ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.116 by root, Tue Feb 10 14:07:43 2009 UTC vs.
Revision 1.170 by root, Sat Aug 1 09:14:54 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.331; 16our $VERSION = 4.9;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
28 my ($hdl, $fatal, $msg) = @_;
29 warn "got error $msg\n";
30 $hdl->destroy;
32 $cv->send; 31 $cv->send;
33 },
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
98=item on_prepare => $cb->($handle)
99
100This (rarely used) callback is called before a new connection is
101attempted, but after the file handle has been created. It could be used to
102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
105
106The return value of this callback should be the connect timeout value in
107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108timeout is to be used).
109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
136=item on_error => $cb->($handle, $fatal, $message)
137
138This is the error callback, which is called when, well, some error
139occured, such as not being able to resolve the hostname, failure to
140connect or a read error.
141
142Some errors are fatal (which is indicated by C<$fatal> being true). On
143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
155Non-fatal errors can be retried by simply returning, but it is recommended
156to simply ignore this parameter and instead abondon the handle object
157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159
160On callback entrance, the value of C<$!> contains the operating system
161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
163
164While not mandatory, it is I<highly> recommended to set this callback, as
165you will not be notified of errors otherwise. The default simply calls
166C<croak>.
167
168=item on_read => $cb->($handle)
169
170This sets the default read callback, which is called when data arrives
171and no read request is in the queue (unlike read queue callbacks, this
172callback will only be called when at least one octet of data is in the
173read buffer).
174
175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
179
180When an EOF condition is detected then AnyEvent::Handle will first try to
181feed all the remaining data to the queued callbacks and C<on_read> before
182calling the C<on_eof> callback. If no progress can be made, then a fatal
183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
82=item on_eof => $cb->($handle) 190=item on_eof => $cb->($handle)
83 191
84Set the callback to be called when an end-of-file condition is detected, 192Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 193i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
87 197
88For sockets, this just means that the other side has stopped sending data, 198For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 199you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 200callback and continue writing data, as only the read part has been shut
91down. 201down.
92 202
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 203If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 204set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly.
133
134When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>).
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
238help. 305help.
239 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
240=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
241 318
242When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
243AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
244established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
245 325
246TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
247automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
248have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
249to add the dependency yourself. 329to add the dependency yourself.
253mode. 333mode.
254 334
255You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
256to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
257or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
258AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
259 344
260B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
261passing in the wrong integer will lead to certain crash. This most often 346passing in the wrong integer will lead to certain crash. This most often
262happens when one uses a stylish C<< tls => 1 >> and is surprised about the 347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
263segmentation fault. 348segmentation fault.
264 349
265See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
266 351
267=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
268 353
269Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
270(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
271missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
272 393
273=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
274 395
275This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
276 397
285 406
286=cut 407=cut
287 408
288sub new { 409sub new {
289 my $class = shift; 410 my $class = shift;
290
291 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
292 412
293 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
294 476
295 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
296 483
297 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
298 if $self->{tls}; 485 if $self->{tls};
299 486
300 $self->{_activity} = AnyEvent->now;
301 $self->_timeout;
302
303 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
304 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
305 488
306 $self->start_read 489 $self->start_read
307 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
308 491
309 $self 492 $self->_drain_wbuf;
310} 493}
311 494
312sub _shutdown { 495#sub _shutdown {
313 my ($self) = @_; 496# my ($self) = @_;
314 497#
315 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
316 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
317 delete $self->{_ww}; 500#
318 delete $self->{fh};
319
320 &_freetls; 501# &_freetls;
321 502#}
322 delete $self->{on_read};
323 delete $self->{_queue};
324}
325 503
326sub _error { 504sub _error {
327 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
328
329 $self->_shutdown
330 if $fatal;
331 506
332 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
333 509
334 if ($self->{on_error}) { 510 if ($self->{on_error}) {
335 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
512 $self->destroy if $fatal;
336 } elsif ($self->{fh}) { 513 } elsif ($self->{fh}) {
514 $self->destroy;
337 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
338 } 516 }
339} 517}
340 518
341=item $fh = $handle->fh 519=item $fh = $handle->fh
342 520
399sub no_delay { 577sub no_delay {
400 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
401 579
402 eval { 580 eval {
403 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
404 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
405 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
406} 615}
407 616
408############################################################################# 617#############################################################################
409 618
410=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
423# reset the timeout watcher, as neccessary 632# reset the timeout watcher, as neccessary
424# also check for time-outs 633# also check for time-outs
425sub _timeout { 634sub _timeout {
426 my ($self) = @_; 635 my ($self) = @_;
427 636
428 if ($self->{timeout}) { 637 if ($self->{timeout} && $self->{fh}) {
429 my $NOW = AnyEvent->now; 638 my $NOW = AnyEvent->now;
430 639
431 # when would the timeout trigger? 640 # when would the timeout trigger?
432 my $after = $self->{_activity} + $self->{timeout} - $NOW; 641 my $after = $self->{_activity} + $self->{timeout} - $NOW;
433 642
436 $self->{_activity} = $NOW; 645 $self->{_activity} = $NOW;
437 646
438 if ($self->{on_timeout}) { 647 if ($self->{on_timeout}) {
439 $self->{on_timeout}($self); 648 $self->{on_timeout}($self);
440 } else { 649 } else {
441 $self->_error (&Errno::ETIMEDOUT); 650 $self->_error (Errno::ETIMEDOUT);
442 } 651 }
443 652
444 # callback could have changed timeout value, optimise 653 # callback could have changed timeout value, optimise
445 return unless $self->{timeout}; 654 return unless $self->{timeout};
446 655
509 Scalar::Util::weaken $self; 718 Scalar::Util::weaken $self;
510 719
511 my $cb = sub { 720 my $cb = sub {
512 my $len = syswrite $self->{fh}, $self->{wbuf}; 721 my $len = syswrite $self->{fh}, $self->{wbuf};
513 722
514 if ($len >= 0) { 723 if (defined $len) {
515 substr $self->{wbuf}, 0, $len, ""; 724 substr $self->{wbuf}, 0, $len, "";
516 725
517 $self->{_activity} = AnyEvent->now; 726 $self->{_activity} = AnyEvent->now;
518 727
519 $self->{on_drain}($self) 728 $self->{on_drain}($self)
551 ->($self, @_); 760 ->($self, @_);
552 } 761 }
553 762
554 if ($self->{tls}) { 763 if ($self->{tls}) {
555 $self->{_tls_wbuf} .= $_[0]; 764 $self->{_tls_wbuf} .= $_[0];
556 765 &_dotls ($self) if $self->{fh};
557 &_dotls ($self);
558 } else { 766 } else {
559 $self->{wbuf} .= $_[0]; 767 $self->{wbuf} .= $_[0];
560 $self->_drain_wbuf; 768 $self->_drain_wbuf if $self->{fh};
561 } 769 }
562} 770}
563 771
564=item $handle->push_write (type => @args) 772=item $handle->push_write (type => @args)
565 773
654 862
655 pack "w/a*", Storable::nfreeze ($ref) 863 pack "w/a*", Storable::nfreeze ($ref)
656}; 864};
657 865
658=back 866=back
867
868=item $handle->push_shutdown
869
870Sometimes you know you want to close the socket after writing your data
871before it was actually written. One way to do that is to replace your
872C<on_drain> handler by a callback that shuts down the socket (and set
873C<low_water_mark> to C<0>). This method is a shorthand for just that, and
874replaces the C<on_drain> callback with:
875
876 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
877
878This simply shuts down the write side and signals an EOF condition to the
879the peer.
880
881You can rely on the normal read queue and C<on_eof> handling
882afterwards. This is the cleanest way to close a connection.
883
884=cut
885
886sub push_shutdown {
887 my ($self) = @_;
888
889 delete $self->{low_water_mark};
890 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
891}
659 892
660=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 893=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
661 894
662This function (not method) lets you add your own types to C<push_write>. 895This function (not method) lets you add your own types to C<push_write>.
663Whenever the given C<type> is used, C<push_write> will invoke the code 896Whenever the given C<type> is used, C<push_write> will invoke the code
757=cut 990=cut
758 991
759sub _drain_rbuf { 992sub _drain_rbuf {
760 my ($self) = @_; 993 my ($self) = @_;
761 994
995 # avoid recursion
996 return if $self->{_skip_drain_rbuf};
762 local $self->{_in_drain} = 1; 997 local $self->{_skip_drain_rbuf} = 1;
763
764 if (
765 defined $self->{rbuf_max}
766 && $self->{rbuf_max} < length $self->{rbuf}
767 ) {
768 $self->_error (&Errno::ENOSPC, 1), return;
769 }
770 998
771 while () { 999 while () {
1000 # we need to use a separate tls read buffer, as we must not receive data while
1001 # we are draining the buffer, and this can only happen with TLS.
772 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf}; 1002 $self->{rbuf} .= delete $self->{_tls_rbuf}
1003 if exists $self->{_tls_rbuf};
773 1004
774 my $len = length $self->{rbuf}; 1005 my $len = length $self->{rbuf};
775 1006
776 if (my $cb = shift @{ $self->{_queue} }) { 1007 if (my $cb = shift @{ $self->{_queue} }) {
777 unless ($cb->($self)) { 1008 unless ($cb->($self)) {
778 if ($self->{_eof}) { 1009 # no progress can be made
779 # no progress can be made (not enough data and no data forthcoming) 1010 # (not enough data and no data forthcoming)
780 $self->_error (&Errno::EPIPE, 1), return; 1011 $self->_error (Errno::EPIPE, 1), return
781 } 1012 if $self->{_eof};
782 1013
783 unshift @{ $self->{_queue} }, $cb; 1014 unshift @{ $self->{_queue} }, $cb;
784 last; 1015 last;
785 } 1016 }
786 } elsif ($self->{on_read}) { 1017 } elsif ($self->{on_read}) {
793 && !@{ $self->{_queue} } # and the queue is still empty 1024 && !@{ $self->{_queue} } # and the queue is still empty
794 && $self->{on_read} # but we still have on_read 1025 && $self->{on_read} # but we still have on_read
795 ) { 1026 ) {
796 # no further data will arrive 1027 # no further data will arrive
797 # so no progress can be made 1028 # so no progress can be made
798 $self->_error (&Errno::EPIPE, 1), return 1029 $self->_error (Errno::EPIPE, 1), return
799 if $self->{_eof}; 1030 if $self->{_eof};
800 1031
801 last; # more data might arrive 1032 last; # more data might arrive
802 } 1033 }
803 } else { 1034 } else {
806 last; 1037 last;
807 } 1038 }
808 } 1039 }
809 1040
810 if ($self->{_eof}) { 1041 if ($self->{_eof}) {
811 if ($self->{on_eof}) { 1042 $self->{on_eof}
812 $self->{on_eof}($self) 1043 ? $self->{on_eof}($self)
813 } else { 1044 : $self->_error (0, 1, "Unexpected end-of-file");
814 $self->_error (0, 1); 1045
815 } 1046 return;
1047 }
1048
1049 if (
1050 defined $self->{rbuf_max}
1051 && $self->{rbuf_max} < length $self->{rbuf}
1052 ) {
1053 $self->_error (Errno::ENOSPC, 1), return;
816 } 1054 }
817 1055
818 # may need to restart read watcher 1056 # may need to restart read watcher
819 unless ($self->{_rw}) { 1057 unless ($self->{_rw}) {
820 $self->start_read 1058 $self->start_read
832 1070
833sub on_read { 1071sub on_read {
834 my ($self, $cb) = @_; 1072 my ($self, $cb) = @_;
835 1073
836 $self->{on_read} = $cb; 1074 $self->{on_read} = $cb;
837 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1075 $self->_drain_rbuf if $cb;
838} 1076}
839 1077
840=item $handle->rbuf 1078=item $handle->rbuf
841 1079
842Returns the read buffer (as a modifiable lvalue). 1080Returns the read buffer (as a modifiable lvalue).
843 1081
844You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1082You can access the read buffer directly as the C<< ->{rbuf} >>
845you want. 1083member, if you want. However, the only operation allowed on the
1084read buffer (apart from looking at it) is removing data from its
1085beginning. Otherwise modifying or appending to it is not allowed and will
1086lead to hard-to-track-down bugs.
846 1087
847NOTE: The read buffer should only be used or modified if the C<on_read>, 1088NOTE: The read buffer should only be used or modified if the C<on_read>,
848C<push_read> or C<unshift_read> methods are used. The other read methods 1089C<push_read> or C<unshift_read> methods are used. The other read methods
849automatically manage the read buffer. 1090automatically manage the read buffer.
850 1091
891 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1132 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
892 ->($self, $cb, @_); 1133 ->($self, $cb, @_);
893 } 1134 }
894 1135
895 push @{ $self->{_queue} }, $cb; 1136 push @{ $self->{_queue} }, $cb;
896 $self->_drain_rbuf unless $self->{_in_drain}; 1137 $self->_drain_rbuf;
897} 1138}
898 1139
899sub unshift_read { 1140sub unshift_read {
900 my $self = shift; 1141 my $self = shift;
901 my $cb = pop; 1142 my $cb = pop;
907 ->($self, $cb, @_); 1148 ->($self, $cb, @_);
908 } 1149 }
909 1150
910 1151
911 unshift @{ $self->{_queue} }, $cb; 1152 unshift @{ $self->{_queue} }, $cb;
912 $self->_drain_rbuf unless $self->{_in_drain}; 1153 $self->_drain_rbuf;
913} 1154}
914 1155
915=item $handle->push_read (type => @args, $cb) 1156=item $handle->push_read (type => @args, $cb)
916 1157
917=item $handle->unshift_read (type => @args, $cb) 1158=item $handle->unshift_read (type => @args, $cb)
1050 return 1; 1291 return 1;
1051 } 1292 }
1052 1293
1053 # reject 1294 # reject
1054 if ($reject && $$rbuf =~ $reject) { 1295 if ($reject && $$rbuf =~ $reject) {
1055 $self->_error (&Errno::EBADMSG); 1296 $self->_error (Errno::EBADMSG);
1056 } 1297 }
1057 1298
1058 # skip 1299 # skip
1059 if ($skip && $$rbuf =~ $skip) { 1300 if ($skip && $$rbuf =~ $skip) {
1060 $data .= substr $$rbuf, 0, $+[0], ""; 1301 $data .= substr $$rbuf, 0, $+[0], "";
1076 my ($self, $cb) = @_; 1317 my ($self, $cb) = @_;
1077 1318
1078 sub { 1319 sub {
1079 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1320 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1080 if ($_[0]{rbuf} =~ /[^0-9]/) { 1321 if ($_[0]{rbuf} =~ /[^0-9]/) {
1081 $self->_error (&Errno::EBADMSG); 1322 $self->_error (Errno::EBADMSG);
1082 } 1323 }
1083 return; 1324 return;
1084 } 1325 }
1085 1326
1086 my $len = $1; 1327 my $len = $1;
1089 my $string = $_[1]; 1330 my $string = $_[1];
1090 $_[0]->unshift_read (chunk => 1, sub { 1331 $_[0]->unshift_read (chunk => 1, sub {
1091 if ($_[1] eq ",") { 1332 if ($_[1] eq ",") {
1092 $cb->($_[0], $string); 1333 $cb->($_[0], $string);
1093 } else { 1334 } else {
1094 $self->_error (&Errno::EBADMSG); 1335 $self->_error (Errno::EBADMSG);
1095 } 1336 }
1096 }); 1337 });
1097 }); 1338 });
1098 1339
1099 1 1340 1
1166=cut 1407=cut
1167 1408
1168register_read_type json => sub { 1409register_read_type json => sub {
1169 my ($self, $cb) = @_; 1410 my ($self, $cb) = @_;
1170 1411
1171 require JSON; 1412 my $json = $self->{json} ||=
1413 eval { require JSON::XS; JSON::XS->new->utf8 }
1414 || do { require JSON; JSON->new->utf8 };
1172 1415
1173 my $data; 1416 my $data;
1174 my $rbuf = \$self->{rbuf}; 1417 my $rbuf = \$self->{rbuf};
1175
1176 my $json = $self->{json} ||= JSON->new->utf8;
1177 1418
1178 sub { 1419 sub {
1179 my $ref = eval { $json->incr_parse ($self->{rbuf}) }; 1420 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1180 1421
1181 if ($ref) { 1422 if ($ref) {
1189 $json->incr_skip; 1430 $json->incr_skip;
1190 1431
1191 $self->{rbuf} = $json->incr_text; 1432 $self->{rbuf} = $json->incr_text;
1192 $json->incr_text = ""; 1433 $json->incr_text = "";
1193 1434
1194 $self->_error (&Errno::EBADMSG); 1435 $self->_error (Errno::EBADMSG);
1195 1436
1196 () 1437 ()
1197 } else { 1438 } else {
1198 $self->{rbuf} = ""; 1439 $self->{rbuf} = "";
1199 1440
1236 # read remaining chunk 1477 # read remaining chunk
1237 $_[0]->unshift_read (chunk => $len, sub { 1478 $_[0]->unshift_read (chunk => $len, sub {
1238 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1479 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1239 $cb->($_[0], $ref); 1480 $cb->($_[0], $ref);
1240 } else { 1481 } else {
1241 $self->_error (&Errno::EBADMSG); 1482 $self->_error (Errno::EBADMSG);
1242 } 1483 }
1243 }); 1484 });
1244 } 1485 }
1245 1486
1246 1 1487 1
1310 if ($self->{tls}) { 1551 if ($self->{tls}) {
1311 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1552 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1312 1553
1313 &_dotls ($self); 1554 &_dotls ($self);
1314 } else { 1555 } else {
1315 $self->_drain_rbuf unless $self->{_in_drain}; 1556 $self->_drain_rbuf;
1316 } 1557 }
1317 1558
1318 } elsif (defined $len) { 1559 } elsif (defined $len) {
1319 delete $self->{_rw}; 1560 delete $self->{_rw};
1320 $self->{_eof} = 1; 1561 $self->{_eof} = 1;
1321 $self->_drain_rbuf unless $self->{_in_drain}; 1562 $self->_drain_rbuf;
1322 1563
1323 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1564 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1324 return $self->_error ($!, 1); 1565 return $self->_error ($!, 1);
1325 } 1566 }
1326 }); 1567 });
1327 } 1568 }
1328} 1569}
1329 1570
1571our $ERROR_SYSCALL;
1572our $ERROR_WANT_READ;
1573
1574sub _tls_error {
1575 my ($self, $err) = @_;
1576
1577 return $self->_error ($!, 1)
1578 if $err == Net::SSLeay::ERROR_SYSCALL ();
1579
1580 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1581
1582 # reduce error string to look less scary
1583 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1584
1585 if ($self->{_on_starttls}) {
1586 (delete $self->{_on_starttls})->($self, undef, $err);
1587 &_freetls;
1588 } else {
1589 &_freetls;
1590 $self->_error (Errno::EPROTO, 1, $err);
1591 }
1592}
1593
1330# poll the write BIO and send the data if applicable 1594# poll the write BIO and send the data if applicable
1595# also decode read data if possible
1596# this is basiclaly our TLS state machine
1597# more efficient implementations are possible with openssl,
1598# but not with the buggy and incomplete Net::SSLeay.
1331sub _dotls { 1599sub _dotls {
1332 my ($self) = @_; 1600 my ($self) = @_;
1333 1601
1334 my $tmp; 1602 my $tmp;
1335 1603
1336 if (length $self->{_tls_wbuf}) { 1604 if (length $self->{_tls_wbuf}) {
1337 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1605 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1338 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1606 substr $self->{_tls_wbuf}, 0, $tmp, "";
1339 } 1607 }
1608
1609 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1610 return $self->_tls_error ($tmp)
1611 if $tmp != $ERROR_WANT_READ
1612 && ($tmp != $ERROR_SYSCALL || $!);
1340 } 1613 }
1341 1614
1342 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1615 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1343 unless (length $tmp) { 1616 unless (length $tmp) {
1344 # let's treat SSL-eof as we treat normal EOF 1617 $self->{_on_starttls}
1345 delete $self->{_rw}; 1618 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1346 $self->{_eof} = 1;
1347 &_freetls; 1619 &_freetls;
1620
1621 if ($self->{on_stoptls}) {
1622 $self->{on_stoptls}($self);
1623 return;
1624 } else {
1625 # let's treat SSL-eof as we treat normal EOF
1626 delete $self->{_rw};
1627 $self->{_eof} = 1;
1628 }
1348 } 1629 }
1349 1630
1350 $self->{_tls_rbuf} .= $tmp; 1631 $self->{_tls_rbuf} .= $tmp;
1351 $self->_drain_rbuf unless $self->{_in_drain}; 1632 $self->_drain_rbuf;
1352 $self->{tls} or return; # tls session might have gone away in callback 1633 $self->{tls} or return; # tls session might have gone away in callback
1353 } 1634 }
1354 1635
1355 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1636 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1356
1357 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1358 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1359 return $self->_error ($!, 1); 1637 return $self->_tls_error ($tmp)
1360 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1638 if $tmp != $ERROR_WANT_READ
1361 return $self->_error (&Errno::EIO, 1); 1639 && ($tmp != $ERROR_SYSCALL || $!);
1362 }
1363
1364 # all other errors are fine for our purposes
1365 }
1366 1640
1367 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1641 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1368 $self->{wbuf} .= $tmp; 1642 $self->{wbuf} .= $tmp;
1369 $self->_drain_wbuf; 1643 $self->_drain_wbuf;
1370 } 1644 }
1645
1646 $self->{_on_starttls}
1647 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1648 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1371} 1649}
1372 1650
1373=item $handle->starttls ($tls[, $tls_ctx]) 1651=item $handle->starttls ($tls[, $tls_ctx])
1374 1652
1375Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1653Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1376object is created, you can also do that at a later time by calling 1654object is created, you can also do that at a later time by calling
1377C<starttls>. 1655C<starttls>.
1378 1656
1657Starting TLS is currently an asynchronous operation - when you push some
1658write data and then call C<< ->starttls >> then TLS negotiation will start
1659immediately, after which the queued write data is then sent.
1660
1379The first argument is the same as the C<tls> constructor argument (either 1661The first argument is the same as the C<tls> constructor argument (either
1380C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1662C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1381 1663
1382The second argument is the optional C<Net::SSLeay::CTX> object that is 1664The second argument is the optional C<AnyEvent::TLS> object that is used
1383used when AnyEvent::Handle has to create its own TLS connection object. 1665when AnyEvent::Handle has to create its own TLS connection object, or
1666a hash reference with C<< key => value >> pairs that will be used to
1667construct a new context.
1384 1668
1385The TLS connection object will end up in C<< $handle->{tls} >> after this 1669The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1386call and can be used or changed to your liking. Note that the handshake 1670context in C<< $handle->{tls_ctx} >> after this call and can be used or
1387might have already started when this function returns. 1671changed to your liking. Note that the handshake might have already started
1672when this function returns.
1388 1673
1389If it an error to start a TLS handshake more than once per 1674Due to bugs in OpenSSL, it might or might not be possible to do multiple
1390AnyEvent::Handle object (this is due to bugs in OpenSSL). 1675handshakes on the same stream. Best do not attempt to use the stream after
1676stopping TLS.
1391 1677
1392=cut 1678=cut
1679
1680our %TLS_CACHE; #TODO not yet documented, should we?
1393 1681
1394sub starttls { 1682sub starttls {
1395 my ($self, $ssl, $ctx) = @_; 1683 my ($self, $tls, $ctx) = @_;
1684
1685 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1686 if $self->{tls};
1687
1688 $self->{tls} = $tls;
1689 $self->{tls_ctx} = $ctx if @_ > 2;
1690
1691 return unless $self->{fh};
1396 1692
1397 require Net::SSLeay; 1693 require Net::SSLeay;
1398 1694
1399 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1695 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1696 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1697
1400 if $self->{tls}; 1698 $tls = $self->{tls};
1699 $ctx = $self->{tls_ctx};
1700
1701 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1702
1703 if ("HASH" eq ref $ctx) {
1704 require AnyEvent::TLS;
1705
1706 if ($ctx->{cache}) {
1707 my $key = $ctx+0;
1708 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1709 } else {
1710 $ctx = new AnyEvent::TLS %$ctx;
1711 }
1712 }
1401 1713
1402 if ($ssl eq "accept") { 1714 $self->{tls_ctx} = $ctx || TLS_CTX ();
1403 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1715 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1404 Net::SSLeay::set_accept_state ($ssl);
1405 } elsif ($ssl eq "connect") {
1406 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1407 Net::SSLeay::set_connect_state ($ssl);
1408 }
1409
1410 $self->{tls} = $ssl;
1411 1716
1412 # basically, this is deep magic (because SSL_read should have the same issues) 1717 # basically, this is deep magic (because SSL_read should have the same issues)
1413 # but the openssl maintainers basically said: "trust us, it just works". 1718 # but the openssl maintainers basically said: "trust us, it just works".
1414 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1719 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1415 # and mismaintained ssleay-module doesn't even offer them). 1720 # and mismaintained ssleay-module doesn't even offer them).
1419 # 1724 #
1420 # note that we do not try to keep the length constant between writes as we are required to do. 1725 # note that we do not try to keep the length constant between writes as we are required to do.
1421 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1726 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1422 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1727 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1423 # have identity issues in that area. 1728 # have identity issues in that area.
1424 Net::SSLeay::CTX_set_mode ($self->{tls}, 1729# Net::SSLeay::CTX_set_mode ($ssl,
1425 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1730# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1426 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1731# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1732 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1427 1733
1428 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1734 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1429 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1430 1736
1431 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1737 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1738
1739 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1740 if $self->{on_starttls};
1432 1741
1433 &_dotls; # need to trigger the initial handshake 1742 &_dotls; # need to trigger the initial handshake
1434 $self->start_read; # make sure we actually do read 1743 $self->start_read; # make sure we actually do read
1435} 1744}
1436 1745
1437=item $handle->stoptls 1746=item $handle->stoptls
1438 1747
1439Shuts down the SSL connection - this makes a proper EOF handshake by 1748Shuts down the SSL connection - this makes a proper EOF handshake by
1440sending a close notify to the other side, but since OpenSSL doesn't 1749sending a close notify to the other side, but since OpenSSL doesn't
1441support non-blocking shut downs, it is not possible to re-use the stream 1750support non-blocking shut downs, it is not guarenteed that you can re-use
1442afterwards. 1751the stream afterwards.
1443 1752
1444=cut 1753=cut
1445 1754
1446sub stoptls { 1755sub stoptls {
1447 my ($self) = @_; 1756 my ($self) = @_;
1449 if ($self->{tls}) { 1758 if ($self->{tls}) {
1450 Net::SSLeay::shutdown ($self->{tls}); 1759 Net::SSLeay::shutdown ($self->{tls});
1451 1760
1452 &_dotls; 1761 &_dotls;
1453 1762
1454 # we don't give a shit. no, we do, but we can't. no... 1763# # we don't give a shit. no, we do, but we can't. no...#d#
1455 # we, we... have to use openssl :/ 1764# # we, we... have to use openssl :/#d#
1456 &_freetls; 1765# &_freetls;#d#
1457 } 1766 }
1458} 1767}
1459 1768
1460sub _freetls { 1769sub _freetls {
1461 my ($self) = @_; 1770 my ($self) = @_;
1462 1771
1463 return unless $self->{tls}; 1772 return unless $self->{tls};
1464 1773
1465 Net::SSLeay::free (delete $self->{tls}); 1774 $self->{tls_ctx}->_put_session (delete $self->{tls})
1775 if ref $self->{tls};
1466 1776
1467 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1777 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1468} 1778}
1469 1779
1470sub DESTROY { 1780sub DESTROY {
1471 my $self = shift; 1781 my ($self) = @_;
1472 1782
1473 &_freetls; 1783 &_freetls;
1474 1784
1475 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1785 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1476 1786
1477 if ($linger && length $self->{wbuf}) { 1787 if ($linger && length $self->{wbuf} && $self->{fh}) {
1478 my $fh = delete $self->{fh}; 1788 my $fh = delete $self->{fh};
1479 my $wbuf = delete $self->{wbuf}; 1789 my $wbuf = delete $self->{wbuf};
1480 1790
1481 my @linger; 1791 my @linger;
1482 1792
1496} 1806}
1497 1807
1498=item $handle->destroy 1808=item $handle->destroy
1499 1809
1500Shuts down the handle object as much as possible - this call ensures that 1810Shuts down the handle object as much as possible - this call ensures that
1501no further callbacks will be invoked and resources will be freed as much 1811no further callbacks will be invoked and as many resources as possible
1502as possible. You must not call any methods on the object afterwards. 1812will be freed. Any method you will call on the handle object after
1813destroying it in this way will be silently ignored (and it will return the
1814empty list).
1503 1815
1504Normally, you can just "forget" any references to an AnyEvent::Handle 1816Normally, you can just "forget" any references to an AnyEvent::Handle
1505object and it will simply shut down. This works in fatal error and EOF 1817object and it will simply shut down. This works in fatal error and EOF
1506callbacks, as well as code outside. It does I<NOT> work in a read or write 1818callbacks, as well as code outside. It does I<NOT> work in a read or write
1507callback, so when you want to destroy the AnyEvent::Handle object from 1819callback, so when you want to destroy the AnyEvent::Handle object from
1508within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1820within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1509that case. 1821that case.
1510 1822
1823Destroying the handle object in this way has the advantage that callbacks
1824will be removed as well, so if those are the only reference holders (as
1825is common), then one doesn't need to do anything special to break any
1826reference cycles.
1827
1511The handle might still linger in the background and write out remaining 1828The handle might still linger in the background and write out remaining
1512data, as specified by the C<linger> option, however. 1829data, as specified by the C<linger> option, however.
1513 1830
1514=cut 1831=cut
1515 1832
1516sub destroy { 1833sub destroy {
1517 my ($self) = @_; 1834 my ($self) = @_;
1518 1835
1519 $self->DESTROY; 1836 $self->DESTROY;
1520 %$self = (); 1837 %$self = ();
1838 bless $self, "AnyEvent::Handle::destroyed";
1839}
1840
1841sub AnyEvent::Handle::destroyed::AUTOLOAD {
1842 #nop
1521} 1843}
1522 1844
1523=item AnyEvent::Handle::TLS_CTX 1845=item AnyEvent::Handle::TLS_CTX
1524 1846
1525This function creates and returns the Net::SSLeay::CTX object used by 1847This function creates and returns the AnyEvent::TLS object used by default
1526default for TLS mode. 1848for TLS mode.
1527 1849
1528The context is created like this: 1850The context is created by calling L<AnyEvent::TLS> without any arguments.
1529
1530 Net::SSLeay::load_error_strings;
1531 Net::SSLeay::SSLeay_add_ssl_algorithms;
1532 Net::SSLeay::randomize;
1533
1534 my $CTX = Net::SSLeay::CTX_new;
1535
1536 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1537 1851
1538=cut 1852=cut
1539 1853
1540our $TLS_CTX; 1854our $TLS_CTX;
1541 1855
1542sub TLS_CTX() { 1856sub TLS_CTX() {
1543 $TLS_CTX || do { 1857 $TLS_CTX ||= do {
1544 require Net::SSLeay; 1858 require AnyEvent::TLS;
1545 1859
1546 Net::SSLeay::load_error_strings (); 1860 new AnyEvent::TLS
1547 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1548 Net::SSLeay::randomize ();
1549
1550 $TLS_CTX = Net::SSLeay::CTX_new ();
1551
1552 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1553
1554 $TLS_CTX
1555 } 1861 }
1556} 1862}
1557 1863
1558=back 1864=back
1559 1865
1598 1904
1599 $handle->on_read (sub { }); 1905 $handle->on_read (sub { });
1600 $handle->on_eof (undef); 1906 $handle->on_eof (undef);
1601 $handle->on_error (sub { 1907 $handle->on_error (sub {
1602 my $data = delete $_[0]{rbuf}; 1908 my $data = delete $_[0]{rbuf};
1603 undef $handle;
1604 }); 1909 });
1605 1910
1606The reason to use C<on_error> is that TCP connections, due to latencies 1911The reason to use C<on_error> is that TCP connections, due to latencies
1607and packets loss, might get closed quite violently with an error, when in 1912and packets loss, might get closed quite violently with an error, when in
1608fact, all data has been received. 1913fact, all data has been received.
1624 $handle->on_drain (sub { 1929 $handle->on_drain (sub {
1625 warn "all data submitted to the kernel\n"; 1930 warn "all data submitted to the kernel\n";
1626 undef $handle; 1931 undef $handle;
1627 }); 1932 });
1628 1933
1934If you just want to queue some data and then signal EOF to the other side,
1935consider using C<< ->push_shutdown >> instead.
1936
1937=item I want to contact a TLS/SSL server, I don't care about security.
1938
1939If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1940simply connect to it and then create the AnyEvent::Handle with the C<tls>
1941parameter:
1942
1943 tcp_connect $host, $port, sub {
1944 my ($fh) = @_;
1945
1946 my $handle = new AnyEvent::Handle
1947 fh => $fh,
1948 tls => "connect",
1949 on_error => sub { ... };
1950
1951 $handle->push_write (...);
1952 };
1953
1954=item I want to contact a TLS/SSL server, I do care about security.
1955
1956Then you should additionally enable certificate verification, including
1957peername verification, if the protocol you use supports it (see
1958L<AnyEvent::TLS>, C<verify_peername>).
1959
1960E.g. for HTTPS:
1961
1962 tcp_connect $host, $port, sub {
1963 my ($fh) = @_;
1964
1965 my $handle = new AnyEvent::Handle
1966 fh => $fh,
1967 peername => $host,
1968 tls => "connect",
1969 tls_ctx => { verify => 1, verify_peername => "https" },
1970 ...
1971
1972Note that you must specify the hostname you connected to (or whatever
1973"peername" the protocol needs) as the C<peername> argument, otherwise no
1974peername verification will be done.
1975
1976The above will use the system-dependent default set of trusted CA
1977certificates. If you want to check against a specific CA, add the
1978C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1979
1980 tls_ctx => {
1981 verify => 1,
1982 verify_peername => "https",
1983 ca_file => "my-ca-cert.pem",
1984 },
1985
1986=item I want to create a TLS/SSL server, how do I do that?
1987
1988Well, you first need to get a server certificate and key. You have
1989three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1990self-signed certificate (cheap. check the search engine of your choice,
1991there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1992nice program for that purpose).
1993
1994Then create a file with your private key (in PEM format, see
1995L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1996file should then look like this:
1997
1998 -----BEGIN RSA PRIVATE KEY-----
1999 ...header data
2000 ... lots of base64'y-stuff
2001 -----END RSA PRIVATE KEY-----
2002
2003 -----BEGIN CERTIFICATE-----
2004 ... lots of base64'y-stuff
2005 -----END CERTIFICATE-----
2006
2007The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2008specify this file as C<cert_file>:
2009
2010 tcp_server undef, $port, sub {
2011 my ($fh) = @_;
2012
2013 my $handle = new AnyEvent::Handle
2014 fh => $fh,
2015 tls => "accept",
2016 tls_ctx => { cert_file => "my-server-keycert.pem" },
2017 ...
2018
2019When you have intermediate CA certificates that your clients might not
2020know about, just append them to the C<cert_file>.
2021
1629=back 2022=back
1630 2023
1631 2024
1632=head1 SUBCLASSING AnyEvent::Handle 2025=head1 SUBCLASSING AnyEvent::Handle
1633 2026

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines