ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.102 by root, Wed Oct 29 14:32:02 2008 UTC vs.
Revision 1.159 by root, Fri Jul 24 12:35:58 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.3; 16our $VERSION = 4.86;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89When this parameter is specified, then the C<on_prepare>,
90C<on_connect_error> and C<on_connect> callbacks will be called under the
91appropriate circumstances:
92
93=over 4
94
95=item on_prepare => $cb->($handle)
96
97This (rarely used) callback is called before a new connection is
98attempted, but after the file handle has been created. It could be used to
99prepare the file handle with parameters required for the actual connect
100(as opposed to settings that can be changed when the connection is already
101established).
102
103=item on_connect => $cb->($handle, $host, $port, $retry->())
104
105This callback is called when a connection has been successfully established.
106
107The actual numeric host and port (the socket peername) are passed as
108parameters, together with a retry callback.
109
110When, for some reason, the handle is not acceptable, then calling
111C<$retry> will continue with the next conenction target (in case of
112multi-homed hosts or SRV records there can be multiple connection
113endpoints). When it is called then the read and write queues, eof status,
114tls status and similar properties of the handle are being reset.
115
116In most cases, ignoring the C<$retry> parameter is the way to go.
117
118=item on_connect_error => $cb->($handle, $message)
119
120This callback is called when the conenction could not be
121established. C<$!> will contain the relevant error code, and C<$message> a
122message describing it (usually the same as C<"$!">).
123
124If this callback isn't specified, then C<on_error> will be called with a
125fatal error instead.
126
127=back
128
129=item on_error => $cb->($handle, $fatal, $message)
130
131This is the error callback, which is called when, well, some error
132occured, such as not being able to resolve the hostname, failure to
133connect or a read error.
134
135Some errors are fatal (which is indicated by C<$fatal> being true). On
136fatal errors the handle object will be destroyed (by a call to C<< ->
137destroy >>) after invoking the error callback (which means you are free to
138examine the handle object). Examples of fatal errors are an EOF condition
139with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
140cases where the other side can close the connection at their will it is
141often easiest to not report C<EPIPE> errors in this callback.
142
143AnyEvent::Handle tries to find an appropriate error code for you to check
144against, but in some cases (TLS errors), this does not work well. It is
145recommended to always output the C<$message> argument in human-readable
146error messages (it's usually the same as C<"$!">).
147
148Non-fatal errors can be retried by simply returning, but it is recommended
149to simply ignore this parameter and instead abondon the handle object
150when this callback is invoked. Examples of non-fatal errors are timeouts
151C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
152
153On callback entrance, the value of C<$!> contains the operating system
154error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
155C<EPROTO>).
156
157While not mandatory, it is I<highly> recommended to set this callback, as
158you will not be notified of errors otherwise. The default simply calls
159C<croak>.
160
161=item on_read => $cb->($handle)
162
163This sets the default read callback, which is called when data arrives
164and no read request is in the queue (unlike read queue callbacks, this
165callback will only be called when at least one octet of data is in the
166read buffer).
167
168To access (and remove data from) the read buffer, use the C<< ->rbuf >>
169method or access the C<< $handle->{rbuf} >> member directly. Note that you
170must not enlarge or modify the read buffer, you can only remove data at
171the beginning from it.
172
173When an EOF condition is detected then AnyEvent::Handle will first try to
174feed all the remaining data to the queued callbacks and C<on_read> before
175calling the C<on_eof> callback. If no progress can be made, then a fatal
176error will be raised (with C<$!> set to C<EPIPE>).
177
178Note that, unlike requests in the read queue, an C<on_read> callback
179doesn't mean you I<require> some data: if there is an EOF and there
180are outstanding read requests then an error will be flagged. With an
181C<on_read> callback, the C<on_eof> callback will be invoked.
182
82=item on_eof => $cb->($handle) 183=item on_eof => $cb->($handle)
83 184
84Set the callback to be called when an end-of-file condition is detected, 185Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 186i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 187connection cleanly, and there are no outstanding read requests in the
188queue (if there are read requests, then an EOF counts as an unexpected
189connection close and will be flagged as an error).
87 190
88For sockets, this just means that the other side has stopped sending data, 191For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 192you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 193callback and continue writing data, as only the read part has been shut
91down. 194down.
92 195
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 196If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 197set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138 198
139=item on_drain => $cb->($handle) 199=item on_drain => $cb->($handle)
140 200
141This sets the callback that is called when the write buffer becomes empty 201This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 202(or when the callback is set and the buffer is empty already).
235 295
236This will not work for partial TLS data that could not be encoded 296This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 297yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 298help.
239 299
300=item peername => $string
301
302A string used to identify the remote site - usually the DNS hostname
303(I<not> IDN!) used to create the connection, rarely the IP address.
304
305Apart from being useful in error messages, this string is also used in TLS
306peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
307verification will be skipped when C<peername> is not specified or
308C<undef>.
309
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 310=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 311
242When this parameter is given, it enables TLS (SSL) mode, that means 312When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 313AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 314established and will transparently encrypt/decrypt data afterwards.
315
316All TLS protocol errors will be signalled as C<EPROTO>, with an
317appropriate error message.
245 318
246TLS mode requires Net::SSLeay to be installed (it will be loaded 319TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 320automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 321have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 322to add the dependency yourself.
253mode. 326mode.
254 327
255You can also provide your own TLS connection object, but you have 328You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 329to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 330or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 331AnyEvent::Handle. Also, this module will take ownership of this connection
332object.
333
334At some future point, AnyEvent::Handle might switch to another TLS
335implementation, then the option to use your own session object will go
336away.
337
338B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
339passing in the wrong integer will lead to certain crash. This most often
340happens when one uses a stylish C<< tls => 1 >> and is surprised about the
341segmentation fault.
259 342
260See the C<< ->starttls >> method for when need to start TLS negotiation later. 343See the C<< ->starttls >> method for when need to start TLS negotiation later.
261 344
262=item tls_ctx => $ssl_ctx 345=item tls_ctx => $anyevent_tls
263 346
264Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 347Use the given C<AnyEvent::TLS> object to create the new TLS connection
265(unless a connection object was specified directly). If this parameter is 348(unless a connection object was specified directly). If this parameter is
266missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 349missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
350
351Instead of an object, you can also specify a hash reference with C<< key
352=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
353new TLS context object.
354
355=item on_starttls => $cb->($handle, $success[, $error_message])
356
357This callback will be invoked when the TLS/SSL handshake has finished. If
358C<$success> is true, then the TLS handshake succeeded, otherwise it failed
359(C<on_stoptls> will not be called in this case).
360
361The session in C<< $handle->{tls} >> can still be examined in this
362callback, even when the handshake was not successful.
363
364TLS handshake failures will not cause C<on_error> to be invoked when this
365callback is in effect, instead, the error message will be passed to C<on_starttls>.
366
367Without this callback, handshake failures lead to C<on_error> being
368called, as normal.
369
370Note that you cannot call C<starttls> right again in this callback. If you
371need to do that, start an zero-second timer instead whose callback can
372then call C<< ->starttls >> again.
373
374=item on_stoptls => $cb->($handle)
375
376When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
377set, then it will be invoked after freeing the TLS session. If it is not,
378then a TLS shutdown condition will be treated like a normal EOF condition
379on the handle.
380
381The session in C<< $handle->{tls} >> can still be examined in this
382callback.
383
384This callback will only be called on TLS shutdowns, not when the
385underlying handle signals EOF.
267 386
268=item json => JSON or JSON::XS object 387=item json => JSON or JSON::XS object
269 388
270This is the json coder object used by the C<json> read and write types. 389This is the json coder object used by the C<json> read and write types.
271 390
280 399
281=cut 400=cut
282 401
283sub new { 402sub new {
284 my $class = shift; 403 my $class = shift;
285
286 my $self = bless { @_ }, $class; 404 my $self = bless { @_ }, $class;
287 405
288 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 406 if ($self->{fh}) {
407 $self->_start;
408 return unless $self->{fh}; # could be gone by now
409
410 } elsif ($self->{connect}) {
411 require AnyEvent::Socket;
412
413 $self->{peername} = $self->{connect}[0]
414 unless exists $self->{peername};
415
416 $self->{_skip_drain_rbuf} = 1;
417
418 {
419 Scalar::Util::weaken (my $self = $self);
420
421 $self->{_connect} =
422 AnyEvent::Socket::tcp_connect (
423 $self->{connect}[0],
424 $self->{connect}[1],
425 sub {
426 my ($fh, $host, $port, $retry) = @_;
427
428 if ($fh) {
429 $self->{fh} = $fh;
430
431 delete $self->{_skip_drain_rbuf};
432 $self->_start;
433
434 $self->{on_connect}
435 and $self->{on_connect}($self, $host, $port, sub {
436 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
437 $self->{_skip_drain_rbuf} = 1;
438 &$retry;
439 });
440
441 } else {
442 if ($self->{on_connect_error}) {
443 $self->{on_connect_error}($self, "$!");
444 $self->destroy;
445 } else {
446 $self->fatal ($!, 1);
447 }
448 }
449 },
450 sub {
451 local $self->{fh} = $_[0];
452
453 $self->{on_prepare}->($self)
454 if $self->{on_prepare};
455 }
456 );
457 }
458
459 } else {
460 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
461 }
462
463 $self
464}
465
466sub _start {
467 my ($self) = @_;
289 468
290 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 469 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
470
471 $self->{_activity} = AnyEvent->now;
472 $self->_timeout;
473
474 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
291 475
292 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 476 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
293 if $self->{tls}; 477 if $self->{tls};
294 478
295 $self->{_activity} = AnyEvent->now;
296 $self->_timeout;
297
298 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 479 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
299 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
300 480
301 $self->start_read 481 $self->start_read
302 if $self->{on_read}; 482 if $self->{on_read} || @{ $self->{_queue} };
303
304 $self
305} 483}
306 484
307sub _shutdown { 485#sub _shutdown {
308 my ($self) = @_; 486# my ($self) = @_;
309 487#
310 delete $self->{_tw}; 488# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
311 delete $self->{_rw}; 489# $self->{_eof} = 1; # tell starttls et. al to stop trying
312 delete $self->{_ww}; 490#
313 delete $self->{fh};
314
315 &_freetls; 491# &_freetls;
316 492#}
317 delete $self->{on_read};
318 delete $self->{_queue};
319}
320 493
321sub _error { 494sub _error {
322 my ($self, $errno, $fatal) = @_; 495 my ($self, $errno, $fatal, $message) = @_;
323
324 $self->_shutdown
325 if $fatal;
326 496
327 $! = $errno; 497 $! = $errno;
498 $message ||= "$!";
328 499
329 if ($self->{on_error}) { 500 if ($self->{on_error}) {
330 $self->{on_error}($self, $fatal); 501 $self->{on_error}($self, $fatal, $message);
502 $self->destroy if $fatal;
331 } elsif ($self->{fh}) { 503 } elsif ($self->{fh}) {
504 $self->destroy;
332 Carp::croak "AnyEvent::Handle uncaught error: $!"; 505 Carp::croak "AnyEvent::Handle uncaught error: $message";
333 } 506 }
334} 507}
335 508
336=item $fh = $handle->fh 509=item $fh = $handle->fh
337 510
374} 547}
375 548
376=item $handle->autocork ($boolean) 549=item $handle->autocork ($boolean)
377 550
378Enables or disables the current autocork behaviour (see C<autocork> 551Enables or disables the current autocork behaviour (see C<autocork>
379constructor argument). 552constructor argument). Changes will only take effect on the next write.
380 553
381=cut 554=cut
555
556sub autocork {
557 $_[0]{autocork} = $_[1];
558}
382 559
383=item $handle->no_delay ($boolean) 560=item $handle->no_delay ($boolean)
384 561
385Enables or disables the C<no_delay> setting (see constructor argument of 562Enables or disables the C<no_delay> setting (see constructor argument of
386the same name for details). 563the same name for details).
390sub no_delay { 567sub no_delay {
391 $_[0]{no_delay} = $_[1]; 568 $_[0]{no_delay} = $_[1];
392 569
393 eval { 570 eval {
394 local $SIG{__DIE__}; 571 local $SIG{__DIE__};
395 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 572 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
573 if $_[0]{fh};
396 }; 574 };
575}
576
577=item $handle->on_starttls ($cb)
578
579Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
580
581=cut
582
583sub on_starttls {
584 $_[0]{on_starttls} = $_[1];
585}
586
587=item $handle->on_stoptls ($cb)
588
589Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_stoptls} = $_[1];
397} 595}
398 596
399############################################################################# 597#############################################################################
400 598
401=item $handle->timeout ($seconds) 599=item $handle->timeout ($seconds)
414# reset the timeout watcher, as neccessary 612# reset the timeout watcher, as neccessary
415# also check for time-outs 613# also check for time-outs
416sub _timeout { 614sub _timeout {
417 my ($self) = @_; 615 my ($self) = @_;
418 616
419 if ($self->{timeout}) { 617 if ($self->{timeout} && $self->{fh}) {
420 my $NOW = AnyEvent->now; 618 my $NOW = AnyEvent->now;
421 619
422 # when would the timeout trigger? 620 # when would the timeout trigger?
423 my $after = $self->{_activity} + $self->{timeout} - $NOW; 621 my $after = $self->{_activity} + $self->{timeout} - $NOW;
424 622
427 $self->{_activity} = $NOW; 625 $self->{_activity} = $NOW;
428 626
429 if ($self->{on_timeout}) { 627 if ($self->{on_timeout}) {
430 $self->{on_timeout}($self); 628 $self->{on_timeout}($self);
431 } else { 629 } else {
432 $self->_error (&Errno::ETIMEDOUT); 630 $self->_error (Errno::ETIMEDOUT);
433 } 631 }
434 632
435 # callback could have changed timeout value, optimise 633 # callback could have changed timeout value, optimise
436 return unless $self->{timeout}; 634 return unless $self->{timeout};
437 635
500 Scalar::Util::weaken $self; 698 Scalar::Util::weaken $self;
501 699
502 my $cb = sub { 700 my $cb = sub {
503 my $len = syswrite $self->{fh}, $self->{wbuf}; 701 my $len = syswrite $self->{fh}, $self->{wbuf};
504 702
505 if ($len >= 0) { 703 if (defined $len) {
506 substr $self->{wbuf}, 0, $len, ""; 704 substr $self->{wbuf}, 0, $len, "";
507 705
508 $self->{_activity} = AnyEvent->now; 706 $self->{_activity} = AnyEvent->now;
509 707
510 $self->{on_drain}($self) 708 $self->{on_drain}($self)
546 $self->{_tls_wbuf} .= $_[0]; 744 $self->{_tls_wbuf} .= $_[0];
547 745
548 &_dotls ($self); 746 &_dotls ($self);
549 } else { 747 } else {
550 $self->{wbuf} .= $_[0]; 748 $self->{wbuf} .= $_[0];
551 $self->_drain_wbuf; 749 $self->_drain_wbuf if $self->{fh};
552 } 750 }
553} 751}
554 752
555=item $handle->push_write (type => @args) 753=item $handle->push_write (type => @args)
556 754
645 843
646 pack "w/a*", Storable::nfreeze ($ref) 844 pack "w/a*", Storable::nfreeze ($ref)
647}; 845};
648 846
649=back 847=back
848
849=item $handle->push_shutdown
850
851Sometimes you know you want to close the socket after writing your data
852before it was actually written. One way to do that is to replace your
853C<on_drain> handler by a callback that shuts down the socket (and set
854C<low_water_mark> to C<0>). This method is a shorthand for just that, and
855replaces the C<on_drain> callback with:
856
857 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
858
859This simply shuts down the write side and signals an EOF condition to the
860the peer.
861
862You can rely on the normal read queue and C<on_eof> handling
863afterwards. This is the cleanest way to close a connection.
864
865=cut
866
867sub push_shutdown {
868 my ($self) = @_;
869
870 delete $self->{low_water_mark};
871 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
872}
650 873
651=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 874=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
652 875
653This function (not method) lets you add your own types to C<push_write>. 876This function (not method) lets you add your own types to C<push_write>.
654Whenever the given C<type> is used, C<push_write> will invoke the code 877Whenever the given C<type> is used, C<push_write> will invoke the code
748=cut 971=cut
749 972
750sub _drain_rbuf { 973sub _drain_rbuf {
751 my ($self) = @_; 974 my ($self) = @_;
752 975
976 # avoid recursion
977 return if exists $self->{_skip_drain_rbuf};
753 local $self->{_in_drain} = 1; 978 local $self->{_skip_drain_rbuf} = 1;
754 979
755 if ( 980 if (
756 defined $self->{rbuf_max} 981 defined $self->{rbuf_max}
757 && $self->{rbuf_max} < length $self->{rbuf} 982 && $self->{rbuf_max} < length $self->{rbuf}
758 ) { 983 ) {
759 $self->_error (&Errno::ENOSPC, 1), return; 984 $self->_error (Errno::ENOSPC, 1), return;
760 } 985 }
761 986
762 while () { 987 while () {
988 # we need to use a separate tls read buffer, as we must not receive data while
989 # we are draining the buffer, and this can only happen with TLS.
990 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf};
991
763 my $len = length $self->{rbuf}; 992 my $len = length $self->{rbuf};
764 993
765 if (my $cb = shift @{ $self->{_queue} }) { 994 if (my $cb = shift @{ $self->{_queue} }) {
766 unless ($cb->($self)) { 995 unless ($cb->($self)) {
767 if ($self->{_eof}) { 996 if ($self->{_eof}) {
768 # no progress can be made (not enough data and no data forthcoming) 997 # no progress can be made (not enough data and no data forthcoming)
769 $self->_error (&Errno::EPIPE, 1), return; 998 $self->_error (Errno::EPIPE, 1), return;
770 } 999 }
771 1000
772 unshift @{ $self->{_queue} }, $cb; 1001 unshift @{ $self->{_queue} }, $cb;
773 last; 1002 last;
774 } 1003 }
782 && !@{ $self->{_queue} } # and the queue is still empty 1011 && !@{ $self->{_queue} } # and the queue is still empty
783 && $self->{on_read} # but we still have on_read 1012 && $self->{on_read} # but we still have on_read
784 ) { 1013 ) {
785 # no further data will arrive 1014 # no further data will arrive
786 # so no progress can be made 1015 # so no progress can be made
787 $self->_error (&Errno::EPIPE, 1), return 1016 $self->_error (Errno::EPIPE, 1), return
788 if $self->{_eof}; 1017 if $self->{_eof};
789 1018
790 last; # more data might arrive 1019 last; # more data might arrive
791 } 1020 }
792 } else { 1021 } else {
798 1027
799 if ($self->{_eof}) { 1028 if ($self->{_eof}) {
800 if ($self->{on_eof}) { 1029 if ($self->{on_eof}) {
801 $self->{on_eof}($self) 1030 $self->{on_eof}($self)
802 } else { 1031 } else {
803 $self->_error (0, 1); 1032 $self->_error (0, 1, "Unexpected end-of-file");
804 } 1033 }
805 } 1034 }
806 1035
807 # may need to restart read watcher 1036 # may need to restart read watcher
808 unless ($self->{_rw}) { 1037 unless ($self->{_rw}) {
821 1050
822sub on_read { 1051sub on_read {
823 my ($self, $cb) = @_; 1052 my ($self, $cb) = @_;
824 1053
825 $self->{on_read} = $cb; 1054 $self->{on_read} = $cb;
826 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1055 $self->_drain_rbuf if $cb;
827} 1056}
828 1057
829=item $handle->rbuf 1058=item $handle->rbuf
830 1059
831Returns the read buffer (as a modifiable lvalue). 1060Returns the read buffer (as a modifiable lvalue).
832 1061
833You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1062You can access the read buffer directly as the C<< ->{rbuf} >>
834you want. 1063member, if you want. However, the only operation allowed on the
1064read buffer (apart from looking at it) is removing data from its
1065beginning. Otherwise modifying or appending to it is not allowed and will
1066lead to hard-to-track-down bugs.
835 1067
836NOTE: The read buffer should only be used or modified if the C<on_read>, 1068NOTE: The read buffer should only be used or modified if the C<on_read>,
837C<push_read> or C<unshift_read> methods are used. The other read methods 1069C<push_read> or C<unshift_read> methods are used. The other read methods
838automatically manage the read buffer. 1070automatically manage the read buffer.
839 1071
880 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1112 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
881 ->($self, $cb, @_); 1113 ->($self, $cb, @_);
882 } 1114 }
883 1115
884 push @{ $self->{_queue} }, $cb; 1116 push @{ $self->{_queue} }, $cb;
885 $self->_drain_rbuf unless $self->{_in_drain}; 1117 $self->_drain_rbuf;
886} 1118}
887 1119
888sub unshift_read { 1120sub unshift_read {
889 my $self = shift; 1121 my $self = shift;
890 my $cb = pop; 1122 my $cb = pop;
896 ->($self, $cb, @_); 1128 ->($self, $cb, @_);
897 } 1129 }
898 1130
899 1131
900 unshift @{ $self->{_queue} }, $cb; 1132 unshift @{ $self->{_queue} }, $cb;
901 $self->_drain_rbuf unless $self->{_in_drain}; 1133 $self->_drain_rbuf;
902} 1134}
903 1135
904=item $handle->push_read (type => @args, $cb) 1136=item $handle->push_read (type => @args, $cb)
905 1137
906=item $handle->unshift_read (type => @args, $cb) 1138=item $handle->unshift_read (type => @args, $cb)
1039 return 1; 1271 return 1;
1040 } 1272 }
1041 1273
1042 # reject 1274 # reject
1043 if ($reject && $$rbuf =~ $reject) { 1275 if ($reject && $$rbuf =~ $reject) {
1044 $self->_error (&Errno::EBADMSG); 1276 $self->_error (Errno::EBADMSG);
1045 } 1277 }
1046 1278
1047 # skip 1279 # skip
1048 if ($skip && $$rbuf =~ $skip) { 1280 if ($skip && $$rbuf =~ $skip) {
1049 $data .= substr $$rbuf, 0, $+[0], ""; 1281 $data .= substr $$rbuf, 0, $+[0], "";
1065 my ($self, $cb) = @_; 1297 my ($self, $cb) = @_;
1066 1298
1067 sub { 1299 sub {
1068 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1300 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1069 if ($_[0]{rbuf} =~ /[^0-9]/) { 1301 if ($_[0]{rbuf} =~ /[^0-9]/) {
1070 $self->_error (&Errno::EBADMSG); 1302 $self->_error (Errno::EBADMSG);
1071 } 1303 }
1072 return; 1304 return;
1073 } 1305 }
1074 1306
1075 my $len = $1; 1307 my $len = $1;
1078 my $string = $_[1]; 1310 my $string = $_[1];
1079 $_[0]->unshift_read (chunk => 1, sub { 1311 $_[0]->unshift_read (chunk => 1, sub {
1080 if ($_[1] eq ",") { 1312 if ($_[1] eq ",") {
1081 $cb->($_[0], $string); 1313 $cb->($_[0], $string);
1082 } else { 1314 } else {
1083 $self->_error (&Errno::EBADMSG); 1315 $self->_error (Errno::EBADMSG);
1084 } 1316 }
1085 }); 1317 });
1086 }); 1318 });
1087 1319
1088 1 1320 1
1135 } 1367 }
1136}; 1368};
1137 1369
1138=item json => $cb->($handle, $hash_or_arrayref) 1370=item json => $cb->($handle, $hash_or_arrayref)
1139 1371
1140Reads a JSON object or array, decodes it and passes it to the callback. 1372Reads a JSON object or array, decodes it and passes it to the
1373callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1141 1374
1142If a C<json> object was passed to the constructor, then that will be used 1375If a C<json> object was passed to the constructor, then that will be used
1143for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1376for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1144 1377
1145This read type uses the incremental parser available with JSON version 1378This read type uses the incremental parser available with JSON version
1154=cut 1387=cut
1155 1388
1156register_read_type json => sub { 1389register_read_type json => sub {
1157 my ($self, $cb) = @_; 1390 my ($self, $cb) = @_;
1158 1391
1159 require JSON; 1392 my $json = $self->{json} ||=
1393 eval { require JSON::XS; JSON::XS->new->utf8 }
1394 || do { require JSON; JSON->new->utf8 };
1160 1395
1161 my $data; 1396 my $data;
1162 my $rbuf = \$self->{rbuf}; 1397 my $rbuf = \$self->{rbuf};
1163 1398
1164 my $json = $self->{json} ||= JSON->new->utf8;
1165
1166 sub { 1399 sub {
1167 my $ref = $json->incr_parse ($self->{rbuf}); 1400 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1168 1401
1169 if ($ref) { 1402 if ($ref) {
1170 $self->{rbuf} = $json->incr_text; 1403 $self->{rbuf} = $json->incr_text;
1171 $json->incr_text = ""; 1404 $json->incr_text = "";
1172 $cb->($self, $ref); 1405 $cb->($self, $ref);
1173 1406
1174 1 1407 1
1408 } elsif ($@) {
1409 # error case
1410 $json->incr_skip;
1411
1412 $self->{rbuf} = $json->incr_text;
1413 $json->incr_text = "";
1414
1415 $self->_error (Errno::EBADMSG);
1416
1417 ()
1175 } else { 1418 } else {
1176 $self->{rbuf} = ""; 1419 $self->{rbuf} = "";
1420
1177 () 1421 ()
1178 } 1422 }
1179 } 1423 }
1180}; 1424};
1181 1425
1213 # read remaining chunk 1457 # read remaining chunk
1214 $_[0]->unshift_read (chunk => $len, sub { 1458 $_[0]->unshift_read (chunk => $len, sub {
1215 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1459 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1216 $cb->($_[0], $ref); 1460 $cb->($_[0], $ref);
1217 } else { 1461 } else {
1218 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1219 } 1463 }
1220 }); 1464 });
1221 } 1465 }
1222 1466
1223 1 1467 1
1287 if ($self->{tls}) { 1531 if ($self->{tls}) {
1288 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1532 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1289 1533
1290 &_dotls ($self); 1534 &_dotls ($self);
1291 } else { 1535 } else {
1292 $self->_drain_rbuf unless $self->{_in_drain}; 1536 $self->_drain_rbuf;
1293 } 1537 }
1294 1538
1295 } elsif (defined $len) { 1539 } elsif (defined $len) {
1296 delete $self->{_rw}; 1540 delete $self->{_rw};
1297 $self->{_eof} = 1; 1541 $self->{_eof} = 1;
1298 $self->_drain_rbuf unless $self->{_in_drain}; 1542 $self->_drain_rbuf;
1299 1543
1300 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1544 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1301 return $self->_error ($!, 1); 1545 return $self->_error ($!, 1);
1302 } 1546 }
1303 }); 1547 });
1304 } 1548 }
1305} 1549}
1306 1550
1551our $ERROR_SYSCALL;
1552our $ERROR_WANT_READ;
1553
1554sub _tls_error {
1555 my ($self, $err) = @_;
1556
1557 return $self->_error ($!, 1)
1558 if $err == Net::SSLeay::ERROR_SYSCALL ();
1559
1560 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1561
1562 # reduce error string to look less scary
1563 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1564
1565 if ($self->{_on_starttls}) {
1566 (delete $self->{_on_starttls})->($self, undef, $err);
1567 &_freetls;
1568 } else {
1569 &_freetls;
1570 $self->_error (Errno::EPROTO, 1, $err);
1571 }
1572}
1573
1307# poll the write BIO and send the data if applicable 1574# poll the write BIO and send the data if applicable
1575# also decode read data if possible
1576# this is basiclaly our TLS state machine
1577# more efficient implementations are possible with openssl,
1578# but not with the buggy and incomplete Net::SSLeay.
1308sub _dotls { 1579sub _dotls {
1309 my ($self) = @_; 1580 my ($self) = @_;
1310 1581
1311 my $tmp; 1582 my $tmp;
1312 1583
1313 if (length $self->{_tls_wbuf}) { 1584 if (length $self->{_tls_wbuf}) {
1314 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1585 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1315 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1586 substr $self->{_tls_wbuf}, 0, $tmp, "";
1316 } 1587 }
1588
1589 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1590 return $self->_tls_error ($tmp)
1591 if $tmp != $ERROR_WANT_READ
1592 && ($tmp != $ERROR_SYSCALL || $!);
1317 } 1593 }
1318 1594
1319 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1595 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1320 unless (length $tmp) { 1596 unless (length $tmp) {
1321 # let's treat SSL-eof as we treat normal EOF 1597 $self->{_on_starttls}
1322 delete $self->{_rw}; 1598 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1323 $self->{_eof} = 1;
1324 &_freetls; 1599 &_freetls;
1600
1601 if ($self->{on_stoptls}) {
1602 $self->{on_stoptls}($self);
1603 return;
1604 } else {
1605 # let's treat SSL-eof as we treat normal EOF
1606 delete $self->{_rw};
1607 $self->{_eof} = 1;
1608 }
1325 } 1609 }
1326 1610
1327 $self->{rbuf} .= $tmp; 1611 $self->{_tls_rbuf} .= $tmp;
1328 $self->_drain_rbuf unless $self->{_in_drain}; 1612 $self->_drain_rbuf;
1329 $self->{tls} or return; # tls session might have gone away in callback 1613 $self->{tls} or return; # tls session might have gone away in callback
1330 } 1614 }
1331 1615
1332 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1616 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1333
1334 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1335 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1336 return $self->_error ($!, 1); 1617 return $self->_tls_error ($tmp)
1337 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1618 if $tmp != $ERROR_WANT_READ
1338 return $self->_error (&Errno::EIO, 1); 1619 && ($tmp != $ERROR_SYSCALL || $!);
1339 }
1340
1341 # all other errors are fine for our purposes
1342 }
1343 1620
1344 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1621 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1345 $self->{wbuf} .= $tmp; 1622 $self->{wbuf} .= $tmp;
1346 $self->_drain_wbuf; 1623 $self->_drain_wbuf;
1347 } 1624 }
1625
1626 $self->{_on_starttls}
1627 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1628 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1348} 1629}
1349 1630
1350=item $handle->starttls ($tls[, $tls_ctx]) 1631=item $handle->starttls ($tls[, $tls_ctx])
1351 1632
1352Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1633Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1353object is created, you can also do that at a later time by calling 1634object is created, you can also do that at a later time by calling
1354C<starttls>. 1635C<starttls>.
1355 1636
1637Starting TLS is currently an asynchronous operation - when you push some
1638write data and then call C<< ->starttls >> then TLS negotiation will start
1639immediately, after which the queued write data is then sent.
1640
1356The first argument is the same as the C<tls> constructor argument (either 1641The first argument is the same as the C<tls> constructor argument (either
1357C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1642C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1358 1643
1359The second argument is the optional C<Net::SSLeay::CTX> object that is 1644The second argument is the optional C<AnyEvent::TLS> object that is used
1360used when AnyEvent::Handle has to create its own TLS connection object. 1645when AnyEvent::Handle has to create its own TLS connection object, or
1646a hash reference with C<< key => value >> pairs that will be used to
1647construct a new context.
1361 1648
1362The TLS connection object will end up in C<< $handle->{tls} >> after this 1649The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1363call and can be used or changed to your liking. Note that the handshake 1650context in C<< $handle->{tls_ctx} >> after this call and can be used or
1364might have already started when this function returns. 1651changed to your liking. Note that the handshake might have already started
1652when this function returns.
1365 1653
1366If it an error to start a TLS handshake more than once per 1654If it an error to start a TLS handshake more than once per
1367AnyEvent::Handle object (this is due to bugs in OpenSSL). 1655AnyEvent::Handle object (this is due to bugs in OpenSSL).
1368 1656
1369=cut 1657=cut
1370 1658
1659our %TLS_CACHE; #TODO not yet documented, should we?
1660
1371sub starttls { 1661sub starttls {
1372 my ($self, $ssl, $ctx) = @_; 1662 my ($self, $ssl, $ctx) = @_;
1373 1663
1374 require Net::SSLeay; 1664 require Net::SSLeay;
1375 1665
1376 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1666 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object"
1377 if $self->{tls}; 1667 if $self->{tls};
1668
1669 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1670 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1671
1672 $ctx ||= $self->{tls_ctx};
1673
1674 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1675
1676 if ("HASH" eq ref $ctx) {
1677 require AnyEvent::TLS;
1678
1679 if ($ctx->{cache}) {
1680 my $key = $ctx+0;
1681 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1682 } else {
1683 $ctx = new AnyEvent::TLS %$ctx;
1684 }
1685 }
1378 1686
1379 if ($ssl eq "accept") { 1687 $self->{tls_ctx} = $ctx || TLS_CTX ();
1380 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1688 $self->{tls} = $ssl = $self->{tls_ctx}->_get_session ($ssl, $self, $self->{peername});
1381 Net::SSLeay::set_accept_state ($ssl);
1382 } elsif ($ssl eq "connect") {
1383 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1384 Net::SSLeay::set_connect_state ($ssl);
1385 }
1386
1387 $self->{tls} = $ssl;
1388 1689
1389 # basically, this is deep magic (because SSL_read should have the same issues) 1690 # basically, this is deep magic (because SSL_read should have the same issues)
1390 # but the openssl maintainers basically said: "trust us, it just works". 1691 # but the openssl maintainers basically said: "trust us, it just works".
1391 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1692 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1392 # and mismaintained ssleay-module doesn't even offer them). 1693 # and mismaintained ssleay-module doesn't even offer them).
1396 # 1697 #
1397 # note that we do not try to keep the length constant between writes as we are required to do. 1698 # note that we do not try to keep the length constant between writes as we are required to do.
1398 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1699 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1399 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1700 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1400 # have identity issues in that area. 1701 # have identity issues in that area.
1401 Net::SSLeay::CTX_set_mode ($self->{tls}, 1702# Net::SSLeay::CTX_set_mode ($ssl,
1402 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1703# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1403 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1704# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1705 Net::SSLeay::CTX_set_mode ($ssl, 1|2);
1404 1706
1405 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1707 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1406 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1708 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1407 1709
1408 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1710 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1711
1712 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1713 if $self->{on_starttls};
1409 1714
1410 &_dotls; # need to trigger the initial handshake 1715 &_dotls; # need to trigger the initial handshake
1411 $self->start_read; # make sure we actually do read 1716 $self->start_read; # make sure we actually do read
1412} 1717}
1413 1718
1426 if ($self->{tls}) { 1731 if ($self->{tls}) {
1427 Net::SSLeay::shutdown ($self->{tls}); 1732 Net::SSLeay::shutdown ($self->{tls});
1428 1733
1429 &_dotls; 1734 &_dotls;
1430 1735
1431 # we don't give a shit. no, we do, but we can't. no... 1736# # we don't give a shit. no, we do, but we can't. no...#d#
1432 # we, we... have to use openssl :/ 1737# # we, we... have to use openssl :/#d#
1433 &_freetls; 1738# &_freetls;#d#
1434 } 1739 }
1435} 1740}
1436 1741
1437sub _freetls { 1742sub _freetls {
1438 my ($self) = @_; 1743 my ($self) = @_;
1439 1744
1440 return unless $self->{tls}; 1745 return unless $self->{tls};
1441 1746
1442 Net::SSLeay::free (delete $self->{tls}); 1747 $self->{tls_ctx}->_put_session (delete $self->{tls});
1443 1748
1444 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1749 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1445} 1750}
1446 1751
1447sub DESTROY { 1752sub DESTROY {
1448 my $self = shift; 1753 my ($self) = @_;
1449 1754
1450 &_freetls; 1755 &_freetls;
1451 1756
1452 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1757 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1453 1758
1454 if ($linger && length $self->{wbuf}) { 1759 if ($linger && length $self->{wbuf} && $self->{fh}) {
1455 my $fh = delete $self->{fh}; 1760 my $fh = delete $self->{fh};
1456 my $wbuf = delete $self->{wbuf}; 1761 my $wbuf = delete $self->{wbuf};
1457 1762
1458 my @linger; 1763 my @linger;
1459 1764
1473} 1778}
1474 1779
1475=item $handle->destroy 1780=item $handle->destroy
1476 1781
1477Shuts down the handle object as much as possible - this call ensures that 1782Shuts down the handle object as much as possible - this call ensures that
1478no further callbacks will be invoked and resources will be freed as much 1783no further callbacks will be invoked and as many resources as possible
1479as possible. You must not call any methods on the object afterwards. 1784will be freed. You must not call any methods on the object afterwards.
1480 1785
1481Normally, you can just "forget" any references to an AnyEvent::Handle 1786Normally, you can just "forget" any references to an AnyEvent::Handle
1482object and it will simply shut down. This works in fatal error and EOF 1787object and it will simply shut down. This works in fatal error and EOF
1483callbacks, as well as code outside. It does I<NOT> work in a read or write 1788callbacks, as well as code outside. It does I<NOT> work in a read or write
1484callback, so when you want to destroy the AnyEvent::Handle object from 1789callback, so when you want to destroy the AnyEvent::Handle object from
1485within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1790within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1486that case. 1791that case.
1487 1792
1793Destroying the handle object in this way has the advantage that callbacks
1794will be removed as well, so if those are the only reference holders (as
1795is common), then one doesn't need to do anything special to break any
1796reference cycles.
1797
1488The handle might still linger in the background and write out remaining 1798The handle might still linger in the background and write out remaining
1489data, as specified by the C<linger> option, however. 1799data, as specified by the C<linger> option, however.
1490 1800
1491=cut 1801=cut
1492 1802
1497 %$self = (); 1807 %$self = ();
1498} 1808}
1499 1809
1500=item AnyEvent::Handle::TLS_CTX 1810=item AnyEvent::Handle::TLS_CTX
1501 1811
1502This function creates and returns the Net::SSLeay::CTX object used by 1812This function creates and returns the AnyEvent::TLS object used by default
1503default for TLS mode. 1813for TLS mode.
1504 1814
1505The context is created like this: 1815The context is created by calling L<AnyEvent::TLS> without any arguments.
1506
1507 Net::SSLeay::load_error_strings;
1508 Net::SSLeay::SSLeay_add_ssl_algorithms;
1509 Net::SSLeay::randomize;
1510
1511 my $CTX = Net::SSLeay::CTX_new;
1512
1513 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1514 1816
1515=cut 1817=cut
1516 1818
1517our $TLS_CTX; 1819our $TLS_CTX;
1518 1820
1519sub TLS_CTX() { 1821sub TLS_CTX() {
1520 $TLS_CTX || do { 1822 $TLS_CTX ||= do {
1521 require Net::SSLeay; 1823 require AnyEvent::TLS;
1522 1824
1523 Net::SSLeay::load_error_strings (); 1825 new AnyEvent::TLS
1524 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1525 Net::SSLeay::randomize ();
1526
1527 $TLS_CTX = Net::SSLeay::CTX_new ();
1528
1529 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1530
1531 $TLS_CTX
1532 } 1826 }
1533} 1827}
1534 1828
1535=back 1829=back
1536 1830
1575 1869
1576 $handle->on_read (sub { }); 1870 $handle->on_read (sub { });
1577 $handle->on_eof (undef); 1871 $handle->on_eof (undef);
1578 $handle->on_error (sub { 1872 $handle->on_error (sub {
1579 my $data = delete $_[0]{rbuf}; 1873 my $data = delete $_[0]{rbuf};
1580 undef $handle;
1581 }); 1874 });
1582 1875
1583The reason to use C<on_error> is that TCP connections, due to latencies 1876The reason to use C<on_error> is that TCP connections, due to latencies
1584and packets loss, might get closed quite violently with an error, when in 1877and packets loss, might get closed quite violently with an error, when in
1585fact, all data has been received. 1878fact, all data has been received.
1601 $handle->on_drain (sub { 1894 $handle->on_drain (sub {
1602 warn "all data submitted to the kernel\n"; 1895 warn "all data submitted to the kernel\n";
1603 undef $handle; 1896 undef $handle;
1604 }); 1897 });
1605 1898
1899If you just want to queue some data and then signal EOF to the other side,
1900consider using C<< ->push_shutdown >> instead.
1901
1902=item I want to contact a TLS/SSL server, I don't care about security.
1903
1904If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1905simply connect to it and then create the AnyEvent::Handle with the C<tls>
1906parameter:
1907
1908 tcp_connect $host, $port, sub {
1909 my ($fh) = @_;
1910
1911 my $handle = new AnyEvent::Handle
1912 fh => $fh,
1913 tls => "connect",
1914 on_error => sub { ... };
1915
1916 $handle->push_write (...);
1917 };
1918
1919=item I want to contact a TLS/SSL server, I do care about security.
1920
1921Then you should additionally enable certificate verification, including
1922peername verification, if the protocol you use supports it (see
1923L<AnyEvent::TLS>, C<verify_peername>).
1924
1925E.g. for HTTPS:
1926
1927 tcp_connect $host, $port, sub {
1928 my ($fh) = @_;
1929
1930 my $handle = new AnyEvent::Handle
1931 fh => $fh,
1932 peername => $host,
1933 tls => "connect",
1934 tls_ctx => { verify => 1, verify_peername => "https" },
1935 ...
1936
1937Note that you must specify the hostname you connected to (or whatever
1938"peername" the protocol needs) as the C<peername> argument, otherwise no
1939peername verification will be done.
1940
1941The above will use the system-dependent default set of trusted CA
1942certificates. If you want to check against a specific CA, add the
1943C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1944
1945 tls_ctx => {
1946 verify => 1,
1947 verify_peername => "https",
1948 ca_file => "my-ca-cert.pem",
1949 },
1950
1951=item I want to create a TLS/SSL server, how do I do that?
1952
1953Well, you first need to get a server certificate and key. You have
1954three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1955self-signed certificate (cheap. check the search engine of your choice,
1956there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1957nice program for that purpose).
1958
1959Then create a file with your private key (in PEM format, see
1960L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1961file should then look like this:
1962
1963 -----BEGIN RSA PRIVATE KEY-----
1964 ...header data
1965 ... lots of base64'y-stuff
1966 -----END RSA PRIVATE KEY-----
1967
1968 -----BEGIN CERTIFICATE-----
1969 ... lots of base64'y-stuff
1970 -----END CERTIFICATE-----
1971
1972The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
1973specify this file as C<cert_file>:
1974
1975 tcp_server undef, $port, sub {
1976 my ($fh) = @_;
1977
1978 my $handle = new AnyEvent::Handle
1979 fh => $fh,
1980 tls => "accept",
1981 tls_ctx => { cert_file => "my-server-keycert.pem" },
1982 ...
1983
1984When you have intermediate CA certificates that your clients might not
1985know about, just append them to the C<cert_file>.
1986
1606=back 1987=back
1607 1988
1608 1989
1609=head1 SUBCLASSING AnyEvent::Handle 1990=head1 SUBCLASSING AnyEvent::Handle
1610 1991

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines