ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.129 by root, Mon Jun 29 11:04:09 2009 UTC vs.
Revision 1.174 by root, Sat Aug 8 20:52:06 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.42; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
28 my ($hdl, $fatal, $msg) = @_;
29 warn "got error $msg\n";
30 $hdl->destroy;
32 $cv->send; 31 $cv->send;
33 },
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
98=item on_prepare => $cb->($handle)
99
100This (rarely used) callback is called before a new connection is
101attempted, but after the file handle has been created. It could be used to
102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
105
106The return value of this callback should be the connect timeout value in
107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
108timeout is to be used).
109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
136=item on_error => $cb->($handle, $fatal, $message)
137
138This is the error callback, which is called when, well, some error
139occured, such as not being able to resolve the hostname, failure to
140connect or a read error.
141
142Some errors are fatal (which is indicated by C<$fatal> being true). On
143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
155Non-fatal errors can be retried by simply returning, but it is recommended
156to simply ignore this parameter and instead abondon the handle object
157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
159
160On callback entrance, the value of C<$!> contains the operating system
161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
163
164While not mandatory, it is I<highly> recommended to set this callback, as
165you will not be notified of errors otherwise. The default simply calls
166C<croak>.
167
168=item on_read => $cb->($handle)
169
170This sets the default read callback, which is called when data arrives
171and no read request is in the queue (unlike read queue callbacks, this
172callback will only be called when at least one octet of data is in the
173read buffer).
174
175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
179
180When an EOF condition is detected then AnyEvent::Handle will first try to
181feed all the remaining data to the queued callbacks and C<on_read> before
182calling the C<on_eof> callback. If no progress can be made, then a fatal
183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
82=item on_eof => $cb->($handle) 190=item on_eof => $cb->($handle)
83 191
84Set the callback to be called when an end-of-file condition is detected, 192Set the callback to be called when an end-of-file condition is detected,
85i.e. in the case of a socket, when the other side has closed the 193i.e. in the case of a socket, when the other side has closed the
86connection cleanly. 194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
87 197
88For sockets, this just means that the other side has stopped sending data, 198For sockets, this just means that the other side has stopped sending data,
89you can still try to write data, and, in fact, one can return from the EOF 199you can still try to write data, and, in fact, one can return from the EOF
90callback and continue writing data, as only the read part has been shut 200callback and continue writing data, as only the read part has been shut
91down. 201down.
92 202
93While not mandatory, it is I<highly> recommended to set an EOF callback,
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96
97If an EOF condition has been detected but no C<on_eof> callback has been 203If an EOF condition has been detected but no C<on_eof> callback has been
98set, then a fatal error will be raised with C<$!> set to <0>. 204set, then a fatal error will be raised with C<$!> set to <0>.
99
100=item on_error => $cb->($handle, $fatal)
101
102This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to
104connect or a read error.
105
106Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal
109errors are an EOF condition with active (but unsatisifable) read watchers
110(C<EPIPE>) or I/O errors.
111
112Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116
117On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
119
120While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls
122C<croak>.
123
124=item on_read => $cb->($handle)
125
126This sets the default read callback, which is called when data arrives
127and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the
129read buffer).
130
131To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. Note that you
133must not enlarge or modify the read buffer, you can only remove data at
134the beginning from it.
135
136When an EOF condition is detected then AnyEvent::Handle will first try to
137feed all the remaining data to the queued callbacks and C<on_read> before
138calling the C<on_eof> callback. If no progress can be made, then a fatal
139error will be raised (with C<$!> set to C<EPIPE>).
140 205
141=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
142 207
143This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
144(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
237 302
238This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
239yet. This data will be lost. Calling the C<stoptls> method in time might 304yet. This data will be lost. Calling the C<stoptls> method in time might
240help. 305help.
241 306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
316
242=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
243 318
244When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
245AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
246established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
247 325
248TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
249automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
250have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
251to add the dependency yourself. 329to add the dependency yourself.
255mode. 333mode.
256 334
257You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
258to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
259or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
260AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
261 344
262B<IMPORTANT:> since Net::SSLeay "objects" are really only integers, 345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
263passing in the wrong integer will lead to certain crash. This most often 346passing in the wrong integer will lead to certain crash. This most often
264happens when one uses a stylish C<< tls => 1 >> and is surprised about the 347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
265segmentation fault. 348segmentation fault.
266 349
267See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
268 351
269=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
270 353
271Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
272(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
273missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
274 393
275=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
276 395
277This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
278 397
287 406
288=cut 407=cut
289 408
290sub new { 409sub new {
291 my $class = shift; 410 my $class = shift;
292
293 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
294 412
295 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
296 476
297 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
478
479 $self->{_activity} = AnyEvent->now;
480 $self->_timeout;
481
482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
298 483
299 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}) 484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
300 if $self->{tls}; 485 if $self->{tls};
301 486
302 $self->{_activity} = AnyEvent->now;
303 $self->_timeout;
304
305 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
306 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
307 488
308 $self->start_read 489 $self->start_read
309 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
310 491
311 $self 492 $self->_drain_wbuf;
312} 493}
313 494
314sub _shutdown { 495#sub _shutdown {
315 my ($self) = @_; 496# my ($self) = @_;
316 497#
317 delete @$self{qw(_tw _rw _ww fh rbuf wbuf on_read _queue)}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
318 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
500#
319 &_freetls; 501# &_freetls;
320} 502#}
321 503
322sub _error { 504sub _error {
323 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
324
325 $self->_shutdown
326 if $fatal;
327 506
328 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
329 509
330 if ($self->{on_error}) { 510 if ($self->{on_error}) {
331 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
512 $self->destroy if $fatal;
332 } elsif ($self->{fh}) { 513 } elsif ($self->{fh}) {
514 $self->destroy;
333 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
334 } 516 }
335} 517}
336 518
337=item $fh = $handle->fh 519=item $fh = $handle->fh
338 520
395sub no_delay { 577sub no_delay {
396 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
397 579
398 eval { 580 eval {
399 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
400 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
401 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
402} 615}
403 616
404############################################################################# 617#############################################################################
405 618
406=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
411 624
412sub timeout { 625sub timeout {
413 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
414 627
415 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
416 $self->_timeout; 630 $self->_timeout;
417} 631}
418 632
419# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
420# also check for time-outs 634# also check for time-outs
421sub _timeout { 635sub _timeout {
422 my ($self) = @_; 636 my ($self) = @_;
423 637
424 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
425 my $NOW = AnyEvent->now; 639 my $NOW = AnyEvent->now;
426 640
427 # when would the timeout trigger? 641 # when would the timeout trigger?
428 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
429 643
432 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
433 647
434 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
435 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
436 } else { 650 } else {
437 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
438 } 652 }
439 653
440 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
441 return unless $self->{timeout}; 655 return unless $self->{timeout};
442 656
505 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
506 720
507 my $cb = sub { 721 my $cb = sub {
508 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
509 723
510 if ($len >= 0) { 724 if (defined $len) {
511 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
512 726
513 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AnyEvent->now;
514 728
515 $self->{on_drain}($self) 729 $self->{on_drain}($self)
547 ->($self, @_); 761 ->($self, @_);
548 } 762 }
549 763
550 if ($self->{tls}) { 764 if ($self->{tls}) {
551 $self->{_tls_wbuf} .= $_[0]; 765 $self->{_tls_wbuf} .= $_[0];
552 766 &_dotls ($self) if $self->{fh};
553 &_dotls ($self);
554 } else { 767 } else {
555 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
556 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
557 } 770 }
558} 771}
559 772
560=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
561 774
650 863
651 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
652}; 865};
653 866
654=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
655 893
656=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
657 895
658This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
659Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
753=cut 991=cut
754 992
755sub _drain_rbuf { 993sub _drain_rbuf {
756 my ($self) = @_; 994 my ($self) = @_;
757 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
758 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
759
760 if (
761 defined $self->{rbuf_max}
762 && $self->{rbuf_max} < length $self->{rbuf}
763 ) {
764 $self->_error (&Errno::ENOSPC, 1), return;
765 }
766 999
767 while () { 1000 while () {
768 # we need to use a separate tls read buffer, as we must not receive data while 1001 # we need to use a separate tls read buffer, as we must not receive data while
769 # we are draining the buffer, and this can only happen with TLS. 1002 # we are draining the buffer, and this can only happen with TLS.
770 $self->{rbuf} .= delete $self->{_tls_rbuf} if exists $self->{_tls_rbuf}; 1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
771 1005
772 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
773 1007
774 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
775 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
776 if ($self->{_eof}) { 1010 # no progress can be made
777 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
778 $self->_error (&Errno::EPIPE, 1), return; 1012 $self->_error (Errno::EPIPE, 1), return
779 } 1013 if $self->{_eof};
780 1014
781 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
782 last; 1016 last;
783 } 1017 }
784 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
791 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
792 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
793 ) { 1027 ) {
794 # no further data will arrive 1028 # no further data will arrive
795 # so no progress can be made 1029 # so no progress can be made
796 $self->_error (&Errno::EPIPE, 1), return 1030 $self->_error (Errno::EPIPE, 1), return
797 if $self->{_eof}; 1031 if $self->{_eof};
798 1032
799 last; # more data might arrive 1033 last; # more data might arrive
800 } 1034 }
801 } else { 1035 } else {
804 last; 1038 last;
805 } 1039 }
806 } 1040 }
807 1041
808 if ($self->{_eof}) { 1042 if ($self->{_eof}) {
809 if ($self->{on_eof}) { 1043 $self->{on_eof}
810 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
811 } else { 1045 : $self->_error (0, 1, "Unexpected end-of-file");
812 $self->_error (0, 1); 1046
813 } 1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
814 } 1055 }
815 1056
816 # may need to restart read watcher 1057 # may need to restart read watcher
817 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
818 $self->start_read 1059 $self->start_read
830 1071
831sub on_read { 1072sub on_read {
832 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
833 1074
834 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
835 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
836} 1077}
837 1078
838=item $handle->rbuf 1079=item $handle->rbuf
839 1080
840Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
892 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
893 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
894 } 1135 }
895 1136
896 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
897 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
898} 1139}
899 1140
900sub unshift_read { 1141sub unshift_read {
901 my $self = shift; 1142 my $self = shift;
902 my $cb = pop; 1143 my $cb = pop;
908 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
909 } 1150 }
910 1151
911 1152
912 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
913 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
914} 1155}
915 1156
916=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
917 1158
918=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
1051 return 1; 1292 return 1;
1052 } 1293 }
1053 1294
1054 # reject 1295 # reject
1055 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1056 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1057 } 1298 }
1058 1299
1059 # skip 1300 # skip
1060 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1061 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1077 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1078 1319
1079 sub { 1320 sub {
1080 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1081 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1082 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1083 } 1324 }
1084 return; 1325 return;
1085 } 1326 }
1086 1327
1087 my $len = $1; 1328 my $len = $1;
1090 my $string = $_[1]; 1331 my $string = $_[1];
1091 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1092 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1093 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1094 } else { 1335 } else {
1095 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1096 } 1337 }
1097 }); 1338 });
1098 }); 1339 });
1099 1340
1100 1 1341 1
1167=cut 1408=cut
1168 1409
1169register_read_type json => sub { 1410register_read_type json => sub {
1170 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1171 1412
1172 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1173 1416
1174 my $data; 1417 my $data;
1175 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1176
1177 my $json = $self->{json} ||= JSON->new->utf8;
1178 1419
1179 sub { 1420 sub {
1180 my $ref = eval { $json->incr_parse ($self->{rbuf}) }; 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1181 1422
1182 if ($ref) { 1423 if ($ref) {
1190 $json->incr_skip; 1431 $json->incr_skip;
1191 1432
1192 $self->{rbuf} = $json->incr_text; 1433 $self->{rbuf} = $json->incr_text;
1193 $json->incr_text = ""; 1434 $json->incr_text = "";
1194 1435
1195 $self->_error (&Errno::EBADMSG); 1436 $self->_error (Errno::EBADMSG);
1196 1437
1197 () 1438 ()
1198 } else { 1439 } else {
1199 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1200 1441
1237 # read remaining chunk 1478 # read remaining chunk
1238 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1239 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1240 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1241 } else { 1482 } else {
1242 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1243 } 1484 }
1244 }); 1485 });
1245 } 1486 }
1246 1487
1247 1 1488 1
1311 if ($self->{tls}) { 1552 if ($self->{tls}) {
1312 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf); 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1313 1554
1314 &_dotls ($self); 1555 &_dotls ($self);
1315 } else { 1556 } else {
1316 $self->_drain_rbuf unless $self->{_in_drain}; 1557 $self->_drain_rbuf;
1317 } 1558 }
1318 1559
1319 } elsif (defined $len) { 1560 } elsif (defined $len) {
1320 delete $self->{_rw}; 1561 delete $self->{_rw};
1321 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1322 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1323 1564
1324 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1325 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1326 } 1567 }
1327 }); 1568 });
1328 } 1569 }
1329} 1570}
1330 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1331# poll the write BIO and send the data if applicable 1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1332sub _dotls { 1600sub _dotls {
1333 my ($self) = @_; 1601 my ($self) = @_;
1334 1602
1335 my $tmp; 1603 my $tmp;
1336 1604
1337 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1338 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1339 substr $self->{_tls_wbuf}, 0, $tmp, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1340 } 1608 }
1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1341 } 1614 }
1342 1615
1343 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) { 1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1344 unless (length $tmp) { 1617 unless (length $tmp) {
1345 # let's treat SSL-eof as we treat normal EOF 1618 $self->{_on_starttls}
1346 delete $self->{_rw}; 1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1347 $self->{_eof} = 1;
1348 &_freetls; 1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1349 } 1630 }
1350 1631
1351 $self->{_tls_rbuf} .= $tmp; 1632 $self->{_tls_rbuf} .= $tmp;
1352 $self->_drain_rbuf unless $self->{_in_drain}; 1633 $self->_drain_rbuf;
1353 $self->{tls} or return; # tls session might have gone away in callback 1634 $self->{tls} or return; # tls session might have gone away in callback
1354 } 1635 }
1355 1636
1356 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); 1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1357
1358 if ($tmp != Net::SSLeay::ERROR_WANT_READ ()) {
1359 if ($tmp == Net::SSLeay::ERROR_SYSCALL ()) {
1360 return $self->_error ($!, 1); 1638 return $self->_tls_error ($tmp)
1361 } elsif ($tmp == Net::SSLeay::ERROR_SSL ()) { 1639 if $tmp != $ERROR_WANT_READ
1362 return $self->_error (&Errno::EIO, 1); 1640 && ($tmp != $ERROR_SYSCALL || $!);
1363 }
1364
1365 # all other errors are fine for our purposes
1366 }
1367 1641
1368 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1369 $self->{wbuf} .= $tmp; 1643 $self->{wbuf} .= $tmp;
1370 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1371 } 1645 }
1646
1647 $self->{_on_starttls}
1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1372} 1650}
1373 1651
1374=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1375 1653
1376Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1377object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1378C<starttls>. 1656C<starttls>.
1379 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1380The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1381C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1382 1664
1383The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1384used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1385 1669
1386The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1387call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1388might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1389 1674
1390If it an error to start a TLS handshake more than once per 1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1391AnyEvent::Handle object (this is due to bugs in OpenSSL). 1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1392 1678
1393=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1394 1682
1395sub starttls { 1683sub starttls {
1396 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1685
1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1688
1689 $self->{tls} = $tls;
1690 $self->{tls_ctx} = $ctx if @_ > 2;
1691
1692 return unless $self->{fh};
1397 1693
1398 require Net::SSLeay; 1694 require Net::SSLeay;
1399 1695
1400 Carp::croak "it is an error to call starttls more than once on an AnyEvent::Handle object" 1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1401 if $self->{tls}; 1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1402 1714
1403 if ($ssl eq "accept") { 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1404 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1405 Net::SSLeay::set_accept_state ($ssl);
1406 } elsif ($ssl eq "connect") {
1407 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1408 Net::SSLeay::set_connect_state ($ssl);
1409 }
1410
1411 $self->{tls} = $ssl;
1412 1717
1413 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1414 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1415 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1416 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1420 # 1725 #
1421 # note that we do not try to keep the length constant between writes as we are required to do. 1726 # note that we do not try to keep the length constant between writes as we are required to do.
1422 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1423 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to 1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1424 # have identity issues in that area. 1729 # have identity issues in that area.
1425 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1426 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1427 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1428 1734
1429 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1430 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1431 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1432 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1741
1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1743 if $self->{on_starttls};
1433 1744
1434 &_dotls; # need to trigger the initial handshake 1745 &_dotls; # need to trigger the initial handshake
1435 $self->start_read; # make sure we actually do read 1746 $self->start_read; # make sure we actually do read
1436} 1747}
1437 1748
1438=item $handle->stoptls 1749=item $handle->stoptls
1439 1750
1440Shuts down the SSL connection - this makes a proper EOF handshake by 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1441sending a close notify to the other side, but since OpenSSL doesn't 1752sending a close notify to the other side, but since OpenSSL doesn't
1442support non-blocking shut downs, it is not possible to re-use the stream 1753support non-blocking shut downs, it is not guarenteed that you can re-use
1443afterwards. 1754the stream afterwards.
1444 1755
1445=cut 1756=cut
1446 1757
1447sub stoptls { 1758sub stoptls {
1448 my ($self) = @_; 1759 my ($self) = @_;
1450 if ($self->{tls}) { 1761 if ($self->{tls}) {
1451 Net::SSLeay::shutdown ($self->{tls}); 1762 Net::SSLeay::shutdown ($self->{tls});
1452 1763
1453 &_dotls; 1764 &_dotls;
1454 1765
1455 # we don't give a shit. no, we do, but we can't. no... 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1456 # we, we... have to use openssl :/ 1767# # we, we... have to use openssl :/#d#
1457 &_freetls; 1768# &_freetls;#d#
1458 } 1769 }
1459} 1770}
1460 1771
1461sub _freetls { 1772sub _freetls {
1462 my ($self) = @_; 1773 my ($self) = @_;
1463 1774
1464 return unless $self->{tls}; 1775 return unless $self->{tls};
1465 1776
1466 Net::SSLeay::free (delete $self->{tls}); 1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1467 1779
1468 delete @$self{qw(_rbio _wbio _tls_wbuf)}; 1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1469} 1781}
1470 1782
1471sub DESTROY { 1783sub DESTROY {
1472 my ($self) = @_; 1784 my ($self) = @_;
1473 1785
1474 &_freetls; 1786 &_freetls;
1475 1787
1476 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1477 1789
1478 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1479 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1480 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1481 1793
1482 my @linger; 1794 my @linger;
1483 1795
1497} 1809}
1498 1810
1499=item $handle->destroy 1811=item $handle->destroy
1500 1812
1501Shuts down the handle object as much as possible - this call ensures that 1813Shuts down the handle object as much as possible - this call ensures that
1502no further callbacks will be invoked and resources will be freed as much 1814no further callbacks will be invoked and as many resources as possible
1503as possible. You must not call any methods on the object afterwards. 1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1504 1818
1505Normally, you can just "forget" any references to an AnyEvent::Handle 1819Normally, you can just "forget" any references to an AnyEvent::Handle
1506object and it will simply shut down. This works in fatal error and EOF 1820object and it will simply shut down. This works in fatal error and EOF
1507callbacks, as well as code outside. It does I<NOT> work in a read or write 1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1508callback, so when you want to destroy the AnyEvent::Handle object from 1822callback, so when you want to destroy the AnyEvent::Handle object from
1509within such an callback. You I<MUST> call C<< ->destroy >> explicitly in 1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1510that case. 1824that case.
1511 1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1512The handle might still linger in the background and write out remaining 1831The handle might still linger in the background and write out remaining
1513data, as specified by the C<linger> option, however. 1832data, as specified by the C<linger> option, however.
1514 1833
1515=cut 1834=cut
1516 1835
1517sub destroy { 1836sub destroy {
1518 my ($self) = @_; 1837 my ($self) = @_;
1519 1838
1520 $self->DESTROY; 1839 $self->DESTROY;
1521 %$self = (); 1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1522} 1846}
1523 1847
1524=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1525 1849
1526This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1527default for TLS mode. 1851for TLS mode.
1528 1852
1529The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1530
1531 Net::SSLeay::load_error_strings;
1532 Net::SSLeay::SSLeay_add_ssl_algorithms;
1533 Net::SSLeay::randomize;
1534
1535 my $CTX = Net::SSLeay::CTX_new;
1536
1537 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1538 1854
1539=cut 1855=cut
1540 1856
1541our $TLS_CTX; 1857our $TLS_CTX;
1542 1858
1543sub TLS_CTX() { 1859sub TLS_CTX() {
1544 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1545 require Net::SSLeay; 1861 require AnyEvent::TLS;
1546 1862
1547 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1548 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1549 Net::SSLeay::randomize ();
1550
1551 $TLS_CTX = Net::SSLeay::CTX_new ();
1552
1553 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1554
1555 $TLS_CTX
1556 } 1864 }
1557} 1865}
1558 1866
1559=back 1867=back
1560 1868
1599 1907
1600 $handle->on_read (sub { }); 1908 $handle->on_read (sub { });
1601 $handle->on_eof (undef); 1909 $handle->on_eof (undef);
1602 $handle->on_error (sub { 1910 $handle->on_error (sub {
1603 my $data = delete $_[0]{rbuf}; 1911 my $data = delete $_[0]{rbuf};
1604 undef $handle;
1605 }); 1912 });
1606 1913
1607The reason to use C<on_error> is that TCP connections, due to latencies 1914The reason to use C<on_error> is that TCP connections, due to latencies
1608and packets loss, might get closed quite violently with an error, when in 1915and packets loss, might get closed quite violently with an error, when in
1609fact, all data has been received. 1916fact, all data has been received.
1625 $handle->on_drain (sub { 1932 $handle->on_drain (sub {
1626 warn "all data submitted to the kernel\n"; 1933 warn "all data submitted to the kernel\n";
1627 undef $handle; 1934 undef $handle;
1628 }); 1935 });
1629 1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
1630=back 2025=back
1631 2026
1632 2027
1633=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1634 2029

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines