} or return; # tls session might have gone away in callback
1501 }
1502
1503 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1504 return $self->_tls_error ($tmp)
1505 if $tmp != $ERROR_WANT_READ
1506 && ($tmp != $ERROR_SYSCALL || $!);
1507
1222 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1508 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1223 $self->{wbuf} .= $buf; 1509 $self->{wbuf} .= $tmp;
1224 $self->_drain_wbuf; 1510 $self->_drain_wbuf;
1225 } 1511 }
1226 1512
1227 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1513 $self->{_on_starttls}
1228 if (length $buf) { 1514 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1229 $self->{rbuf} .= $buf; 1515 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1230 $self->_drain_rbuf unless $self->{_in_drain};
1231 } else {
1232 # let's treat SSL-eof as we treat normal EOF
1233 $self->{_eof} = 1;
1234 $self->_shutdown;
1235 return;
1236 }
1237 }
1238
1239 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1240
1241 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1242 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1243 return $self->_error ($!, 1);
1244 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1245 return $self->_error (&Errno::EIO, 1);
1246 }
1247
1248 # all others are fine for our purposes
1249 }
1250} 1516}
1251 1517
1252=item $handle->starttls ($tls[, $tls_ctx]) 1518=item $handle->starttls ($tls[, $tls_ctx])
1253 1519
1254Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1520Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1256C<starttls>. 1522C<starttls>.
1257 1523
1258The first argument is the same as the C<tls> constructor argument (either 1524The first argument is the same as the C<tls> constructor argument (either
1259C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1525C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1260 1526
1261The second argument is the optional C<Net::SSLeay::CTX> object that is 1527The second argument is the optional C<AnyEvent::TLS> object that is used
1262used when AnyEvent::Handle has to create its own TLS connection object. 1528when AnyEvent::Handle has to create its own TLS connection object, or
1529a hash reference with C<< key => value >> pairs that will be used to
1530construct a new context.
1263 1531
1264The TLS connection object will end up in C<< $handle->{tls} >> after this 1532The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1265call and can be used or changed to your liking. Note that the handshake 1533context in C<< $handle->{tls_ctx} >> after this call and can be used or
1266might have already started when this function returns. 1534changed to your liking. Note that the handshake might have already started
1535when this function returns.
1267 1536
1537If it an error to start a TLS handshake more than once per
1538AnyEvent::Handle object (this is due to bugs in OpenSSL).
1539
1268=cut 1540=cut
1541
1542our %TLS_CACHE; #TODO not yet documented, should we?
1269 1543
1270sub starttls { 1544sub starttls {
1271 my ($self, $ssl, $ctx) = @_; 1545 my ($self, $ssl, $ctx) = @_;
1272 1546
1273 $self->stoptls; 1547 require Net::SSLeay;
1274 1548
1275 if ($ssl eq "accept") { 1549 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1276 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1550 if $self->{tls};
1277 Net::SSLeay::set_accept_state ($ssl); 1551
1278 } elsif ($ssl eq "connect") { 1552 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1279 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1553 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1280 Net::SSLeay::set_connect_state ($ssl); 1554
1555 $ctx ||= $self->{tls_ctx};
1556
1557 if ("HASH" eq ref $ctx) {
1558 require AnyEvent::TLS;
1559
1560 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context
1561
1562 if ($ctx->{cache}) {
1563 my $key = $ctx+0;
1564 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1565 } else {
1566 $ctx = new AnyEvent::TLS %$ctx;
1567 }
1568 }
1281 } 1569
1282 1570 $self->{tls_ctx} = $ctx || TLS_CTX ();
1283 $self->{tls} = $ssl; 1571 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1284 1572
1285 # basically, this is deep magic (because SSL_read should have the same issues) 1573 # basically, this is deep magic (because SSL_read should have the same issues)
1286 # but the openssl maintainers basically said: "trust us, it just works". 1574 # but the openssl maintainers basically said: "trust us, it just works".
1287 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1575 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1288 # and mismaintained ssleay-module doesn't even offer them). 1576 # and mismaintained ssleay-module doesn't even offer them).
1289 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1577 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1578 #
1579 # in short: this is a mess.
1580 #
1581 # note that we do not try to keep the length constant between writes as we are required to do.
1582 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1583 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1584 # have identity issues in that area.
1290 Net::SSLeay::CTX_set_mode ($self->{tls}, 1585# Net::SSLeay::CTX_set_mode ($ssl,
1291 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1586# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1292 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1587# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1588 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1293 1589
1294 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1590 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1295 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1591 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1296 1592
1297 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1593 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1298 1594
1299 $self->{filter_w} = sub { 1595 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1300 $_[0]{_tls_wbuf} .= ${$_[1]}; 1596 if $self->{on_starttls};
1301 &_dotls; 1597
1302 }; 1598 &_dotls; # need to trigger the initial handshake
1303 $self->{filter_r} = sub { 1599 $self->start_read; # make sure we actually do read
1304 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1305 &_dotls;
1306 };
1307} 1600}
1308 1601
1309=item $handle->stoptls 1602=item $handle->stoptls
1310 1603
1311Destroys the SSL connection, if any. Partial read or write data will be 1604Shuts down the SSL connection - this makes a proper EOF handshake by
1312lost. 1605sending a close notify to the other side, but since OpenSSL doesn't
1606support non-blocking shut downs, it is not possible to re-use the stream
1607afterwards.
1313 1608
1314=cut 1609=cut
1315 1610
1316sub stoptls { 1611sub stoptls {
1317 my ($self) = @_; 1612 my ($self) = @_;
1318 1613
1319 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1614 if ($self->{tls}) {
1615 Net::SSLeay::shutdown ($self->{tls});
1320 1616
1321 delete $self->{_rbio}; 1617 &_dotls;
1322 delete $self->{_wbio}; 1618
1323 delete $self->{_tls_wbuf}; 1619# # we don't give a shit. no, we do, but we can't. no...#d#
1324 delete $self->{filter_r}; 1620# # we, we... have to use openssl :/#d#
1325 delete $self->{filter_w}; 1621# &_freetls;#d#
1622 }
1623}
1624
1625sub _freetls {
1626 my ($self) = @_;
1627
1628 return unless $self->{tls};
1629
1630 $self->{tls_ctx}->_put_session (delete $self->{tls});
1631
1632 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1326} 1633}
1327 1634
1328sub DESTROY { 1635sub DESTROY {
1329 my $self = shift; 1636 my ($self) = @_;
1330 1637
1331 $self->stoptls; 1638 &_freetls;
1332 1639
1333 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1640 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1334 1641
1335 if ($linger && length $self->{wbuf}) { 1642 if ($linger && length $self->{wbuf}) {
1336 my $fh = delete $self->{fh}; 1643 my $fh = delete $self->{fh};
1351 @linger = (); 1658 @linger = ();
1352 }); 1659 });
1353 } 1660 }
1354} 1661}
1355 1662
1663=item $handle->destroy
1664
1665Shuts down the handle object as much as possible - this call ensures that
1666no further callbacks will be invoked and as many resources as possible
1667will be freed. You must not call any methods on the object afterwards.
1668
1669Normally, you can just "forget" any references to an AnyEvent::Handle
1670object and it will simply shut down. This works in fatal error and EOF
1671callbacks, as well as code outside. It does I<NOT> work in a read or write
1672callback, so when you want to destroy the AnyEvent::Handle object from
1673within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1674that case.
1675
1676The handle might still linger in the background and write out remaining
1677data, as specified by the C<linger> option, however.
1678
1679=cut
1680
1681sub destroy {
1682 my ($self) = @_;
1683
1684 $self->DESTROY;
1685 %$self = ();
1686}
1687
1356=item AnyEvent::Handle::TLS_CTX 1688=item AnyEvent::Handle::TLS_CTX
1357 1689
1358This function creates and returns the Net::SSLeay::CTX object used by 1690This function creates and returns the AnyEvent::TLS object used by default
1359default for TLS mode. 1691for TLS mode.
1360 1692
1361The context is created like this: 1693The context is created by calling L<AnyEvent::TLS> without any arguments.
1362
1363 Net::SSLeay::load_error_strings;
1364 Net::SSLeay::SSLeay_add_ssl_algorithms;
1365 Net::SSLeay::randomize;
1366
1367 my $CTX = Net::SSLeay::CTX_new;
1368
1369 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1370 1694
1371=cut 1695=cut
1372 1696
1373our $TLS_CTX; 1697our $TLS_CTX;
1374 1698
1375sub TLS_CTX() { 1699sub TLS_CTX() {
1376 $TLS_CTX || do { 1700 $TLS_CTX ||= do {
1377 require Net::SSLeay; 1701 require AnyEvent::TLS;
1378 1702
1379 Net::SSLeay::load_error_strings (); 1703 new AnyEvent::TLS
1380 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1381 Net::SSLeay::randomize ();
1382
1383 $TLS_CTX = Net::SSLeay::CTX_new ();
1384
1385 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1386
1387 $TLS_CTX
1388 } 1704 }
1389} 1705}
1390 1706
1391=back 1707=back
1708
1709
1710=head1 NONFREQUENTLY ASKED QUESTIONS
1711
1712=over 4
1713
1714=item I C<undef> the AnyEvent::Handle reference inside my callback and
1715still get further invocations!
1716
1717That's because AnyEvent::Handle keeps a reference to itself when handling
1718read or write callbacks.
1719
1720It is only safe to "forget" the reference inside EOF or error callbacks,
1721from within all other callbacks, you need to explicitly call the C<<
1722->destroy >> method.
1723
1724=item I get different callback invocations in TLS mode/Why can't I pause
1725reading?
1726
1727Unlike, say, TCP, TLS connections do not consist of two independent
1728communication channels, one for each direction. Or put differently. The
1729read and write directions are not independent of each other: you cannot
1730write data unless you are also prepared to read, and vice versa.
1731
1732This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1733callback invocations when you are not expecting any read data - the reason
1734is that AnyEvent::Handle always reads in TLS mode.
1735
1736During the connection, you have to make sure that you always have a
1737non-empty read-queue, or an C<on_read> watcher. At the end of the
1738connection (or when you no longer want to use it) you can call the
1739C<destroy> method.
1740
1741=item How do I read data until the other side closes the connection?
1742
1743If you just want to read your data into a perl scalar, the easiest way
1744to achieve this is by setting an C<on_read> callback that does nothing,
1745clearing the C<on_eof> callback and in the C<on_error> callback, the data
1746will be in C<$_[0]{rbuf}>:
1747
1748 $handle->on_read (sub { });
1749 $handle->on_eof (undef);
1750 $handle->on_error (sub {
1751 my $data = delete $_[0]{rbuf};
1752 undef $handle;
1753 });
1754
1755The reason to use C<on_error> is that TCP connections, due to latencies
1756and packets loss, might get closed quite violently with an error, when in
1757fact, all data has been received.
1758
1759It is usually better to use acknowledgements when transferring data,
1760to make sure the other side hasn't just died and you got the data
1761intact. This is also one reason why so many internet protocols have an
1762explicit QUIT command.
1763
1764=item I don't want to destroy the handle too early - how do I wait until
1765all data has been written?
1766
1767After writing your last bits of data, set the C<on_drain> callback
1768and destroy the handle in there - with the default setting of
1769C<low_water_mark> this will be called precisely when all data has been
1770written to the socket:
1771
1772 $handle->push_write (...);
1773 $handle->on_drain (sub {
1774 warn "all data submitted to the kernel\n";
1775 undef $handle;
1776 });
1777
1778If you just want to queue some data and then signal EOF to the other side,
1779consider using C<< ->push_shutdown >> instead.
1780
1781=item I want to contact a TLS/SSL server, I don't care about security.
1782
1783If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1784simply connect to it and then create the AnyEvent::Handle with the C<tls>
1785parameter:
1786
1787 tcp_connect $host, $port, sub {
1788 my ($fh) = @_;
1789
1790 my $handle = new AnyEvent::Handle
1791 fh => $fh,
1792 tls => "connect",
1793 on_error => sub { ... };
1794
1795 $handle->push_write (...);
1796 };
1797
1798=item I want to contact a TLS/SSL server, I do care about security.
1799
1800Then you should additionally enable certificate verification, including
1801peername verification, if the protocol you use supports it (see
1802L<AnyEvent::TLS>, C<verify_peername>).
1803
1804E.g. for HTTPS:
1805
1806 tcp_connect $host, $port, sub {
1807 my ($fh) = @_;
1808
1809 my $handle = new AnyEvent::Handle
1810 fh => $fh,
1811 peername => $host,
1812 tls => "connect",
1813 tls_ctx => { verify => 1, verify_peername => "https" },
1814 ...
1815
1816Note that you must specify the hostname you connected to (or whatever
1817"peername" the protocol needs) as the C<peername> argument, otherwise no
1818peername verification will be done.
1819
1820The above will use the system-dependent default set of trusted CA
1821certificates. If you want to check against a specific CA, add the
1822C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1823
1824 tls_ctx => {
1825 verify => 1,
1826 verify_peername => "https",
1827 ca_file => "my-ca-cert.pem",
1828 },
1829
1830=item I want to create a TLS/SSL server, how do I do that?
1831
1832Well, you first need to get a server certificate and key. You have
1833three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1834self-signed certificate (cheap. check the search engine of your choice,
1835there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1836nice program for that purpose).
1837
1838Then create a file with your private key (in PEM format, see
1839L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1840file should then look like this:
1841
1842 -----BEGIN RSA PRIVATE KEY-----
1843 ...header data
1844 ... lots of base64'y-stuff
1845 -----END RSA PRIVATE KEY-----
1846
1847 -----BEGIN CERTIFICATE-----
1848 ... lots of base64'y-stuff
1849 -----END CERTIFICATE-----
1850
1851The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1852specify this file as C<cert_file>:
1853
1854 tcp_server undef, $port, sub {
1855 my ($fh) = @_;
1856
1857 my $handle = new AnyEvent::Handle
1858 fh => $fh,
1859 tls => "accept",
1860 tls_ctx => { cert_file => "my-server-keycert.pem" },
1861 ...
1862
1863When you have intermediate CA certificates that your clients might not
1864know about, just append them to the C<cert_file>.
1865
1866=back
1867
1392 1868
1393=head1 SUBCLASSING AnyEvent::Handle 1869=head1 SUBCLASSING AnyEvent::Handle
1394 1870
1395In many cases, you might want to subclass AnyEvent::Handle. 1871In many cases, you might want to subclass AnyEvent::Handle.
1396 1872
1400=over 4 1876=over 4
1401 1877
1402=item * all constructor arguments become object members. 1878=item * all constructor arguments become object members.
1403 1879
1404At least initially, when you pass a C<tls>-argument to the constructor it 1880At least initially, when you pass a C<tls>-argument to the constructor it
1405will end up in C<< $handle->{tls} >>. Those members might be changes or 1881will end up in C<< $handle->{tls} >>. Those members might be changed or
1406mutated later on (for example C<tls> will hold the TLS connection object). 1882mutated later on (for example C<tls> will hold the TLS connection object).
1407 1883
1408=item * other object member names are prefixed with an C<_>. 1884=item * other object member names are prefixed with an C<_>.
1409 1885
1410All object members not explicitly documented (internal use) are prefixed 1886All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines