ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.89 by root, Sat Sep 6 10:54:32 2008 UTC vs.
Revision 1.174 by root, Sat Aug 8 20:52:06 2009 UTC

1package AnyEvent::Handle; 1package AnyEvent::Handle;
2 2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util (); 3use Scalar::Util ();
9use Carp (); 4use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR); 5use Errno qw(EAGAIN EINTR);
12 6
7use AnyEvent (); BEGIN { AnyEvent::common_sense }
8use AnyEvent::Util qw(WSAEWOULDBLOCK);
9
13=head1 NAME 10=head1 NAME
14 11
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 12AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16 13
17=cut 14=cut
18 15
19our $VERSION = 4.234; 16our $VERSION = 4.91;
20 17
21=head1 SYNOPSIS 18=head1 SYNOPSIS
22 19
23 use AnyEvent; 20 use AnyEvent;
24 use AnyEvent::Handle; 21 use AnyEvent::Handle;
25 22
26 my $cv = AnyEvent->condvar; 23 my $cv = AnyEvent->condvar;
27 24
28 my $handle = 25 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 26 fh => \*STDIN,
31 on_eof => sub { 27 on_error => sub {
32 $cv->broadcast; 28 my ($hdl, $fatal, $msg) = @_;
33 }, 29 warn "got error $msg\n";
30 $hdl->destroy;
31 $cv->send;
34 ); 32 );
35 33
36 # send some request line 34 # send some request line
37 $handle->push_write ("getinfo\015\012"); 35 $hdl->push_write ("getinfo\015\012");
38 36
39 # read the response line 37 # read the response line
40 $handle->push_read (line => sub { 38 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 39 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 40 warn "got line <$line>\n";
43 $cv->send; 41 $cv->send;
44 }); 42 });
45 43
46 $cv->recv; 44 $cv->recv;
47 45
48=head1 DESCRIPTION 46=head1 DESCRIPTION
49 47
50This module is a helper module to make it easier to do event-based I/O on 48This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 49filehandles.
52on sockets see L<AnyEvent::Util>.
53 50
54The L<AnyEvent::Intro> tutorial contains some well-documented 51The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 52AnyEvent::Handle examples.
56 53
57In the following, when the documentation refers to of "bytes" then this 54In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 55means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 56treatment of characters applies to this module as well.
60 57
58At the very minimum, you should specify C<fh> or C<connect>, and the
59C<on_error> callback.
60
61All callbacks will be invoked with the handle object as their first 61All callbacks will be invoked with the handle object as their first
62argument. 62argument.
63 63
64=head1 METHODS 64=head1 METHODS
65 65
66=over 4 66=over 4
67 67
68=item B<new (%args)> 68=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 69
70The constructor supports these arguments (all as key => value pairs). 70The constructor supports these arguments (all as C<< key => value >> pairs).
71 71
72=over 4 72=over 4
73 73
74=item fh => $filehandle [MANDATORY] 74=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 75
76The filehandle this L<AnyEvent::Handle> object will operate on. 76The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 77NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 78C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 79that mode.
81 80
81=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
82
83Try to connect to the specified host and service (port), using
84C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
85default C<peername>.
86
87You have to specify either this parameter, or C<fh>, above.
88
89It is possible to push requests on the read and write queues, and modify
90properties of the stream, even while AnyEvent::Handle is connecting.
91
92When this parameter is specified, then the C<on_prepare>,
93C<on_connect_error> and C<on_connect> callbacks will be called under the
94appropriate circumstances:
95
96=over 4
97
82=item on_eof => $cb->($handle) 98=item on_prepare => $cb->($handle)
83 99
84Set the callback to be called when an end-of-file condition is detected, 100This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 101attempted, but after the file handle has been created. It could be used to
86connection cleanly. 102prepare the file handle with parameters required for the actual connect
103(as opposed to settings that can be changed when the connection is already
104established).
87 105
88For sockets, this just means that the other side has stopped sending data, 106The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 107seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 108timeout is to be used).
91down.
92 109
93While not mandatory, it is I<highly> recommended to set an eof callback, 110=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 111
97If an EOF condition has been detected but no C<on_eof> callback has been 112This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 113
114The actual numeric host and port (the socket peername) are passed as
115parameters, together with a retry callback.
116
117When, for some reason, the handle is not acceptable, then calling
118C<$retry> will continue with the next conenction target (in case of
119multi-homed hosts or SRV records there can be multiple connection
120endpoints). When it is called then the read and write queues, eof status,
121tls status and similar properties of the handle are being reset.
122
123In most cases, ignoring the C<$retry> parameter is the way to go.
124
125=item on_connect_error => $cb->($handle, $message)
126
127This callback is called when the conenction could not be
128established. C<$!> will contain the relevant error code, and C<$message> a
129message describing it (usually the same as C<"$!">).
130
131If this callback isn't specified, then C<on_error> will be called with a
132fatal error instead.
133
134=back
135
100=item on_error => $cb->($handle, $fatal) 136=item on_error => $cb->($handle, $fatal, $message)
101 137
102This is the error callback, which is called when, well, some error 138This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 139occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 140connect or a read error.
105 141
106Some errors are fatal (which is indicated by C<$fatal> being true). On 142Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 143fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C<< ->rbuf >>). Examples of fatal 144destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 145examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 146with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
147cases where the other side can close the connection at their will it is
148often easiest to not report C<EPIPE> errors in this callback.
149
150AnyEvent::Handle tries to find an appropriate error code for you to check
151against, but in some cases (TLS errors), this does not work well. It is
152recommended to always output the C<$message> argument in human-readable
153error messages (it's usually the same as C<"$!">).
111 154
112Non-fatal errors can be retried by simply returning, but it is recommended 155Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 156to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 157when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 158C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 159
117On callback entrance, the value of C<$!> contains the operating system 160On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 161error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
162C<EPROTO>).
119 163
120While not mandatory, it is I<highly> recommended to set this callback, as 164While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 165you will not be notified of errors otherwise. The default simply calls
122C<croak>. 166C<croak>.
123 167
127and no read request is in the queue (unlike read queue callbacks, this 171and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 172callback will only be called when at least one octet of data is in the
129read buffer). 173read buffer).
130 174
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 175To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 176method or access the C<< $handle->{rbuf} >> member directly. Note that you
177must not enlarge or modify the read buffer, you can only remove data at
178the beginning from it.
133 179
134When an EOF condition is detected then AnyEvent::Handle will first try to 180When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 181feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 182calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 183error will be raised (with C<$!> set to C<EPIPE>).
184
185Note that, unlike requests in the read queue, an C<on_read> callback
186doesn't mean you I<require> some data: if there is an EOF and there
187are outstanding read requests then an error will be flagged. With an
188C<on_read> callback, the C<on_eof> callback will be invoked.
189
190=item on_eof => $cb->($handle)
191
192Set the callback to be called when an end-of-file condition is detected,
193i.e. in the case of a socket, when the other side has closed the
194connection cleanly, and there are no outstanding read requests in the
195queue (if there are read requests, then an EOF counts as an unexpected
196connection close and will be flagged as an error).
197
198For sockets, this just means that the other side has stopped sending data,
199you can still try to write data, and, in fact, one can return from the EOF
200callback and continue writing data, as only the read part has been shut
201down.
202
203If an EOF condition has been detected but no C<on_eof> callback has been
204set, then a fatal error will be raised with C<$!> set to <0>.
138 205
139=item on_drain => $cb->($handle) 206=item on_drain => $cb->($handle)
140 207
141This sets the callback that is called when the write buffer becomes empty 208This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 209(or when the callback is set and the buffer is empty already).
232write data and will install a watcher that will write this data to the 299write data and will install a watcher that will write this data to the
233socket. No errors will be reported (this mostly matches how the operating 300socket. No errors will be reported (this mostly matches how the operating
234system treats outstanding data at socket close time). 301system treats outstanding data at socket close time).
235 302
236This will not work for partial TLS data that could not be encoded 303This will not work for partial TLS data that could not be encoded
237yet. This data will be lost. 304yet. This data will be lost. Calling the C<stoptls> method in time might
305help.
306
307=item peername => $string
308
309A string used to identify the remote site - usually the DNS hostname
310(I<not> IDN!) used to create the connection, rarely the IP address.
311
312Apart from being useful in error messages, this string is also used in TLS
313peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
314verification will be skipped when C<peername> is not specified or
315C<undef>.
238 316
239=item tls => "accept" | "connect" | Net::SSLeay::SSL object 317=item tls => "accept" | "connect" | Net::SSLeay::SSL object
240 318
241When this parameter is given, it enables TLS (SSL) mode, that means 319When this parameter is given, it enables TLS (SSL) mode, that means
242AnyEvent will start a TLS handshake as soon as the conenction has been 320AnyEvent will start a TLS handshake as soon as the conenction has been
243established and will transparently encrypt/decrypt data afterwards. 321established and will transparently encrypt/decrypt data afterwards.
322
323All TLS protocol errors will be signalled as C<EPROTO>, with an
324appropriate error message.
244 325
245TLS mode requires Net::SSLeay to be installed (it will be loaded 326TLS mode requires Net::SSLeay to be installed (it will be loaded
246automatically when you try to create a TLS handle): this module doesn't 327automatically when you try to create a TLS handle): this module doesn't
247have a dependency on that module, so if your module requires it, you have 328have a dependency on that module, so if your module requires it, you have
248to add the dependency yourself. 329to add the dependency yourself.
252mode. 333mode.
253 334
254You can also provide your own TLS connection object, but you have 335You can also provide your own TLS connection object, but you have
255to make sure that you call either C<Net::SSLeay::set_connect_state> 336to make sure that you call either C<Net::SSLeay::set_connect_state>
256or C<Net::SSLeay::set_accept_state> on it before you pass it to 337or C<Net::SSLeay::set_accept_state> on it before you pass it to
257AnyEvent::Handle. 338AnyEvent::Handle. Also, this module will take ownership of this connection
339object.
340
341At some future point, AnyEvent::Handle might switch to another TLS
342implementation, then the option to use your own session object will go
343away.
344
345B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
346passing in the wrong integer will lead to certain crash. This most often
347happens when one uses a stylish C<< tls => 1 >> and is surprised about the
348segmentation fault.
258 349
259See the C<< ->starttls >> method for when need to start TLS negotiation later. 350See the C<< ->starttls >> method for when need to start TLS negotiation later.
260 351
261=item tls_ctx => $ssl_ctx 352=item tls_ctx => $anyevent_tls
262 353
263Use the given C<Net::SSLeay::CTX> object to create the new TLS connection 354Use the given C<AnyEvent::TLS> object to create the new TLS connection
264(unless a connection object was specified directly). If this parameter is 355(unless a connection object was specified directly). If this parameter is
265missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 356missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
357
358Instead of an object, you can also specify a hash reference with C<< key
359=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
360new TLS context object.
361
362=item on_starttls => $cb->($handle, $success[, $error_message])
363
364This callback will be invoked when the TLS/SSL handshake has finished. If
365C<$success> is true, then the TLS handshake succeeded, otherwise it failed
366(C<on_stoptls> will not be called in this case).
367
368The session in C<< $handle->{tls} >> can still be examined in this
369callback, even when the handshake was not successful.
370
371TLS handshake failures will not cause C<on_error> to be invoked when this
372callback is in effect, instead, the error message will be passed to C<on_starttls>.
373
374Without this callback, handshake failures lead to C<on_error> being
375called, as normal.
376
377Note that you cannot call C<starttls> right again in this callback. If you
378need to do that, start an zero-second timer instead whose callback can
379then call C<< ->starttls >> again.
380
381=item on_stoptls => $cb->($handle)
382
383When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
384set, then it will be invoked after freeing the TLS session. If it is not,
385then a TLS shutdown condition will be treated like a normal EOF condition
386on the handle.
387
388The session in C<< $handle->{tls} >> can still be examined in this
389callback.
390
391This callback will only be called on TLS shutdowns, not when the
392underlying handle signals EOF.
266 393
267=item json => JSON or JSON::XS object 394=item json => JSON or JSON::XS object
268 395
269This is the json coder object used by the C<json> read and write types. 396This is the json coder object used by the C<json> read and write types.
270 397
273texts. 400texts.
274 401
275Note that you are responsible to depend on the JSON module if you want to 402Note that you are responsible to depend on the JSON module if you want to
276use this functionality, as AnyEvent does not have a dependency itself. 403use this functionality, as AnyEvent does not have a dependency itself.
277 404
278=item filter_r => $cb
279
280=item filter_w => $cb
281
282These exist, but are undocumented at this time. (They are used internally
283by the TLS code).
284
285=back 405=back
286 406
287=cut 407=cut
288 408
289sub new { 409sub new {
290 my $class = shift; 410 my $class = shift;
291
292 my $self = bless { @_ }, $class; 411 my $self = bless { @_ }, $class;
293 412
294 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 413 if ($self->{fh}) {
414 $self->_start;
415 return unless $self->{fh}; # could be gone by now
416
417 } elsif ($self->{connect}) {
418 require AnyEvent::Socket;
419
420 $self->{peername} = $self->{connect}[0]
421 unless exists $self->{peername};
422
423 $self->{_skip_drain_rbuf} = 1;
424
425 {
426 Scalar::Util::weaken (my $self = $self);
427
428 $self->{_connect} =
429 AnyEvent::Socket::tcp_connect (
430 $self->{connect}[0],
431 $self->{connect}[1],
432 sub {
433 my ($fh, $host, $port, $retry) = @_;
434
435 if ($fh) {
436 $self->{fh} = $fh;
437
438 delete $self->{_skip_drain_rbuf};
439 $self->_start;
440
441 $self->{on_connect}
442 and $self->{on_connect}($self, $host, $port, sub {
443 delete @$self{qw(fh _tw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
444 $self->{_skip_drain_rbuf} = 1;
445 &$retry;
446 });
447
448 } else {
449 if ($self->{on_connect_error}) {
450 $self->{on_connect_error}($self, "$!");
451 $self->destroy;
452 } else {
453 $self->_error ($!, 1);
454 }
455 }
456 },
457 sub {
458 local $self->{fh} = $_[0];
459
460 $self->{on_prepare}
461 ? $self->{on_prepare}->($self)
462 : ()
463 }
464 );
465 }
466
467 } else {
468 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
469 }
470
471 $self
472}
473
474sub _start {
475 my ($self) = @_;
295 476
296 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 477 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
297
298 if ($self->{tls}) {
299 require Net::SSLeay;
300 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
301 }
302 478
303 $self->{_activity} = AnyEvent->now; 479 $self->{_activity} = AnyEvent->now;
304 $self->_timeout; 480 $self->_timeout;
305 481
306 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain};
307 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay}; 482 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
308 483
484 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
485 if $self->{tls};
486
487 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
488
309 $self->start_read 489 $self->start_read
310 if $self->{on_read}; 490 if $self->{on_read} || @{ $self->{_queue} };
311 491
312 $self 492 $self->_drain_wbuf;
313} 493}
314 494
315sub _shutdown { 495#sub _shutdown {
316 my ($self) = @_; 496# my ($self) = @_;
317 497#
318 delete $self->{_tw}; 498# delete @$self{qw(_tw _rw _ww fh wbuf on_read _queue)};
319 delete $self->{_rw}; 499# $self->{_eof} = 1; # tell starttls et. al to stop trying
320 delete $self->{_ww}; 500#
321 delete $self->{fh}; 501# &_freetls;
322 502#}
323 $self->stoptls;
324
325 delete $self->{on_read};
326 delete $self->{_queue};
327}
328 503
329sub _error { 504sub _error {
330 my ($self, $errno, $fatal) = @_; 505 my ($self, $errno, $fatal, $message) = @_;
331
332 $self->_shutdown
333 if $fatal;
334 506
335 $! = $errno; 507 $! = $errno;
508 $message ||= "$!";
336 509
337 if ($self->{on_error}) { 510 if ($self->{on_error}) {
338 $self->{on_error}($self, $fatal); 511 $self->{on_error}($self, $fatal, $message);
339 } else { 512 $self->destroy if $fatal;
513 } elsif ($self->{fh}) {
514 $self->destroy;
340 Carp::croak "AnyEvent::Handle uncaught error: $!"; 515 Carp::croak "AnyEvent::Handle uncaught error: $message";
341 } 516 }
342} 517}
343 518
344=item $fh = $handle->fh 519=item $fh = $handle->fh
345 520
382} 557}
383 558
384=item $handle->autocork ($boolean) 559=item $handle->autocork ($boolean)
385 560
386Enables or disables the current autocork behaviour (see C<autocork> 561Enables or disables the current autocork behaviour (see C<autocork>
387constructor argument). 562constructor argument). Changes will only take effect on the next write.
388 563
389=cut 564=cut
565
566sub autocork {
567 $_[0]{autocork} = $_[1];
568}
390 569
391=item $handle->no_delay ($boolean) 570=item $handle->no_delay ($boolean)
392 571
393Enables or disables the C<no_delay> setting (see constructor argument of 572Enables or disables the C<no_delay> setting (see constructor argument of
394the same name for details). 573the same name for details).
398sub no_delay { 577sub no_delay {
399 $_[0]{no_delay} = $_[1]; 578 $_[0]{no_delay} = $_[1];
400 579
401 eval { 580 eval {
402 local $SIG{__DIE__}; 581 local $SIG{__DIE__};
403 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 582 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]
583 if $_[0]{fh};
404 }; 584 };
585}
586
587=item $handle->on_starttls ($cb)
588
589Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
590
591=cut
592
593sub on_starttls {
594 $_[0]{on_starttls} = $_[1];
595}
596
597=item $handle->on_stoptls ($cb)
598
599Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
600
601=cut
602
603sub on_starttls {
604 $_[0]{on_stoptls} = $_[1];
605}
606
607=item $handle->rbuf_max ($max_octets)
608
609Configures the C<rbuf_max> setting (C<undef> disables it).
610
611=cut
612
613sub rbuf_max {
614 $_[0]{rbuf_max} = $_[1];
405} 615}
406 616
407############################################################################# 617#############################################################################
408 618
409=item $handle->timeout ($seconds) 619=item $handle->timeout ($seconds)
414 624
415sub timeout { 625sub timeout {
416 my ($self, $timeout) = @_; 626 my ($self, $timeout) = @_;
417 627
418 $self->{timeout} = $timeout; 628 $self->{timeout} = $timeout;
629 delete $self->{_tw};
419 $self->_timeout; 630 $self->_timeout;
420} 631}
421 632
422# reset the timeout watcher, as neccessary 633# reset the timeout watcher, as neccessary
423# also check for time-outs 634# also check for time-outs
424sub _timeout { 635sub _timeout {
425 my ($self) = @_; 636 my ($self) = @_;
426 637
427 if ($self->{timeout}) { 638 if ($self->{timeout} && $self->{fh}) {
428 my $NOW = AnyEvent->now; 639 my $NOW = AnyEvent->now;
429 640
430 # when would the timeout trigger? 641 # when would the timeout trigger?
431 my $after = $self->{_activity} + $self->{timeout} - $NOW; 642 my $after = $self->{_activity} + $self->{timeout} - $NOW;
432 643
435 $self->{_activity} = $NOW; 646 $self->{_activity} = $NOW;
436 647
437 if ($self->{on_timeout}) { 648 if ($self->{on_timeout}) {
438 $self->{on_timeout}($self); 649 $self->{on_timeout}($self);
439 } else { 650 } else {
440 $self->_error (&Errno::ETIMEDOUT); 651 $self->_error (Errno::ETIMEDOUT);
441 } 652 }
442 653
443 # callback could have changed timeout value, optimise 654 # callback could have changed timeout value, optimise
444 return unless $self->{timeout}; 655 return unless $self->{timeout};
445 656
487 my ($self, $cb) = @_; 698 my ($self, $cb) = @_;
488 699
489 $self->{on_drain} = $cb; 700 $self->{on_drain} = $cb;
490 701
491 $cb->($self) 702 $cb->($self)
492 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 703 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
493} 704}
494 705
495=item $handle->push_write ($data) 706=item $handle->push_write ($data)
496 707
497Queues the given scalar to be written. You can push as much data as you 708Queues the given scalar to be written. You can push as much data as you
508 Scalar::Util::weaken $self; 719 Scalar::Util::weaken $self;
509 720
510 my $cb = sub { 721 my $cb = sub {
511 my $len = syswrite $self->{fh}, $self->{wbuf}; 722 my $len = syswrite $self->{fh}, $self->{wbuf};
512 723
513 if ($len >= 0) { 724 if (defined $len) {
514 substr $self->{wbuf}, 0, $len, ""; 725 substr $self->{wbuf}, 0, $len, "";
515 726
516 $self->{_activity} = AnyEvent->now; 727 $self->{_activity} = AnyEvent->now;
517 728
518 $self->{on_drain}($self) 729 $self->{on_drain}($self)
519 if $self->{low_water_mark} >= length $self->{wbuf} 730 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
520 && $self->{on_drain}; 731 && $self->{on_drain};
521 732
522 delete $self->{_ww} unless length $self->{wbuf}; 733 delete $self->{_ww} unless length $self->{wbuf};
523 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 734 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
524 $self->_error ($!, 1); 735 $self->_error ($!, 1);
548 759
549 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 760 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
550 ->($self, @_); 761 ->($self, @_);
551 } 762 }
552 763
553 if ($self->{filter_w}) { 764 if ($self->{tls}) {
554 $self->{filter_w}($self, \$_[0]); 765 $self->{_tls_wbuf} .= $_[0];
766 &_dotls ($self) if $self->{fh};
555 } else { 767 } else {
556 $self->{wbuf} .= $_[0]; 768 $self->{wbuf} .= $_[0];
557 $self->_drain_wbuf; 769 $self->_drain_wbuf if $self->{fh};
558 } 770 }
559} 771}
560 772
561=item $handle->push_write (type => @args) 773=item $handle->push_write (type => @args)
562 774
576=cut 788=cut
577 789
578register_write_type netstring => sub { 790register_write_type netstring => sub {
579 my ($self, $string) = @_; 791 my ($self, $string) = @_;
580 792
581 sprintf "%d:%s,", (length $string), $string 793 (length $string) . ":$string,"
582}; 794};
583 795
584=item packstring => $format, $data 796=item packstring => $format, $data
585 797
586An octet string prefixed with an encoded length. The encoding C<$format> 798An octet string prefixed with an encoded length. The encoding C<$format>
651 863
652 pack "w/a*", Storable::nfreeze ($ref) 864 pack "w/a*", Storable::nfreeze ($ref)
653}; 865};
654 866
655=back 867=back
868
869=item $handle->push_shutdown
870
871Sometimes you know you want to close the socket after writing your data
872before it was actually written. One way to do that is to replace your
873C<on_drain> handler by a callback that shuts down the socket (and set
874C<low_water_mark> to C<0>). This method is a shorthand for just that, and
875replaces the C<on_drain> callback with:
876
877 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
878
879This simply shuts down the write side and signals an EOF condition to the
880the peer.
881
882You can rely on the normal read queue and C<on_eof> handling
883afterwards. This is the cleanest way to close a connection.
884
885=cut
886
887sub push_shutdown {
888 my ($self) = @_;
889
890 delete $self->{low_water_mark};
891 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
892}
656 893
657=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 894=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
658 895
659This function (not method) lets you add your own types to C<push_write>. 896This function (not method) lets you add your own types to C<push_write>.
660Whenever the given C<type> is used, C<push_write> will invoke the code 897Whenever the given C<type> is used, C<push_write> will invoke the code
754=cut 991=cut
755 992
756sub _drain_rbuf { 993sub _drain_rbuf {
757 my ($self) = @_; 994 my ($self) = @_;
758 995
996 # avoid recursion
997 return if $self->{_skip_drain_rbuf};
759 local $self->{_in_drain} = 1; 998 local $self->{_skip_drain_rbuf} = 1;
760
761 if (
762 defined $self->{rbuf_max}
763 && $self->{rbuf_max} < length $self->{rbuf}
764 ) {
765 $self->_error (&Errno::ENOSPC, 1), return;
766 }
767 999
768 while () { 1000 while () {
1001 # we need to use a separate tls read buffer, as we must not receive data while
1002 # we are draining the buffer, and this can only happen with TLS.
1003 $self->{rbuf} .= delete $self->{_tls_rbuf}
1004 if exists $self->{_tls_rbuf};
1005
769 my $len = length $self->{rbuf}; 1006 my $len = length $self->{rbuf};
770 1007
771 if (my $cb = shift @{ $self->{_queue} }) { 1008 if (my $cb = shift @{ $self->{_queue} }) {
772 unless ($cb->($self)) { 1009 unless ($cb->($self)) {
773 if ($self->{_eof}) { 1010 # no progress can be made
774 # no progress can be made (not enough data and no data forthcoming) 1011 # (not enough data and no data forthcoming)
775 $self->_error (&Errno::EPIPE, 1), return; 1012 $self->_error (Errno::EPIPE, 1), return
776 } 1013 if $self->{_eof};
777 1014
778 unshift @{ $self->{_queue} }, $cb; 1015 unshift @{ $self->{_queue} }, $cb;
779 last; 1016 last;
780 } 1017 }
781 } elsif ($self->{on_read}) { 1018 } elsif ($self->{on_read}) {
788 && !@{ $self->{_queue} } # and the queue is still empty 1025 && !@{ $self->{_queue} } # and the queue is still empty
789 && $self->{on_read} # but we still have on_read 1026 && $self->{on_read} # but we still have on_read
790 ) { 1027 ) {
791 # no further data will arrive 1028 # no further data will arrive
792 # so no progress can be made 1029 # so no progress can be made
793 $self->_error (&Errno::EPIPE, 1), return 1030 $self->_error (Errno::EPIPE, 1), return
794 if $self->{_eof}; 1031 if $self->{_eof};
795 1032
796 last; # more data might arrive 1033 last; # more data might arrive
797 } 1034 }
798 } else { 1035 } else {
799 # read side becomes idle 1036 # read side becomes idle
800 delete $self->{_rw}; 1037 delete $self->{_rw} unless $self->{tls};
801 last; 1038 last;
802 } 1039 }
803 } 1040 }
804 1041
805 if ($self->{_eof}) { 1042 if ($self->{_eof}) {
806 if ($self->{on_eof}) { 1043 $self->{on_eof}
807 $self->{on_eof}($self) 1044 ? $self->{on_eof}($self)
808 } else { 1045 : $self->_error (0, 1, "Unexpected end-of-file");
809 $self->_error (0, 1); 1046
810 } 1047 return;
1048 }
1049
1050 if (
1051 defined $self->{rbuf_max}
1052 && $self->{rbuf_max} < length $self->{rbuf}
1053 ) {
1054 $self->_error (Errno::ENOSPC, 1), return;
811 } 1055 }
812 1056
813 # may need to restart read watcher 1057 # may need to restart read watcher
814 unless ($self->{_rw}) { 1058 unless ($self->{_rw}) {
815 $self->start_read 1059 $self->start_read
827 1071
828sub on_read { 1072sub on_read {
829 my ($self, $cb) = @_; 1073 my ($self, $cb) = @_;
830 1074
831 $self->{on_read} = $cb; 1075 $self->{on_read} = $cb;
832 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1076 $self->_drain_rbuf if $cb;
833} 1077}
834 1078
835=item $handle->rbuf 1079=item $handle->rbuf
836 1080
837Returns the read buffer (as a modifiable lvalue). 1081Returns the read buffer (as a modifiable lvalue).
838 1082
839You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1083You can access the read buffer directly as the C<< ->{rbuf} >>
840you want. 1084member, if you want. However, the only operation allowed on the
1085read buffer (apart from looking at it) is removing data from its
1086beginning. Otherwise modifying or appending to it is not allowed and will
1087lead to hard-to-track-down bugs.
841 1088
842NOTE: The read buffer should only be used or modified if the C<on_read>, 1089NOTE: The read buffer should only be used or modified if the C<on_read>,
843C<push_read> or C<unshift_read> methods are used. The other read methods 1090C<push_read> or C<unshift_read> methods are used. The other read methods
844automatically manage the read buffer. 1091automatically manage the read buffer.
845 1092
886 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1133 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
887 ->($self, $cb, @_); 1134 ->($self, $cb, @_);
888 } 1135 }
889 1136
890 push @{ $self->{_queue} }, $cb; 1137 push @{ $self->{_queue} }, $cb;
891 $self->_drain_rbuf unless $self->{_in_drain}; 1138 $self->_drain_rbuf;
892} 1139}
893 1140
894sub unshift_read { 1141sub unshift_read {
895 my $self = shift; 1142 my $self = shift;
896 my $cb = pop; 1143 my $cb = pop;
902 ->($self, $cb, @_); 1149 ->($self, $cb, @_);
903 } 1150 }
904 1151
905 1152
906 unshift @{ $self->{_queue} }, $cb; 1153 unshift @{ $self->{_queue} }, $cb;
907 $self->_drain_rbuf unless $self->{_in_drain}; 1154 $self->_drain_rbuf;
908} 1155}
909 1156
910=item $handle->push_read (type => @args, $cb) 1157=item $handle->push_read (type => @args, $cb)
911 1158
912=item $handle->unshift_read (type => @args, $cb) 1159=item $handle->unshift_read (type => @args, $cb)
1045 return 1; 1292 return 1;
1046 } 1293 }
1047 1294
1048 # reject 1295 # reject
1049 if ($reject && $$rbuf =~ $reject) { 1296 if ($reject && $$rbuf =~ $reject) {
1050 $self->_error (&Errno::EBADMSG); 1297 $self->_error (Errno::EBADMSG);
1051 } 1298 }
1052 1299
1053 # skip 1300 # skip
1054 if ($skip && $$rbuf =~ $skip) { 1301 if ($skip && $$rbuf =~ $skip) {
1055 $data .= substr $$rbuf, 0, $+[0], ""; 1302 $data .= substr $$rbuf, 0, $+[0], "";
1071 my ($self, $cb) = @_; 1318 my ($self, $cb) = @_;
1072 1319
1073 sub { 1320 sub {
1074 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1321 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1075 if ($_[0]{rbuf} =~ /[^0-9]/) { 1322 if ($_[0]{rbuf} =~ /[^0-9]/) {
1076 $self->_error (&Errno::EBADMSG); 1323 $self->_error (Errno::EBADMSG);
1077 } 1324 }
1078 return; 1325 return;
1079 } 1326 }
1080 1327
1081 my $len = $1; 1328 my $len = $1;
1084 my $string = $_[1]; 1331 my $string = $_[1];
1085 $_[0]->unshift_read (chunk => 1, sub { 1332 $_[0]->unshift_read (chunk => 1, sub {
1086 if ($_[1] eq ",") { 1333 if ($_[1] eq ",") {
1087 $cb->($_[0], $string); 1334 $cb->($_[0], $string);
1088 } else { 1335 } else {
1089 $self->_error (&Errno::EBADMSG); 1336 $self->_error (Errno::EBADMSG);
1090 } 1337 }
1091 }); 1338 });
1092 }); 1339 });
1093 1340
1094 1 1341 1
1100An octet string prefixed with an encoded length. The encoding C<$format> 1347An octet string prefixed with an encoded length. The encoding C<$format>
1101uses the same format as a Perl C<pack> format, but must specify a single 1348uses the same format as a Perl C<pack> format, but must specify a single
1102integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1349integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1103optional C<!>, C<< < >> or C<< > >> modifier). 1350optional C<!>, C<< < >> or C<< > >> modifier).
1104 1351
1105DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1352For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1353EPP uses a prefix of C<N> (4 octtes).
1106 1354
1107Example: read a block of data prefixed by its length in BER-encoded 1355Example: read a block of data prefixed by its length in BER-encoded
1108format (very efficient). 1356format (very efficient).
1109 1357
1110 $handle->push_read (packstring => "w", sub { 1358 $handle->push_read (packstring => "w", sub {
1140 } 1388 }
1141}; 1389};
1142 1390
1143=item json => $cb->($handle, $hash_or_arrayref) 1391=item json => $cb->($handle, $hash_or_arrayref)
1144 1392
1145Reads a JSON object or array, decodes it and passes it to the callback. 1393Reads a JSON object or array, decodes it and passes it to the
1394callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1146 1395
1147If a C<json> object was passed to the constructor, then that will be used 1396If a C<json> object was passed to the constructor, then that will be used
1148for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1397for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1149 1398
1150This read type uses the incremental parser available with JSON version 1399This read type uses the incremental parser available with JSON version
1159=cut 1408=cut
1160 1409
1161register_read_type json => sub { 1410register_read_type json => sub {
1162 my ($self, $cb) = @_; 1411 my ($self, $cb) = @_;
1163 1412
1164 require JSON; 1413 my $json = $self->{json} ||=
1414 eval { require JSON::XS; JSON::XS->new->utf8 }
1415 || do { require JSON; JSON->new->utf8 };
1165 1416
1166 my $data; 1417 my $data;
1167 my $rbuf = \$self->{rbuf}; 1418 my $rbuf = \$self->{rbuf};
1168 1419
1169 my $json = $self->{json} ||= JSON->new->utf8;
1170
1171 sub { 1420 sub {
1172 my $ref = $json->incr_parse ($self->{rbuf}); 1421 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1173 1422
1174 if ($ref) { 1423 if ($ref) {
1175 $self->{rbuf} = $json->incr_text; 1424 $self->{rbuf} = $json->incr_text;
1176 $json->incr_text = ""; 1425 $json->incr_text = "";
1177 $cb->($self, $ref); 1426 $cb->($self, $ref);
1178 1427
1179 1 1428 1
1429 } elsif ($@) {
1430 # error case
1431 $json->incr_skip;
1432
1433 $self->{rbuf} = $json->incr_text;
1434 $json->incr_text = "";
1435
1436 $self->_error (Errno::EBADMSG);
1437
1438 ()
1180 } else { 1439 } else {
1181 $self->{rbuf} = ""; 1440 $self->{rbuf} = "";
1441
1182 () 1442 ()
1183 } 1443 }
1184 } 1444 }
1185}; 1445};
1186 1446
1218 # read remaining chunk 1478 # read remaining chunk
1219 $_[0]->unshift_read (chunk => $len, sub { 1479 $_[0]->unshift_read (chunk => $len, sub {
1220 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1480 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1221 $cb->($_[0], $ref); 1481 $cb->($_[0], $ref);
1222 } else { 1482 } else {
1223 $self->_error (&Errno::EBADMSG); 1483 $self->_error (Errno::EBADMSG);
1224 } 1484 }
1225 }); 1485 });
1226 } 1486 }
1227 1487
1228 1 1488 1
1263Note that AnyEvent::Handle will automatically C<start_read> for you when 1523Note that AnyEvent::Handle will automatically C<start_read> for you when
1264you change the C<on_read> callback or push/unshift a read callback, and it 1524you change the C<on_read> callback or push/unshift a read callback, and it
1265will automatically C<stop_read> for you when neither C<on_read> is set nor 1525will automatically C<stop_read> for you when neither C<on_read> is set nor
1266there are any read requests in the queue. 1526there are any read requests in the queue.
1267 1527
1528These methods will have no effect when in TLS mode (as TLS doesn't support
1529half-duplex connections).
1530
1268=cut 1531=cut
1269 1532
1270sub stop_read { 1533sub stop_read {
1271 my ($self) = @_; 1534 my ($self) = @_;
1272 1535
1273 delete $self->{_rw}; 1536 delete $self->{_rw} unless $self->{tls};
1274} 1537}
1275 1538
1276sub start_read { 1539sub start_read {
1277 my ($self) = @_; 1540 my ($self) = @_;
1278 1541
1279 unless ($self->{_rw} || $self->{_eof}) { 1542 unless ($self->{_rw} || $self->{_eof}) {
1280 Scalar::Util::weaken $self; 1543 Scalar::Util::weaken $self;
1281 1544
1282 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1545 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1283 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1546 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1284 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1547 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1285 1548
1286 if ($len > 0) { 1549 if ($len > 0) {
1287 $self->{_activity} = AnyEvent->now; 1550 $self->{_activity} = AnyEvent->now;
1288 1551
1289 $self->{filter_r} 1552 if ($self->{tls}) {
1290 ? $self->{filter_r}($self, $rbuf) 1553 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1291 : $self->{_in_drain} || $self->_drain_rbuf; 1554
1555 &_dotls ($self);
1556 } else {
1557 $self->_drain_rbuf;
1558 }
1292 1559
1293 } elsif (defined $len) { 1560 } elsif (defined $len) {
1294 delete $self->{_rw}; 1561 delete $self->{_rw};
1295 $self->{_eof} = 1; 1562 $self->{_eof} = 1;
1296 $self->_drain_rbuf unless $self->{_in_drain}; 1563 $self->_drain_rbuf;
1297 1564
1298 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1565 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1299 return $self->_error ($!, 1); 1566 return $self->_error ($!, 1);
1300 } 1567 }
1301 }); 1568 });
1302 } 1569 }
1303} 1570}
1304 1571
1572our $ERROR_SYSCALL;
1573our $ERROR_WANT_READ;
1574
1575sub _tls_error {
1576 my ($self, $err) = @_;
1577
1578 return $self->_error ($!, 1)
1579 if $err == Net::SSLeay::ERROR_SYSCALL ();
1580
1581 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1582
1583 # reduce error string to look less scary
1584 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1585
1586 if ($self->{_on_starttls}) {
1587 (delete $self->{_on_starttls})->($self, undef, $err);
1588 &_freetls;
1589 } else {
1590 &_freetls;
1591 $self->_error (Errno::EPROTO, 1, $err);
1592 }
1593}
1594
1595# poll the write BIO and send the data if applicable
1596# also decode read data if possible
1597# this is basiclaly our TLS state machine
1598# more efficient implementations are possible with openssl,
1599# but not with the buggy and incomplete Net::SSLeay.
1305sub _dotls { 1600sub _dotls {
1306 my ($self) = @_; 1601 my ($self) = @_;
1307 1602
1308 my $buf; 1603 my $tmp;
1309 1604
1310 if (length $self->{_tls_wbuf}) { 1605 if (length $self->{_tls_wbuf}) {
1311 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1606 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1312 substr $self->{_tls_wbuf}, 0, $len, ""; 1607 substr $self->{_tls_wbuf}, 0, $tmp, "";
1313 } 1608 }
1314 }
1315 1609
1610 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1611 return $self->_tls_error ($tmp)
1612 if $tmp != $ERROR_WANT_READ
1613 && ($tmp != $ERROR_SYSCALL || $!);
1614 }
1615
1616 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1617 unless (length $tmp) {
1618 $self->{_on_starttls}
1619 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1620 &_freetls;
1621
1622 if ($self->{on_stoptls}) {
1623 $self->{on_stoptls}($self);
1624 return;
1625 } else {
1626 # let's treat SSL-eof as we treat normal EOF
1627 delete $self->{_rw};
1628 $self->{_eof} = 1;
1629 }
1630 }
1631
1632 $self->{_tls_rbuf} .= $tmp;
1633 $self->_drain_rbuf;
1634 $self->{tls} or return; # tls session might have gone away in callback
1635 }
1636
1637 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1638 return $self->_tls_error ($tmp)
1639 if $tmp != $ERROR_WANT_READ
1640 && ($tmp != $ERROR_SYSCALL || $!);
1641
1316 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1642 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1317 $self->{wbuf} .= $buf; 1643 $self->{wbuf} .= $tmp;
1318 $self->_drain_wbuf; 1644 $self->_drain_wbuf;
1319 } 1645 }
1320 1646
1321 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1647 $self->{_on_starttls}
1322 if (length $buf) { 1648 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1323 $self->{rbuf} .= $buf; 1649 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1324 $self->_drain_rbuf unless $self->{_in_drain};
1325 } else {
1326 # let's treat SSL-eof as we treat normal EOF
1327 $self->{_eof} = 1;
1328 $self->_shutdown;
1329 return;
1330 }
1331 }
1332
1333 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1334
1335 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1336 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1337 return $self->_error ($!, 1);
1338 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1339 return $self->_error (&Errno::EIO, 1);
1340 }
1341
1342 # all others are fine for our purposes
1343 }
1344} 1650}
1345 1651
1346=item $handle->starttls ($tls[, $tls_ctx]) 1652=item $handle->starttls ($tls[, $tls_ctx])
1347 1653
1348Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1654Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1349object is created, you can also do that at a later time by calling 1655object is created, you can also do that at a later time by calling
1350C<starttls>. 1656C<starttls>.
1351 1657
1658Starting TLS is currently an asynchronous operation - when you push some
1659write data and then call C<< ->starttls >> then TLS negotiation will start
1660immediately, after which the queued write data is then sent.
1661
1352The first argument is the same as the C<tls> constructor argument (either 1662The first argument is the same as the C<tls> constructor argument (either
1353C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1663C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1354 1664
1355The second argument is the optional C<Net::SSLeay::CTX> object that is 1665The second argument is the optional C<AnyEvent::TLS> object that is used
1356used when AnyEvent::Handle has to create its own TLS connection object. 1666when AnyEvent::Handle has to create its own TLS connection object, or
1667a hash reference with C<< key => value >> pairs that will be used to
1668construct a new context.
1357 1669
1358The TLS connection object will end up in C<< $handle->{tls} >> after this 1670The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1359call and can be used or changed to your liking. Note that the handshake 1671context in C<< $handle->{tls_ctx} >> after this call and can be used or
1360might have already started when this function returns. 1672changed to your liking. Note that the handshake might have already started
1673when this function returns.
1361 1674
1675Due to bugs in OpenSSL, it might or might not be possible to do multiple
1676handshakes on the same stream. Best do not attempt to use the stream after
1677stopping TLS.
1678
1362=cut 1679=cut
1680
1681our %TLS_CACHE; #TODO not yet documented, should we?
1363 1682
1364sub starttls { 1683sub starttls {
1365 my ($self, $ssl, $ctx) = @_; 1684 my ($self, $tls, $ctx) = @_;
1366 1685
1367 $self->stoptls; 1686 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1687 if $self->{tls};
1368 1688
1369 if ($ssl eq "accept") { 1689 $self->{tls} = $tls;
1370 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1690 $self->{tls_ctx} = $ctx if @_ > 2;
1371 Net::SSLeay::set_accept_state ($ssl); 1691
1372 } elsif ($ssl eq "connect") { 1692 return unless $self->{fh};
1373 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1693
1374 Net::SSLeay::set_connect_state ($ssl); 1694 require Net::SSLeay;
1695
1696 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1697 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1698
1699 $tls = $self->{tls};
1700 $ctx = $self->{tls_ctx};
1701
1702 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1703
1704 if ("HASH" eq ref $ctx) {
1705 require AnyEvent::TLS;
1706
1707 if ($ctx->{cache}) {
1708 my $key = $ctx+0;
1709 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1710 } else {
1711 $ctx = new AnyEvent::TLS %$ctx;
1712 }
1713 }
1375 } 1714
1376 1715 $self->{tls_ctx} = $ctx || TLS_CTX ();
1377 $self->{tls} = $ssl; 1716 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1378 1717
1379 # basically, this is deep magic (because SSL_read should have the same issues) 1718 # basically, this is deep magic (because SSL_read should have the same issues)
1380 # but the openssl maintainers basically said: "trust us, it just works". 1719 # but the openssl maintainers basically said: "trust us, it just works".
1381 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1720 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1382 # and mismaintained ssleay-module doesn't even offer them). 1721 # and mismaintained ssleay-module doesn't even offer them).
1383 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1722 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1384 # 1723 #
1385 # in short: this is a mess. 1724 # in short: this is a mess.
1386 # 1725 #
1387 # note that we do not try to kepe the length constant between writes as we are required to do. 1726 # note that we do not try to keep the length constant between writes as we are required to do.
1388 # we assume that most (but not all) of this insanity only applies to non-blocking cases, 1727 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1389 # and we drive openssl fully in blocking mode here. 1728 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1729 # have identity issues in that area.
1390 Net::SSLeay::CTX_set_mode ($self->{tls}, 1730# Net::SSLeay::CTX_set_mode ($ssl,
1391 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1731# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1392 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1732# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1733 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1393 1734
1394 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1735 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1395 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1736 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1396 1737
1738 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1739
1397 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1740 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1398 1741
1399 $self->{filter_w} = sub { 1742 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1400 $_[0]{_tls_wbuf} .= ${$_[1]}; 1743 if $self->{on_starttls};
1401 &_dotls; 1744
1402 }; 1745 &_dotls; # need to trigger the initial handshake
1403 $self->{filter_r} = sub { 1746 $self->start_read; # make sure we actually do read
1404 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1405 &_dotls;
1406 };
1407} 1747}
1408 1748
1409=item $handle->stoptls 1749=item $handle->stoptls
1410 1750
1411Destroys the SSL connection, if any. Partial read or write data will be 1751Shuts down the SSL connection - this makes a proper EOF handshake by
1412lost. 1752sending a close notify to the other side, but since OpenSSL doesn't
1753support non-blocking shut downs, it is not guarenteed that you can re-use
1754the stream afterwards.
1413 1755
1414=cut 1756=cut
1415 1757
1416sub stoptls { 1758sub stoptls {
1417 my ($self) = @_; 1759 my ($self) = @_;
1418 1760
1419 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1761 if ($self->{tls}) {
1762 Net::SSLeay::shutdown ($self->{tls});
1420 1763
1421 delete $self->{_rbio}; 1764 &_dotls;
1422 delete $self->{_wbio}; 1765
1423 delete $self->{_tls_wbuf}; 1766# # we don't give a shit. no, we do, but we can't. no...#d#
1424 delete $self->{filter_r}; 1767# # we, we... have to use openssl :/#d#
1425 delete $self->{filter_w}; 1768# &_freetls;#d#
1769 }
1770}
1771
1772sub _freetls {
1773 my ($self) = @_;
1774
1775 return unless $self->{tls};
1776
1777 $self->{tls_ctx}->_put_session (delete $self->{tls})
1778 if $self->{tls} > 0;
1779
1780 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1426} 1781}
1427 1782
1428sub DESTROY { 1783sub DESTROY {
1429 my $self = shift; 1784 my ($self) = @_;
1430 1785
1431 $self->stoptls; 1786 &_freetls;
1432 1787
1433 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1788 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1434 1789
1435 if ($linger && length $self->{wbuf}) { 1790 if ($linger && length $self->{wbuf} && $self->{fh}) {
1436 my $fh = delete $self->{fh}; 1791 my $fh = delete $self->{fh};
1437 my $wbuf = delete $self->{wbuf}; 1792 my $wbuf = delete $self->{wbuf};
1438 1793
1439 my @linger; 1794 my @linger;
1440 1795
1451 @linger = (); 1806 @linger = ();
1452 }); 1807 });
1453 } 1808 }
1454} 1809}
1455 1810
1811=item $handle->destroy
1812
1813Shuts down the handle object as much as possible - this call ensures that
1814no further callbacks will be invoked and as many resources as possible
1815will be freed. Any method you will call on the handle object after
1816destroying it in this way will be silently ignored (and it will return the
1817empty list).
1818
1819Normally, you can just "forget" any references to an AnyEvent::Handle
1820object and it will simply shut down. This works in fatal error and EOF
1821callbacks, as well as code outside. It does I<NOT> work in a read or write
1822callback, so when you want to destroy the AnyEvent::Handle object from
1823within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1824that case.
1825
1826Destroying the handle object in this way has the advantage that callbacks
1827will be removed as well, so if those are the only reference holders (as
1828is common), then one doesn't need to do anything special to break any
1829reference cycles.
1830
1831The handle might still linger in the background and write out remaining
1832data, as specified by the C<linger> option, however.
1833
1834=cut
1835
1836sub destroy {
1837 my ($self) = @_;
1838
1839 $self->DESTROY;
1840 %$self = ();
1841 bless $self, "AnyEvent::Handle::destroyed";
1842}
1843
1844sub AnyEvent::Handle::destroyed::AUTOLOAD {
1845 #nop
1846}
1847
1456=item AnyEvent::Handle::TLS_CTX 1848=item AnyEvent::Handle::TLS_CTX
1457 1849
1458This function creates and returns the Net::SSLeay::CTX object used by 1850This function creates and returns the AnyEvent::TLS object used by default
1459default for TLS mode. 1851for TLS mode.
1460 1852
1461The context is created like this: 1853The context is created by calling L<AnyEvent::TLS> without any arguments.
1462
1463 Net::SSLeay::load_error_strings;
1464 Net::SSLeay::SSLeay_add_ssl_algorithms;
1465 Net::SSLeay::randomize;
1466
1467 my $CTX = Net::SSLeay::CTX_new;
1468
1469 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1470 1854
1471=cut 1855=cut
1472 1856
1473our $TLS_CTX; 1857our $TLS_CTX;
1474 1858
1475sub TLS_CTX() { 1859sub TLS_CTX() {
1476 $TLS_CTX || do { 1860 $TLS_CTX ||= do {
1477 require Net::SSLeay; 1861 require AnyEvent::TLS;
1478 1862
1479 Net::SSLeay::load_error_strings (); 1863 new AnyEvent::TLS
1480 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1481 Net::SSLeay::randomize ();
1482
1483 $TLS_CTX = Net::SSLeay::CTX_new ();
1484
1485 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1486
1487 $TLS_CTX
1488 } 1864 }
1489} 1865}
1490 1866
1491=back 1867=back
1868
1869
1870=head1 NONFREQUENTLY ASKED QUESTIONS
1871
1872=over 4
1873
1874=item I C<undef> the AnyEvent::Handle reference inside my callback and
1875still get further invocations!
1876
1877That's because AnyEvent::Handle keeps a reference to itself when handling
1878read or write callbacks.
1879
1880It is only safe to "forget" the reference inside EOF or error callbacks,
1881from within all other callbacks, you need to explicitly call the C<<
1882->destroy >> method.
1883
1884=item I get different callback invocations in TLS mode/Why can't I pause
1885reading?
1886
1887Unlike, say, TCP, TLS connections do not consist of two independent
1888communication channels, one for each direction. Or put differently. The
1889read and write directions are not independent of each other: you cannot
1890write data unless you are also prepared to read, and vice versa.
1891
1892This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
1893callback invocations when you are not expecting any read data - the reason
1894is that AnyEvent::Handle always reads in TLS mode.
1895
1896During the connection, you have to make sure that you always have a
1897non-empty read-queue, or an C<on_read> watcher. At the end of the
1898connection (or when you no longer want to use it) you can call the
1899C<destroy> method.
1900
1901=item How do I read data until the other side closes the connection?
1902
1903If you just want to read your data into a perl scalar, the easiest way
1904to achieve this is by setting an C<on_read> callback that does nothing,
1905clearing the C<on_eof> callback and in the C<on_error> callback, the data
1906will be in C<$_[0]{rbuf}>:
1907
1908 $handle->on_read (sub { });
1909 $handle->on_eof (undef);
1910 $handle->on_error (sub {
1911 my $data = delete $_[0]{rbuf};
1912 });
1913
1914The reason to use C<on_error> is that TCP connections, due to latencies
1915and packets loss, might get closed quite violently with an error, when in
1916fact, all data has been received.
1917
1918It is usually better to use acknowledgements when transferring data,
1919to make sure the other side hasn't just died and you got the data
1920intact. This is also one reason why so many internet protocols have an
1921explicit QUIT command.
1922
1923=item I don't want to destroy the handle too early - how do I wait until
1924all data has been written?
1925
1926After writing your last bits of data, set the C<on_drain> callback
1927and destroy the handle in there - with the default setting of
1928C<low_water_mark> this will be called precisely when all data has been
1929written to the socket:
1930
1931 $handle->push_write (...);
1932 $handle->on_drain (sub {
1933 warn "all data submitted to the kernel\n";
1934 undef $handle;
1935 });
1936
1937If you just want to queue some data and then signal EOF to the other side,
1938consider using C<< ->push_shutdown >> instead.
1939
1940=item I want to contact a TLS/SSL server, I don't care about security.
1941
1942If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
1943simply connect to it and then create the AnyEvent::Handle with the C<tls>
1944parameter:
1945
1946 tcp_connect $host, $port, sub {
1947 my ($fh) = @_;
1948
1949 my $handle = new AnyEvent::Handle
1950 fh => $fh,
1951 tls => "connect",
1952 on_error => sub { ... };
1953
1954 $handle->push_write (...);
1955 };
1956
1957=item I want to contact a TLS/SSL server, I do care about security.
1958
1959Then you should additionally enable certificate verification, including
1960peername verification, if the protocol you use supports it (see
1961L<AnyEvent::TLS>, C<verify_peername>).
1962
1963E.g. for HTTPS:
1964
1965 tcp_connect $host, $port, sub {
1966 my ($fh) = @_;
1967
1968 my $handle = new AnyEvent::Handle
1969 fh => $fh,
1970 peername => $host,
1971 tls => "connect",
1972 tls_ctx => { verify => 1, verify_peername => "https" },
1973 ...
1974
1975Note that you must specify the hostname you connected to (or whatever
1976"peername" the protocol needs) as the C<peername> argument, otherwise no
1977peername verification will be done.
1978
1979The above will use the system-dependent default set of trusted CA
1980certificates. If you want to check against a specific CA, add the
1981C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
1982
1983 tls_ctx => {
1984 verify => 1,
1985 verify_peername => "https",
1986 ca_file => "my-ca-cert.pem",
1987 },
1988
1989=item I want to create a TLS/SSL server, how do I do that?
1990
1991Well, you first need to get a server certificate and key. You have
1992three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
1993self-signed certificate (cheap. check the search engine of your choice,
1994there are many tutorials on the net) or c) make your own CA (tinyca2 is a
1995nice program for that purpose).
1996
1997Then create a file with your private key (in PEM format, see
1998L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
1999file should then look like this:
2000
2001 -----BEGIN RSA PRIVATE KEY-----
2002 ...header data
2003 ... lots of base64'y-stuff
2004 -----END RSA PRIVATE KEY-----
2005
2006 -----BEGIN CERTIFICATE-----
2007 ... lots of base64'y-stuff
2008 -----END CERTIFICATE-----
2009
2010The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2011specify this file as C<cert_file>:
2012
2013 tcp_server undef, $port, sub {
2014 my ($fh) = @_;
2015
2016 my $handle = new AnyEvent::Handle
2017 fh => $fh,
2018 tls => "accept",
2019 tls_ctx => { cert_file => "my-server-keycert.pem" },
2020 ...
2021
2022When you have intermediate CA certificates that your clients might not
2023know about, just append them to the C<cert_file>.
2024
2025=back
2026
1492 2027
1493=head1 SUBCLASSING AnyEvent::Handle 2028=head1 SUBCLASSING AnyEvent::Handle
1494 2029
1495In many cases, you might want to subclass AnyEvent::Handle. 2030In many cases, you might want to subclass AnyEvent::Handle.
1496 2031

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines