ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.70 by root, Wed Jun 25 20:29:32 2008 UTC vs.
Revision 1.174 by root, Sat Aug 8 20:52:06 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.151; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>. 50
51The L<AnyEvent::Intro> tutorial contains some well-documented
52AnyEvent::Handle examples.
53 53
54In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
57 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
58All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
59argument. 62argument.
60 63
61=head1 METHODS 64=head1 METHODS
62 65
63=over 4 66=over 4
64 67
65=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 69
67The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
68 71
69=over 4 72=over 4
70 73
71=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 75
73The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 77NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
79that mode.
77 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
78=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
79 99
80Set the callback to be called when an end-of-file condition is detcted, 100This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
82connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
83 105
84While not mandatory, it is highly recommended to set an eof callback, 106The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 108timeout is to be used).
87 109
110=item on_connect => $cb->($handle, $host, $port, $retry->())
111
112This callback is called when a connection has been successfully established.
113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
88=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
89 137
90This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 140connect or a read error.
93 141
94Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 143fatal errors the handle object will be destroyed (by a call to C<< ->
144destroy >>) after invoking the error callback (which means you are free to
145examine the handle object). Examples of fatal errors are an EOF condition
146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
154
96usable. Non-fatal errors can be retried by simply returning, but it is 155Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 156to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 157when this callback is invoked. Examples of non-fatal errors are timeouts
158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 159
100On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
102 163
103While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
105C<croak>. 166C<croak>.
106 167
110and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
112read buffer). 173read buffer).
113 174
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
116 179
117When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
121 205
122=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
123 207
124This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
135=item timeout => $fractional_seconds 219=item timeout => $fractional_seconds
136 220
137If non-zero, then this enables an "inactivity" timeout: whenever this many 221If non-zero, then this enables an "inactivity" timeout: whenever this many
138seconds pass without a successful read or write on the underlying file 222seconds pass without a successful read or write on the underlying file
139handle, the C<on_timeout> callback will be invoked (and if that one is 223handle, the C<on_timeout> callback will be invoked (and if that one is
140missing, an C<ETIMEDOUT> error will be raised). 224missing, a non-fatal C<ETIMEDOUT> error will be raised).
141 225
142Note that timeout processing is also active when you currently do not have 226Note that timeout processing is also active when you currently do not have
143any outstanding read or write requests: If you plan to keep the connection 227any outstanding read or write requests: If you plan to keep the connection
144idle then you should disable the timout temporarily or ignore the timeout 228idle then you should disable the timout temporarily or ignore the timeout
145in the C<on_timeout> callback. 229in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
230restart the timeout.
146 231
147Zero (the default) disables this timeout. 232Zero (the default) disables this timeout.
148 233
149=item on_timeout => $cb->($handle) 234=item on_timeout => $cb->($handle)
150 235
154 239
155=item rbuf_max => <bytes> 240=item rbuf_max => <bytes>
156 241
157If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 242If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
158when the read buffer ever (strictly) exceeds this size. This is useful to 243when the read buffer ever (strictly) exceeds this size. This is useful to
159avoid denial-of-service attacks. 244avoid some forms of denial-of-service attacks.
160 245
161For example, a server accepting connections from untrusted sources should 246For example, a server accepting connections from untrusted sources should
162be configured to accept only so-and-so much data that it cannot act on 247be configured to accept only so-and-so much data that it cannot act on
163(for example, when expecting a line, an attacker could send an unlimited 248(for example, when expecting a line, an attacker could send an unlimited
164amount of data without a callback ever being called as long as the line 249amount of data without a callback ever being called as long as the line
165isn't finished). 250isn't finished).
166 251
167=item autocork => <boolean> 252=item autocork => <boolean>
168 253
169When disabled (the default), then C<push_write> will try to immediately 254When disabled (the default), then C<push_write> will try to immediately
170write the data to the handle if possible. This avoids having to register 255write the data to the handle, if possible. This avoids having to register
171a write watcher and wait for the next event loop iteration, but can be 256a write watcher and wait for the next event loop iteration, but can
172inefficient if you write multiple small chunks (this disadvantage is 257be inefficient if you write multiple small chunks (on the wire, this
173usually avoided by your kernel's nagle algorithm, see C<low_delay>). 258disadvantage is usually avoided by your kernel's nagle algorithm, see
259C<no_delay>, but this option can save costly syscalls).
174 260
175When enabled, then writes will always be queued till the next event loop 261When enabled, then writes will always be queued till the next event loop
176iteration. This is efficient when you do many small writes per iteration, 262iteration. This is efficient when you do many small writes per iteration,
177but less efficient when you do a single write only. 263but less efficient when you do a single write only per iteration (or when
264the write buffer often is full). It also increases write latency.
178 265
179=item no_delay => <boolean> 266=item no_delay => <boolean>
180 267
181When doing small writes on sockets, your operating system kernel might 268When doing small writes on sockets, your operating system kernel might
182wait a bit for more data before actually sending it out. This is called 269wait a bit for more data before actually sending it out. This is called
183the Nagle algorithm, and usually it is beneficial. 270the Nagle algorithm, and usually it is beneficial.
184 271
185In some situations you want as low a delay as possible, which cna be 272In some situations you want as low a delay as possible, which can be
186accomplishd by setting this option to true. 273accomplishd by setting this option to a true value.
187 274
188The default is your opertaing system's default behaviour, this option 275The default is your opertaing system's default behaviour (most likely
189explicitly enables or disables it, if possible. 276enabled), this option explicitly enables or disables it, if possible.
190 277
191=item read_size => <bytes> 278=item read_size => <bytes>
192 279
193The default read block size (the amount of bytes this module will try to read 280The default read block size (the amount of bytes this module will
194during each (loop iteration). Default: C<8192>. 281try to read during each loop iteration, which affects memory
282requirements). Default: C<8192>.
195 283
196=item low_water_mark => <bytes> 284=item low_water_mark => <bytes>
197 285
198Sets the amount of bytes (default: C<0>) that make up an "empty" write 286Sets the amount of bytes (default: C<0>) that make up an "empty" write
199buffer: If the write reaches this size or gets even samller it is 287buffer: If the write reaches this size or gets even samller it is
200considered empty. 288considered empty.
201 289
290Sometimes it can be beneficial (for performance reasons) to add data to
291the write buffer before it is fully drained, but this is a rare case, as
292the operating system kernel usually buffers data as well, so the default
293is good in almost all cases.
294
202=item linger => <seconds> 295=item linger => <seconds>
203 296
204If non-zero (default: C<3600>), then the destructor of the 297If non-zero (default: C<3600>), then the destructor of the
205AnyEvent::Handle object will check wether there is still outstanding write 298AnyEvent::Handle object will check whether there is still outstanding
206data and will install a watcher that will write out this data. No errors 299write data and will install a watcher that will write this data to the
207will be reported (this mostly matches how the operating system treats 300socket. No errors will be reported (this mostly matches how the operating
208outstanding data at socket close time). 301system treats outstanding data at socket close time).
209 302
210This will not work for partial TLS data that could not yet been 303This will not work for partial TLS data that could not be encoded
211encoded. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
212 316
213=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
214 318
215When this parameter is given, it enables TLS (SSL) mode, that means it 319When this parameter is given, it enables TLS (SSL) mode, that means
216will start making tls handshake and will transparently encrypt/decrypt 320AnyEvent will start a TLS handshake as soon as the conenction has been
217data. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
218 325
219TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
220automatically when you try to create a TLS handle). 327automatically when you try to create a TLS handle): this module doesn't
328have a dependency on that module, so if your module requires it, you have
329to add the dependency yourself.
221 330
222For the TLS server side, use C<accept>, and for the TLS client side of a 331Unlike TCP, TLS has a server and client side: for the TLS server side, use
223connection, use C<connect> mode. 332C<accept>, and for the TLS client side of a connection, use C<connect>
333mode.
224 334
225You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
226to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
227or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
228AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
229 340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
349
230See the C<starttls> method if you need to start TLs negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
231 351
232=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
233 353
234Use the given Net::SSLeay::CTX object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
235(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
236missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
237 357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
393
238=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
239 395
240This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
241 397
242If you don't supply it, then AnyEvent::Handle will create and use a 398If you don't supply it, then AnyEvent::Handle will create and use a
243suitable one, which will write and expect UTF-8 encoded JSON texts. 399suitable one (on demand), which will write and expect UTF-8 encoded JSON
400texts.
244 401
245Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
246use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
247 404
248=item filter_r => $cb
249
250=item filter_w => $cb
251
252These exist, but are undocumented at this time.
253
254=back 405=back
255 406
256=cut 407=cut
257 408
258sub new { 409sub new {
259 my $class = shift; 410 my $class = shift;
260
261 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
262 412
263 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
264 476
265 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
266
267 if ($self->{tls}) {
268 require Net::SSLeay;
269 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
270 }
271 478
272 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
273 $self->_timeout; 480 $self->_timeout;
274 481
275 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
276 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
277 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
278 $self->start_read 489 $self->start_read
279 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
280 491
281 $self 492 $self->_drain_wbuf;
282} 493}
283 494
284sub _shutdown { 495#sub _shutdown {
285 my ($self) = @_; 496# my ($self) = @_;
286 497#
287 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
288 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
289 delete $self->{_ww}; 500#
290 delete $self->{fh}; 501# &_freetls;
291 502#}
292 $self->stoptls;
293}
294 503
295sub _error { 504sub _error {
296 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
297
298 $self->_shutdown
299 if $fatal;
300 506
301 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
302 509
303 if ($self->{on_error}) { 510 if ($self->{on_error}) {
304 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
305 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
306 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
307 } 516 }
308} 517}
309 518
310=item $fh = $handle->fh 519=item $fh = $handle->fh
311 520
312This method returns the file handle of the L<AnyEvent::Handle> object. 521This method returns the file handle used to create the L<AnyEvent::Handle> object.
313 522
314=cut 523=cut
315 524
316sub fh { $_[0]{fh} } 525sub fh { $_[0]{fh} }
317 526
335 $_[0]{on_eof} = $_[1]; 544 $_[0]{on_eof} = $_[1];
336} 545}
337 546
338=item $handle->on_timeout ($cb) 547=item $handle->on_timeout ($cb)
339 548
340Replace the current C<on_timeout> callback, or disables the callback 549Replace the current C<on_timeout> callback, or disables the callback (but
341(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor 550not the timeout) if C<$cb> = C<undef>. See the C<timeout> constructor
342argument. 551argument and method.
343 552
344=cut 553=cut
345 554
346sub on_timeout { 555sub on_timeout {
347 $_[0]{on_timeout} = $_[1]; 556 $_[0]{on_timeout} = $_[1];
348} 557}
349 558
350=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
351 560
352Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
353constructor argument). 562constructor argument). Changes will only take effect on the next write.
354 563
355=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
356 569
357=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
358 571
359Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
360the same name for details). 573the same name for details).
364sub no_delay { 577sub no_delay {
365 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
366 579
367 eval { 580 eval {
368 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
369 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
370 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
371} 615}
372 616
373############################################################################# 617#############################################################################
374 618
375=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
380 624
381sub timeout { 625sub timeout {
382 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
383 627
384 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
385 $self->_timeout; 630 $self->_timeout;
386} 631}
387 632
388# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
389# also check for time-outs 634# also check for time-outs
390sub _timeout { 635sub _timeout {
391 my ($self) = @_; 636 my ($self) = @_;
392 637
393 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
394 my $NOW = AnyEvent->now; 639 my $NOW = AnyEvent->now;
395 640
396 # when would the timeout trigger? 641 # when would the timeout trigger?
397 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
398 643
401 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
402 647
403 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
404 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
405 } else { 650 } else {
406 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
407 } 652 }
408 653
409 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
410 return unless $self->{timeout}; 655 return unless $self->{timeout};
411 656
453 my ($self, $cb) = @_; 698 my ($self, $cb) = @_;
454 699
455 $self->{on_drain} = $cb; 700 $self->{on_drain} = $cb;
456 701
457 $cb->($self) 702 $cb->($self)
458 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 703 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
459} 704}
460 705
461=item $handle->push_write ($data) 706=item $handle->push_write ($data)
462 707
463Queues the given scalar to be written. You can push as much data as you 708Queues the given scalar to be written. You can push as much data as you
474 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
475 720
476 my $cb = sub { 721 my $cb = sub {
477 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
478 723
479 if ($len >= 0) { 724 if (defined $len) {
480 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
481 726
482 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AnyEvent->now;
483 728
484 $self->{on_drain}($self) 729 $self->{on_drain}($self)
485 if $self->{low_water_mark} >= length $self->{wbuf} 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
486 && $self->{on_drain}; 731 && $self->{on_drain};
487 732
488 delete $self->{_ww} unless length $self->{wbuf}; 733 delete $self->{_ww} unless length $self->{wbuf};
489 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 734 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
490 $self->_error ($!, 1); 735 $self->_error ($!, 1);
514 759
515 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 760 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
516 ->($self, @_); 761 ->($self, @_);
517 } 762 }
518 763
519 if ($self->{filter_w}) { 764 if ($self->{tls}) {
520 $self->{filter_w}($self, \$_[0]); 765 $self->{_tls_wbuf} .= $_[0];
766 &_dotls ($self) if $self->{fh};
521 } else { 767 } else {
522 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
523 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
524 } 770 }
525} 771}
526 772
527=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
528 774
542=cut 788=cut
543 789
544register_write_type netstring => sub { 790register_write_type netstring => sub {
545 my ($self, $string) = @_; 791 my ($self, $string) = @_;
546 792
547 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
548}; 794};
549 795
550=item packstring => $format, $data 796=item packstring => $format, $data
551 797
552An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
617 863
618 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
619}; 865};
620 866
621=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
622 893
623=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
624 895
625This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
626Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
720=cut 991=cut
721 992
722sub _drain_rbuf { 993sub _drain_rbuf {
723 my ($self) = @_; 994 my ($self) = @_;
724 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
725 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
726
727 if (
728 defined $self->{rbuf_max}
729 && $self->{rbuf_max} < length $self->{rbuf}
730 ) {
731 return $self->_error (&Errno::ENOSPC, 1);
732 }
733 999
734 while () { 1000 while () {
735 no strict 'refs'; 1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
736 1005
737 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
738 1007
739 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
740 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
741 if ($self->{_eof}) { 1010 # no progress can be made
742 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
743 $self->_error (&Errno::EPIPE, 1), last; 1012 $self->_error (Errno::EPIPE, 1), return
744 } 1013 if $self->{_eof};
745 1014
746 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
747 last; 1016 last;
748 } 1017 }
749 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
756 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
757 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
758 ) { 1027 ) {
759 # no further data will arrive 1028 # no further data will arrive
760 # so no progress can be made 1029 # so no progress can be made
761 $self->_error (&Errno::EPIPE, 1), last 1030 $self->_error (Errno::EPIPE, 1), return
762 if $self->{_eof}; 1031 if $self->{_eof};
763 1032
764 last; # more data might arrive 1033 last; # more data might arrive
765 } 1034 }
766 } else { 1035 } else {
767 # read side becomes idle 1036 # read side becomes idle
768 delete $self->{_rw}; 1037 delete $self->{_rw} unless $self->{tls};
769 last; 1038 last;
770 } 1039 }
771 } 1040 }
772 1041
1042 if ($self->{_eof}) {
1043 $self->{on_eof}
773 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
774 if $self->{_eof} && $self->{on_eof}; 1045 : $self->_error (0, 1, "Unexpected end-of-file");
1046
1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
1055 }
775 1056
776 # may need to restart read watcher 1057 # may need to restart read watcher
777 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
778 $self->start_read 1059 $self->start_read
779 if $self->{on_read} || @{ $self->{_queue} }; 1060 if $self->{on_read} || @{ $self->{_queue} };
790 1071
791sub on_read { 1072sub on_read {
792 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
793 1074
794 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
795 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
796} 1077}
797 1078
798=item $handle->rbuf 1079=item $handle->rbuf
799 1080
800Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
801 1082
802You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
803you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
804 1088
805NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
806C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
807automatically manage the read buffer. 1091automatically manage the read buffer.
808 1092
849 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
850 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
851 } 1135 }
852 1136
853 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
854 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
855} 1139}
856 1140
857sub unshift_read { 1141sub unshift_read {
858 my $self = shift; 1142 my $self = shift;
859 my $cb = pop; 1143 my $cb = pop;
865 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
866 } 1150 }
867 1151
868 1152
869 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
870 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
871} 1155}
872 1156
873=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
874 1158
875=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
905 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1189 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
906 1 1190 1
907 } 1191 }
908}; 1192};
909 1193
910# compatibility with older API
911sub push_read_chunk {
912 $_[0]->push_read (chunk => $_[1], $_[2]);
913}
914
915sub unshift_read_chunk {
916 $_[0]->unshift_read (chunk => $_[1], $_[2]);
917}
918
919=item line => [$eol, ]$cb->($handle, $line, $eol) 1194=item line => [$eol, ]$cb->($handle, $line, $eol)
920 1195
921The callback will be called only once a full line (including the end of 1196The callback will be called only once a full line (including the end of
922line marker, C<$eol>) has been read. This line (excluding the end of line 1197line marker, C<$eol>) has been read. This line (excluding the end of line
923marker) will be passed to the callback as second argument (C<$line>), and 1198marker) will be passed to the callback as second argument (C<$line>), and
938=cut 1213=cut
939 1214
940register_read_type line => sub { 1215register_read_type line => sub {
941 my ($self, $cb, $eol) = @_; 1216 my ($self, $cb, $eol) = @_;
942 1217
943 $eol = qr|(\015?\012)| if @_ < 3; 1218 if (@_ < 3) {
1219 # this is more than twice as fast as the generic code below
1220 sub {
1221 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1222
1223 $cb->($_[0], $1, $2);
1224 1
1225 }
1226 } else {
944 $eol = quotemeta $eol unless ref $eol; 1227 $eol = quotemeta $eol unless ref $eol;
945 $eol = qr|^(.*?)($eol)|s; 1228 $eol = qr|^(.*?)($eol)|s;
946 1229
947 sub { 1230 sub {
948 $_[0]{rbuf} =~ s/$eol// or return; 1231 $_[0]{rbuf} =~ s/$eol// or return;
949 1232
950 $cb->($_[0], $1, $2); 1233 $cb->($_[0], $1, $2);
1234 1
951 1 1235 }
952 } 1236 }
953}; 1237};
954
955# compatibility with older API
956sub push_read_line {
957 my $self = shift;
958 $self->push_read (line => @_);
959}
960
961sub unshift_read_line {
962 my $self = shift;
963 $self->unshift_read (line => @_);
964}
965 1238
966=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1239=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
967 1240
968Makes a regex match against the regex object C<$accept> and returns 1241Makes a regex match against the regex object C<$accept> and returns
969everything up to and including the match. 1242everything up to and including the match.
1019 return 1; 1292 return 1;
1020 } 1293 }
1021 1294
1022 # reject 1295 # reject
1023 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1024 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1025 } 1298 }
1026 1299
1027 # skip 1300 # skip
1028 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1029 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1045 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1046 1319
1047 sub { 1320 sub {
1048 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1049 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1050 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1051 } 1324 }
1052 return; 1325 return;
1053 } 1326 }
1054 1327
1055 my $len = $1; 1328 my $len = $1;
1058 my $string = $_[1]; 1331 my $string = $_[1];
1059 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1060 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1061 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1062 } else { 1335 } else {
1063 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1064 } 1337 }
1065 }); 1338 });
1066 }); 1339 });
1067 1340
1068 1 1341 1
1074An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
1075uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
1076integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1077optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1078 1351
1079DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1080 1354
1081Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1082format (very efficient). 1356format (very efficient).
1083 1357
1084 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1090register_read_type packstring => sub { 1364register_read_type packstring => sub {
1091 my ($self, $cb, $format) = @_; 1365 my ($self, $cb, $format) = @_;
1092 1366
1093 sub { 1367 sub {
1094 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1368 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1095 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1369 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1096 or return; 1370 or return;
1097 1371
1372 $format = length pack $format, $len;
1373
1374 # bypass unshift if we already have the remaining chunk
1375 if ($format + $len <= length $_[0]{rbuf}) {
1376 my $data = substr $_[0]{rbuf}, $format, $len;
1377 substr $_[0]{rbuf}, 0, $format + $len, "";
1378 $cb->($_[0], $data);
1379 } else {
1098 # remove prefix 1380 # remove prefix
1099 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1381 substr $_[0]{rbuf}, 0, $format, "";
1100 1382
1101 # read rest 1383 # read remaining chunk
1102 $_[0]->unshift_read (chunk => $len, $cb); 1384 $_[0]->unshift_read (chunk => $len, $cb);
1385 }
1103 1386
1104 1 1387 1
1105 } 1388 }
1106}; 1389};
1107 1390
1108=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1109 1392
1110Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1111 1395
1112If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1113for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1114 1398
1115This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1124=cut 1408=cut
1125 1409
1126register_read_type json => sub { 1410register_read_type json => sub {
1127 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1128 1412
1129 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1130 1416
1131 my $data; 1417 my $data;
1132 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1133 1419
1134 my $json = $self->{json} ||= JSON->new->utf8;
1135
1136 sub { 1420 sub {
1137 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1138 1422
1139 if ($ref) { 1423 if ($ref) {
1140 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1141 $json->incr_text = ""; 1425 $json->incr_text = "";
1142 $cb->($self, $ref); 1426 $cb->($self, $ref);
1143 1427
1144 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1145 } else { 1439 } else {
1146 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1147 () 1442 ()
1148 } 1443 }
1149 } 1444 }
1150}; 1445};
1151 1446
1164 1459
1165 require Storable; 1460 require Storable;
1166 1461
1167 sub { 1462 sub {
1168 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1463 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1169 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1464 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1170 or return; 1465 or return;
1171 1466
1467 my $format = length pack "w", $len;
1468
1469 # bypass unshift if we already have the remaining chunk
1470 if ($format + $len <= length $_[0]{rbuf}) {
1471 my $data = substr $_[0]{rbuf}, $format, $len;
1472 substr $_[0]{rbuf}, 0, $format + $len, "";
1473 $cb->($_[0], Storable::thaw ($data));
1474 } else {
1172 # remove prefix 1475 # remove prefix
1173 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1476 substr $_[0]{rbuf}, 0, $format, "";
1174 1477
1175 # read rest 1478 # read remaining chunk
1176 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1177 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1178 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1179 } else { 1482 } else {
1180 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1484 }
1181 } 1485 });
1182 }); 1486 }
1487
1488 1
1183 } 1489 }
1184}; 1490};
1185 1491
1186=back 1492=back
1187 1493
1217Note that AnyEvent::Handle will automatically C<start_read> for you when 1523Note that AnyEvent::Handle will automatically C<start_read> for you when
1218you change the C<on_read> callback or push/unshift a read callback, and it 1524you change the C<on_read> callback or push/unshift a read callback, and it
1219will automatically C<stop_read> for you when neither C<on_read> is set nor 1525will automatically C<stop_read> for you when neither C<on_read> is set nor
1220there are any read requests in the queue. 1526there are any read requests in the queue.
1221 1527
1528These methods will have no effect when in TLS mode (as TLS doesn't support
1529half-duplex connections).
1530
1222=cut 1531=cut
1223 1532
1224sub stop_read { 1533sub stop_read {
1225 my ($self) = @_; 1534 my ($self) = @_;
1226 1535
1227 delete $self->{_rw}; 1536 delete $self->{_rw} unless $self->{tls};
1228} 1537}
1229 1538
1230sub start_read { 1539sub start_read {
1231 my ($self) = @_; 1540 my ($self) = @_;
1232 1541
1233 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1234 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1235 1544
1236 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1237 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1238 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1239 1548
1240 if ($len > 0) { 1549 if ($len > 0) {
1241 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AnyEvent->now;
1242 1551
1243 $self->{filter_r} 1552 if ($self->{tls}) {
1244 ? $self->{filter_r}($self, $rbuf) 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1245 : $self->{_in_drain} || $self->_drain_rbuf; 1554
1555 &_dotls ($self);
1556 } else {
1557 $self->_drain_rbuf;
1558 }
1246 1559
1247 } elsif (defined $len) { 1560 } elsif (defined $len) {
1248 delete $self->{_rw}; 1561 delete $self->{_rw};
1249 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1250 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1251 1564
1252 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1253 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1254 } 1567 }
1255 }); 1568 });
1256 } 1569 }
1257} 1570}
1258 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1259sub _dotls { 1600sub _dotls {
1260 my ($self) = @_; 1601 my ($self) = @_;
1261 1602
1262 my $buf; 1603 my $tmp;
1263 1604
1264 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1265 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1266 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1267 } 1608 }
1268 }
1269 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617 unless (length $tmp) {
1618 $self->{_on_starttls}
1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1630 }
1631
1632 $self->{_tls_rbuf} .= $tmp;
1633 $self->_drain_rbuf;
1634 $self->{tls} or return; # tls session might have gone away in callback
1635 }
1636
1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 return $self->_tls_error ($tmp)
1639 if $tmp != $ERROR_WANT_READ
1640 && ($tmp != $ERROR_SYSCALL || $!);
1641
1270 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1271 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1272 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1273 } 1645 }
1274 1646
1275 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1647 $self->{_on_starttls}
1276 if (length $buf) { 1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1277 $self->{rbuf} .= $buf; 1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1278 $self->_drain_rbuf unless $self->{_in_drain};
1279 } else {
1280 # let's treat SSL-eof as we treat normal EOF
1281 $self->{_eof} = 1;
1282 $self->_shutdown;
1283 return;
1284 }
1285 }
1286
1287 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1288
1289 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1290 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1291 return $self->_error ($!, 1);
1292 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1293 return $self->_error (&Errno::EIO, 1);
1294 }
1295
1296 # all others are fine for our purposes
1297 }
1298} 1650}
1299 1651
1300=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1301 1653
1302Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1303object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1304C<starttls>. 1656C<starttls>.
1305 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1306The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1307C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1308 1664
1309The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1310used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1311 1669
1312The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1313call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1314might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1315 1674
1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1678
1316=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1317 1682
1318sub starttls { 1683sub starttls {
1319 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1320 1685
1321 $self->stoptls; 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1322 1688
1323 if ($ssl eq "accept") { 1689 $self->{tls} = $tls;
1324 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1690 $self->{tls_ctx} = $ctx if @_ > 2;
1325 Net::SSLeay::set_accept_state ($ssl); 1691
1326 } elsif ($ssl eq "connect") { 1692 return unless $self->{fh};
1327 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1693
1328 Net::SSLeay::set_connect_state ($ssl); 1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1329 } 1714
1330 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1331 $self->{tls} = $ssl; 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1332 1717
1333 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1334 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1335 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1336 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1337 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1722 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1723 #
1724 # in short: this is a mess.
1725 #
1726 # note that we do not try to keep the length constant between writes as we are required to do.
1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729 # have identity issues in that area.
1338 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1339 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1340 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1341 1734
1342 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1343 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1344 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1345 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1346 1741
1347 $self->{filter_w} = sub { 1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1348 $_[0]{_tls_wbuf} .= ${$_[1]}; 1743 if $self->{on_starttls};
1349 &_dotls; 1744
1350 }; 1745 &_dotls; # need to trigger the initial handshake
1351 $self->{filter_r} = sub { 1746 $self->start_read; # make sure we actually do read
1352 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1353 &_dotls;
1354 };
1355} 1747}
1356 1748
1357=item $handle->stoptls 1749=item $handle->stoptls
1358 1750
1359Destroys the SSL connection, if any. Partial read or write data will be 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1360lost. 1752sending a close notify to the other side, but since OpenSSL doesn't
1753support non-blocking shut downs, it is not guarenteed that you can re-use
1754the stream afterwards.
1361 1755
1362=cut 1756=cut
1363 1757
1364sub stoptls { 1758sub stoptls {
1365 my ($self) = @_; 1759 my ($self) = @_;
1366 1760
1367 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1761 if ($self->{tls}) {
1762 Net::SSLeay::shutdown ($self->{tls});
1368 1763
1369 delete $self->{_rbio}; 1764 &_dotls;
1370 delete $self->{_wbio}; 1765
1371 delete $self->{_tls_wbuf}; 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1372 delete $self->{filter_r}; 1767# # we, we... have to use openssl :/#d#
1373 delete $self->{filter_w}; 1768# &_freetls;#d#
1769 }
1770}
1771
1772sub _freetls {
1773 my ($self) = @_;
1774
1775 return unless $self->{tls};
1776
1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1779
1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1374} 1781}
1375 1782
1376sub DESTROY { 1783sub DESTROY {
1377 my $self = shift; 1784 my ($self) = @_;
1378 1785
1379 $self->stoptls; 1786 &_freetls;
1380 1787
1381 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1382 1789
1383 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1384 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1385 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1386 1793
1387 my @linger; 1794 my @linger;
1388 1795
1399 @linger = (); 1806 @linger = ();
1400 }); 1807 });
1401 } 1808 }
1402} 1809}
1403 1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1846}
1847
1404=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1405 1849
1406This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1407default for TLS mode. 1851for TLS mode.
1408 1852
1409The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1410
1411 Net::SSLeay::load_error_strings;
1412 Net::SSLeay::SSLeay_add_ssl_algorithms;
1413 Net::SSLeay::randomize;
1414
1415 my $CTX = Net::SSLeay::CTX_new;
1416
1417 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1418 1854
1419=cut 1855=cut
1420 1856
1421our $TLS_CTX; 1857our $TLS_CTX;
1422 1858
1423sub TLS_CTX() { 1859sub TLS_CTX() {
1424 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1425 require Net::SSLeay; 1861 require AnyEvent::TLS;
1426 1862
1427 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1428 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1429 Net::SSLeay::randomize ();
1430
1431 $TLS_CTX = Net::SSLeay::CTX_new ();
1432
1433 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1434
1435 $TLS_CTX
1436 } 1864 }
1437} 1865}
1438 1866
1439=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1440 2027
1441=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1442 2029
1443In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1444 2031
1448=over 4 2035=over 4
1449 2036
1450=item * all constructor arguments become object members. 2037=item * all constructor arguments become object members.
1451 2038
1452At least initially, when you pass a C<tls>-argument to the constructor it 2039At least initially, when you pass a C<tls>-argument to the constructor it
1453will end up in C<< $handle->{tls} >>. Those members might be changes or 2040will end up in C<< $handle->{tls} >>. Those members might be changed or
1454mutated later on (for example C<tls> will hold the TLS connection object). 2041mutated later on (for example C<tls> will hold the TLS connection object).
1455 2042
1456=item * other object member names are prefixed with an C<_>. 2043=item * other object member names are prefixed with an C<_>.
1457 2044
1458All object members not explicitly documented (internal use) are prefixed 2045All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines