ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.63 by root, Fri Jun 6 11:00:32 2008 UTC vs.
Revision 1.183 by root, Thu Sep 3 12:45:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict;
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.14;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>. 37
38The L<AnyEvent::Intro> tutorial contains some well-documented
39AnyEvent::Handle examples.
53 40
54In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
55means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
56treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
57 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
58All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
59argument. 49argument.
60 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
61=head1 METHODS 65=head1 METHODS
62 66
63=over 4 67=over 4
64 68
65=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
66 70
67The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
68 72
69=over 4 73=over 4
70 74
71=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
72 76
73The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
74
75NOTE: The filehandle will be set to non-blocking (using 78NOTE: The filehandle will be set to non-blocking mode (using
76AnyEvent::Util::fh_nonblocking). 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode.
77 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
78=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
79 100
80Set the callback to be called when an end-of-file condition is detcted, 101This (rarely used) callback is called before a new connection is
81i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
82connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
83 106
84While not mandatory, it is highly recommended to set an eof callback, 107The return value of this callback should be the connect timeout value in
85otherwise you might end up with a closed socket while you are still 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
86waiting for data. 109timeout is to be used).
87 110
111=item on_connect => $cb->($handle, $host, $port, $retry->())
112
113This callback is called when a connection has been successfully established.
114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
88=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
89 138
90This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
91occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
92connect or a read error. 141connect or a read error.
93 142
94Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
95fatal errors the handle object will be shut down and will not be 144fatal errors the handle object will be destroyed (by a call to C<< ->
145destroy >>) after invoking the error callback (which means you are free to
146examine the handle object). Examples of fatal errors are an EOF condition
147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
155
96usable. Non-fatal errors can be retried by simply returning, but it is 156Non-fatal errors can be retried by simply returning, but it is recommended
97recommended to simply ignore this parameter and instead abondon the handle 157to simply ignore this parameter and instead abondon the handle object
98object when this callback is invoked. 158when this callback is invoked. Examples of non-fatal errors are timeouts
159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
99 160
100On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
101error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
102 164
103While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
104you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
105C<croak>. 167C<croak>.
106 168
110and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
111callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
112read buffer). 174read buffer).
113 175
114To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
116 180
117When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
118feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
119calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
120error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
121 185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
206
122=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
123 208
124This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
125(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
126 211
127To append to the write buffer, use the C<< ->push_write >> method. 212To append to the write buffer, use the C<< ->push_write >> method.
128 213
214This callback is useful when you don't want to put all of your write data
215into the queue at once, for example, when you want to write the contents
216of some file to the socket you might not want to read the whole file into
217memory and push it into the queue, but instead only read more data from
218the file when the write queue becomes empty.
219
129=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
130 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
131If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
132seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
133handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
134missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
135 237
136Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
137any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
138idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
139in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
140 243
141Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
142 245
143=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
144 247
148 251
149=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
150 253
151If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
153avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
154 257
155For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
156be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
157(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
158amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
159isn't finished). 262isn't finished).
160 263
264=item autocork => <boolean>
265
266When disabled (the default), then C<push_write> will try to immediately
267write the data to the handle, if possible. This avoids having to register
268a write watcher and wait for the next event loop iteration, but can
269be inefficient if you write multiple small chunks (on the wire, this
270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
272
273When enabled, then writes will always be queued till the next event loop
274iteration. This is efficient when you do many small writes per iteration,
275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
277
278=item no_delay => <boolean>
279
280When doing small writes on sockets, your operating system kernel might
281wait a bit for more data before actually sending it out. This is called
282the Nagle algorithm, and usually it is beneficial.
283
284In some situations you want as low a delay as possible, which can be
285accomplishd by setting this option to a true value.
286
287The default is your opertaing system's default behaviour (most likely
288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified.
318
161=item read_size => <bytes> 319=item read_size => <bytes>
162 320
163The default read block size (the amount of bytes this module will try to read 321The default read block size (the amount of bytes this module will
164during each (loop iteration). Default: C<8192>. 322try to read during each loop iteration, which affects memory
323requirements). Default: C<8192>.
165 324
166=item low_water_mark => <bytes> 325=item low_water_mark => <bytes>
167 326
168Sets the amount of bytes (default: C<0>) that make up an "empty" write 327Sets the amount of bytes (default: C<0>) that make up an "empty" write
169buffer: If the write reaches this size or gets even samller it is 328buffer: If the write reaches this size or gets even samller it is
170considered empty. 329considered empty.
171 330
331Sometimes it can be beneficial (for performance reasons) to add data to
332the write buffer before it is fully drained, but this is a rare case, as
333the operating system kernel usually buffers data as well, so the default
334is good in almost all cases.
335
172=item linger => <seconds> 336=item linger => <seconds>
173 337
174If non-zero (default: C<3600>), then the destructor of the 338If non-zero (default: C<3600>), then the destructor of the
175AnyEvent::Handle object will check wether there is still outstanding write 339AnyEvent::Handle object will check whether there is still outstanding
176data and will install a watcher that will write out this data. No errors 340write data and will install a watcher that will write this data to the
177will be reported (this mostly matches how the operating system treats 341socket. No errors will be reported (this mostly matches how the operating
178outstanding data at socket close time). 342system treats outstanding data at socket close time).
179 343
180This will not work for partial TLS data that could not yet been 344This will not work for partial TLS data that could not be encoded
181encoded. This data will be lost. 345yet. This data will be lost. Calling the C<stoptls> method in time might
346help.
347
348=item peername => $string
349
350A string used to identify the remote site - usually the DNS hostname
351(I<not> IDN!) used to create the connection, rarely the IP address.
352
353Apart from being useful in error messages, this string is also used in TLS
354peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
355verification will be skipped when C<peername> is not specified or
356C<undef>.
182 357
183=item tls => "accept" | "connect" | Net::SSLeay::SSL object 358=item tls => "accept" | "connect" | Net::SSLeay::SSL object
184 359
185When this parameter is given, it enables TLS (SSL) mode, that means it 360When this parameter is given, it enables TLS (SSL) mode, that means
186will start making tls handshake and will transparently encrypt/decrypt 361AnyEvent will start a TLS handshake as soon as the conenction has been
187data. 362established and will transparently encrypt/decrypt data afterwards.
363
364All TLS protocol errors will be signalled as C<EPROTO>, with an
365appropriate error message.
188 366
189TLS mode requires Net::SSLeay to be installed (it will be loaded 367TLS mode requires Net::SSLeay to be installed (it will be loaded
190automatically when you try to create a TLS handle). 368automatically when you try to create a TLS handle): this module doesn't
369have a dependency on that module, so if your module requires it, you have
370to add the dependency yourself.
191 371
192For the TLS server side, use C<accept>, and for the TLS client side of a 372Unlike TCP, TLS has a server and client side: for the TLS server side, use
193connection, use C<connect> mode. 373C<accept>, and for the TLS client side of a connection, use C<connect>
374mode.
194 375
195You can also provide your own TLS connection object, but you have 376You can also provide your own TLS connection object, but you have
196to make sure that you call either C<Net::SSLeay::set_connect_state> 377to make sure that you call either C<Net::SSLeay::set_connect_state>
197or C<Net::SSLeay::set_accept_state> on it before you pass it to 378or C<Net::SSLeay::set_accept_state> on it before you pass it to
198AnyEvent::Handle. 379AnyEvent::Handle. Also, this module will take ownership of this connection
380object.
199 381
382At some future point, AnyEvent::Handle might switch to another TLS
383implementation, then the option to use your own session object will go
384away.
385
386B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
387passing in the wrong integer will lead to certain crash. This most often
388happens when one uses a stylish C<< tls => 1 >> and is surprised about the
389segmentation fault.
390
200See the C<starttls> method if you need to start TLs negotiation later. 391See the C<< ->starttls >> method for when need to start TLS negotiation later.
201 392
202=item tls_ctx => $ssl_ctx 393=item tls_ctx => $anyevent_tls
203 394
204Use the given Net::SSLeay::CTX object to create the new TLS connection 395Use the given C<AnyEvent::TLS> object to create the new TLS connection
205(unless a connection object was specified directly). If this parameter is 396(unless a connection object was specified directly). If this parameter is
206missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 397missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207 398
399Instead of an object, you can also specify a hash reference with C<< key
400=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
401new TLS context object.
402
403=item on_starttls => $cb->($handle, $success[, $error_message])
404
405This callback will be invoked when the TLS/SSL handshake has finished. If
406C<$success> is true, then the TLS handshake succeeded, otherwise it failed
407(C<on_stoptls> will not be called in this case).
408
409The session in C<< $handle->{tls} >> can still be examined in this
410callback, even when the handshake was not successful.
411
412TLS handshake failures will not cause C<on_error> to be invoked when this
413callback is in effect, instead, the error message will be passed to C<on_starttls>.
414
415Without this callback, handshake failures lead to C<on_error> being
416called, as normal.
417
418Note that you cannot call C<starttls> right again in this callback. If you
419need to do that, start an zero-second timer instead whose callback can
420then call C<< ->starttls >> again.
421
422=item on_stoptls => $cb->($handle)
423
424When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
425set, then it will be invoked after freeing the TLS session. If it is not,
426then a TLS shutdown condition will be treated like a normal EOF condition
427on the handle.
428
429The session in C<< $handle->{tls} >> can still be examined in this
430callback.
431
432This callback will only be called on TLS shutdowns, not when the
433underlying handle signals EOF.
434
208=item json => JSON or JSON::XS object 435=item json => JSON or JSON::XS object
209 436
210This is the json coder object used by the C<json> read and write types. 437This is the json coder object used by the C<json> read and write types.
211 438
212If you don't supply it, then AnyEvent::Handle will create and use a 439If you don't supply it, then AnyEvent::Handle will create and use a
213suitable one, which will write and expect UTF-8 encoded JSON texts. 440suitable one (on demand), which will write and expect UTF-8 encoded JSON
441texts.
214 442
215Note that you are responsible to depend on the JSON module if you want to 443Note that you are responsible to depend on the JSON module if you want to
216use this functionality, as AnyEvent does not have a dependency itself. 444use this functionality, as AnyEvent does not have a dependency itself.
217 445
218=item filter_r => $cb
219
220=item filter_w => $cb
221
222These exist, but are undocumented at this time.
223
224=back 446=back
225 447
226=cut 448=cut
227 449
228sub new { 450sub new {
229 my $class = shift; 451 my $class = shift;
230
231 my $self = bless { @_ }, $class; 452 my $self = bless { @_ }, $class;
232 453
233 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 454 if ($self->{fh}) {
455 $self->_start;
456 return unless $self->{fh}; # could be gone by now
457
458 } elsif ($self->{connect}) {
459 require AnyEvent::Socket;
460
461 $self->{peername} = $self->{connect}[0]
462 unless exists $self->{peername};
463
464 $self->{_skip_drain_rbuf} = 1;
465
466 {
467 Scalar::Util::weaken (my $self = $self);
468
469 $self->{_connect} =
470 AnyEvent::Socket::tcp_connect (
471 $self->{connect}[0],
472 $self->{connect}[1],
473 sub {
474 my ($fh, $host, $port, $retry) = @_;
475
476 if ($fh) {
477 $self->{fh} = $fh;
478
479 delete $self->{_skip_drain_rbuf};
480 $self->_start;
481
482 $self->{on_connect}
483 and $self->{on_connect}($self, $host, $port, sub {
484 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
485 $self->{_skip_drain_rbuf} = 1;
486 &$retry;
487 });
488
489 } else {
490 if ($self->{on_connect_error}) {
491 $self->{on_connect_error}($self, "$!");
492 $self->destroy;
493 } else {
494 $self->_error ($!, 1);
495 }
496 }
497 },
498 sub {
499 local $self->{fh} = $_[0];
500
501 $self->{on_prepare}
502 ? $self->{on_prepare}->($self)
503 : ()
504 }
505 );
506 }
507
508 } else {
509 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
510 }
511
512 $self
513}
514
515sub _start {
516 my ($self) = @_;
234 517
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 518 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236 519
237 if ($self->{tls}) { 520 $self->{_activity} =
238 require Net::SSLeay; 521 $self->{_ractivity} =
522 $self->{_wactivity} = AE::now;
523
524 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
525 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
526 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
527
528 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
529 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
530
531 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
532
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 533 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
240 } 534 if $self->{tls};
241 535
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain}; 536 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246 537
247 $self 538 $self->start_read
248} 539 if $self->{on_read} || @{ $self->{_queue} };
249 540
250sub _shutdown { 541 $self->_drain_wbuf;
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259} 542}
260 543
261sub _error { 544sub _error {
262 my ($self, $errno, $fatal) = @_; 545 my ($self, $errno, $fatal, $message) = @_;
263
264 $self->_shutdown
265 if $fatal;
266 546
267 $! = $errno; 547 $! = $errno;
548 $message ||= "$!";
268 549
269 if ($self->{on_error}) { 550 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal); 551 $self->{on_error}($self, $fatal, $message);
271 } else { 552 $self->destroy if $fatal;
553 } elsif ($self->{fh}) {
554 $self->destroy;
272 Carp::croak "AnyEvent::Handle uncaught error: $!"; 555 Carp::croak "AnyEvent::Handle uncaught error: $message";
273 } 556 }
274} 557}
275 558
276=item $fh = $handle->fh 559=item $fh = $handle->fh
277 560
278This method returns the file handle of the L<AnyEvent::Handle> object. 561This method returns the file handle used to create the L<AnyEvent::Handle> object.
279 562
280=cut 563=cut
281 564
282sub fh { $_[0]{fh} } 565sub fh { $_[0]{fh} }
283 566
301 $_[0]{on_eof} = $_[1]; 584 $_[0]{on_eof} = $_[1];
302} 585}
303 586
304=item $handle->on_timeout ($cb) 587=item $handle->on_timeout ($cb)
305 588
306Replace the current C<on_timeout> callback, or disables the callback 589=item $handle->on_rtimeout ($cb)
307(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308argument.
309 590
310=cut 591=item $handle->on_wtimeout ($cb)
311 592
312sub on_timeout { 593Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
594callback, or disables the callback (but not the timeout) if C<$cb> =
595C<undef>. See the C<timeout> constructor argument and method.
596
597=cut
598
599# see below
600
601=item $handle->autocork ($boolean)
602
603Enables or disables the current autocork behaviour (see C<autocork>
604constructor argument). Changes will only take effect on the next write.
605
606=cut
607
608sub autocork {
609 $_[0]{autocork} = $_[1];
610}
611
612=item $handle->no_delay ($boolean)
613
614Enables or disables the C<no_delay> setting (see constructor argument of
615the same name for details).
616
617=cut
618
619sub no_delay {
620 $_[0]{no_delay} = $_[1];
621
622 eval {
623 local $SIG{__DIE__};
624 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
625 if $_[0]{fh};
626 };
627}
628
629=item $handle->keepalive ($boolean)
630
631Enables or disables the C<keepalive> setting (see constructor argument of
632the same name for details).
633
634=cut
635
636sub keepalive {
637 $_[0]{keepalive} = $_[1];
638
639 eval {
640 local $SIG{__DIE__};
641 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
642 if $_[0]{fh};
643 };
644}
645
646=item $handle->oobinline ($boolean)
647
648Enables or disables the C<oobinline> setting (see constructor argument of
649the same name for details).
650
651=cut
652
653sub oobinline {
654 $_[0]{oobinline} = $_[1];
655
656 eval {
657 local $SIG{__DIE__};
658 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
659 if $_[0]{fh};
660 };
661}
662
663=item $handle->keepalive ($boolean)
664
665Enables or disables the C<keepalive> setting (see constructor argument of
666the same name for details).
667
668=cut
669
670sub keepalive {
671 $_[0]{keepalive} = $_[1];
672
673 eval {
674 local $SIG{__DIE__};
675 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
676 if $_[0]{fh};
677 };
678}
679
680=item $handle->on_starttls ($cb)
681
682Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
683
684=cut
685
686sub on_starttls {
687 $_[0]{on_starttls} = $_[1];
688}
689
690=item $handle->on_stoptls ($cb)
691
692Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
693
694=cut
695
696sub on_starttls {
313 $_[0]{on_timeout} = $_[1]; 697 $_[0]{on_stoptls} = $_[1];
698}
699
700=item $handle->rbuf_max ($max_octets)
701
702Configures the C<rbuf_max> setting (C<undef> disables it).
703
704=cut
705
706sub rbuf_max {
707 $_[0]{rbuf_max} = $_[1];
314} 708}
315 709
316############################################################################# 710#############################################################################
317 711
318=item $handle->timeout ($seconds) 712=item $handle->timeout ($seconds)
319 713
714=item $handle->rtimeout ($seconds)
715
716=item $handle->wtimeout ($seconds)
717
320Configures (or disables) the inactivity timeout. 718Configures (or disables) the inactivity timeout.
321 719
322=cut 720=item $handle->timeout_reset
323 721
324sub timeout { 722=item $handle->rtimeout_reset
723
724=item $handle->wtimeout_reset
725
726Reset the activity timeout, as if data was received or sent.
727
728These methods are cheap to call.
729
730=cut
731
732for my $dir ("", "r", "w") {
733 my $timeout = "${dir}timeout";
734 my $tw = "_${dir}tw";
735 my $on_timeout = "on_${dir}timeout";
736 my $activity = "_${dir}activity";
737 my $cb;
738
739 *$on_timeout = sub {
740 $_[0]{$on_timeout} = $_[1];
741 };
742
743 *$timeout = sub {
325 my ($self, $timeout) = @_; 744 my ($self, $new_value) = @_;
326 745
327 $self->{timeout} = $timeout; 746 $self->{$timeout} = $new_value;
328 $self->_timeout; 747 delete $self->{$tw}; &$cb;
329} 748 };
330 749
750 *{"${dir}timeout_reset"} = sub {
751 $_[0]{$activity} = AE::now;
752 };
753
754 # main workhorse:
331# reset the timeout watcher, as neccessary 755 # reset the timeout watcher, as neccessary
332# also check for time-outs 756 # also check for time-outs
333sub _timeout { 757 $cb = sub {
334 my ($self) = @_; 758 my ($self) = @_;
335 759
336 if ($self->{timeout}) { 760 if ($self->{$timeout} && $self->{fh}) {
337 my $NOW = AnyEvent->now; 761 my $NOW = AE::now;
338 762
339 # when would the timeout trigger? 763 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW; 764 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
341 765
342 # now or in the past already? 766 # now or in the past already?
343 if ($after <= 0) { 767 if ($after <= 0) {
344 $self->{_activity} = $NOW; 768 $self->{$activity} = $NOW;
345 769
346 if ($self->{on_timeout}) { 770 if ($self->{$on_timeout}) {
347 $self->{on_timeout}($self); 771 $self->{$on_timeout}($self);
348 } else { 772 } else {
349 $self->_error (&Errno::ETIMEDOUT); 773 $self->_error (Errno::ETIMEDOUT);
774 }
775
776 # callback could have changed timeout value, optimise
777 return unless $self->{$timeout};
778
779 # calculate new after
780 $after = $self->{$timeout};
350 } 781 }
351 782
352 # callback could have changed timeout value, optimise 783 Scalar::Util::weaken $self;
353 return unless $self->{timeout}; 784 return unless $self; # ->error could have destroyed $self
354 785
355 # calculate new after 786 $self->{$tw} ||= AE::timer $after, 0, sub {
356 $after = $self->{timeout}; 787 delete $self->{$tw};
788 $cb->($self);
789 };
790 } else {
791 delete $self->{$tw};
357 } 792 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 } 793 }
369} 794}
370 795
371############################################################################# 796#############################################################################
372 797
396 my ($self, $cb) = @_; 821 my ($self, $cb) = @_;
397 822
398 $self->{on_drain} = $cb; 823 $self->{on_drain} = $cb;
399 824
400 $cb->($self) 825 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 826 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
402} 827}
403 828
404=item $handle->push_write ($data) 829=item $handle->push_write ($data)
405 830
406Queues the given scalar to be written. You can push as much data as you 831Queues the given scalar to be written. You can push as much data as you
417 Scalar::Util::weaken $self; 842 Scalar::Util::weaken $self;
418 843
419 my $cb = sub { 844 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf}; 845 my $len = syswrite $self->{fh}, $self->{wbuf};
421 846
422 if ($len >= 0) { 847 if (defined $len) {
423 substr $self->{wbuf}, 0, $len, ""; 848 substr $self->{wbuf}, 0, $len, "";
424 849
425 $self->{_activity} = AnyEvent->now; 850 $self->{_activity} = $self->{_wactivity} = AE::now;
426 851
427 $self->{on_drain}($self) 852 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf} 853 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
429 && $self->{on_drain}; 854 && $self->{on_drain};
430 855
431 delete $self->{_ww} unless length $self->{wbuf}; 856 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 857 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1); 858 $self->_error ($!, 1);
434 } 859 }
435 }; 860 };
436 861
437 # try to write data immediately 862 # try to write data immediately
438 $cb->(); 863 $cb->() unless $self->{autocork};
439 864
440 # if still data left in wbuf, we need to poll 865 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 866 $self->{_ww} = AE::io $self->{fh}, 1, $cb
442 if length $self->{wbuf}; 867 if length $self->{wbuf};
443 }; 868 };
444} 869}
445 870
446our %WH; 871our %WH;
457 882
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 883 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_); 884 ->($self, @_);
460 } 885 }
461 886
462 if ($self->{filter_w}) { 887 if ($self->{tls}) {
463 $self->{filter_w}($self, \$_[0]); 888 $self->{_tls_wbuf} .= $_[0];
889 &_dotls ($self) if $self->{fh};
464 } else { 890 } else {
465 $self->{wbuf} .= $_[0]; 891 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf; 892 $self->_drain_wbuf if $self->{fh};
467 } 893 }
468} 894}
469 895
470=item $handle->push_write (type => @args) 896=item $handle->push_write (type => @args)
471 897
485=cut 911=cut
486 912
487register_write_type netstring => sub { 913register_write_type netstring => sub {
488 my ($self, $string) = @_; 914 my ($self, $string) = @_;
489 915
490 sprintf "%d:%s,", (length $string), $string 916 (length $string) . ":$string,"
491}; 917};
492 918
493=item packstring => $format, $data 919=item packstring => $format, $data
494 920
495An octet string prefixed with an encoded length. The encoding C<$format> 921An octet string prefixed with an encoded length. The encoding C<$format>
500=cut 926=cut
501 927
502register_write_type packstring => sub { 928register_write_type packstring => sub {
503 my ($self, $format, $string) = @_; 929 my ($self, $format, $string) = @_;
504 930
505 pack "$format/a", $string 931 pack "$format/a*", $string
506}; 932};
507 933
508=item json => $array_or_hashref 934=item json => $array_or_hashref
509 935
510Encodes the given hash or array reference into a JSON object. Unless you 936Encodes the given hash or array reference into a JSON object. Unless you
535Other languages could read single lines terminated by a newline and pass 961Other languages could read single lines terminated by a newline and pass
536this line into their JSON decoder of choice. 962this line into their JSON decoder of choice.
537 963
538=cut 964=cut
539 965
966sub json_coder() {
967 eval { require JSON::XS; JSON::XS->new->utf8 }
968 || do { require JSON; JSON->new->utf8 }
969}
970
540register_write_type json => sub { 971register_write_type json => sub {
541 my ($self, $ref) = @_; 972 my ($self, $ref) = @_;
542 973
543 require JSON; 974 my $json = $self->{json} ||= json_coder;
544 975
545 $self->{json} ? $self->{json}->encode ($ref) 976 $json->encode ($ref)
546 : JSON::encode_json ($ref)
547}; 977};
548 978
549=item storable => $reference 979=item storable => $reference
550 980
551Freezes the given reference using L<Storable> and writes it to the 981Freezes the given reference using L<Storable> and writes it to the
556register_write_type storable => sub { 986register_write_type storable => sub {
557 my ($self, $ref) = @_; 987 my ($self, $ref) = @_;
558 988
559 require Storable; 989 require Storable;
560 990
561 pack "w/a", Storable::nfreeze ($ref) 991 pack "w/a*", Storable::nfreeze ($ref)
562}; 992};
563 993
564=back 994=back
995
996=item $handle->push_shutdown
997
998Sometimes you know you want to close the socket after writing your data
999before it was actually written. One way to do that is to replace your
1000C<on_drain> handler by a callback that shuts down the socket (and set
1001C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1002replaces the C<on_drain> callback with:
1003
1004 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1005
1006This simply shuts down the write side and signals an EOF condition to the
1007the peer.
1008
1009You can rely on the normal read queue and C<on_eof> handling
1010afterwards. This is the cleanest way to close a connection.
1011
1012=cut
1013
1014sub push_shutdown {
1015 my ($self) = @_;
1016
1017 delete $self->{low_water_mark};
1018 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1019}
565 1020
566=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1021=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
567 1022
568This function (not method) lets you add your own types to C<push_write>. 1023This function (not method) lets you add your own types to C<push_write>.
569Whenever the given C<type> is used, C<push_write> will invoke the code 1024Whenever the given C<type> is used, C<push_write> will invoke the code
590ways, the "simple" way, using only C<on_read> and the "complex" way, using 1045ways, the "simple" way, using only C<on_read> and the "complex" way, using
591a queue. 1046a queue.
592 1047
593In the simple case, you just install an C<on_read> callback and whenever 1048In the simple case, you just install an C<on_read> callback and whenever
594new data arrives, it will be called. You can then remove some data (if 1049new data arrives, it will be called. You can then remove some data (if
595enough is there) from the read buffer (C<< $handle->rbuf >>) if you want 1050enough is there) from the read buffer (C<< $handle->rbuf >>). Or you cna
596or not. 1051leave the data there if you want to accumulate more (e.g. when only a
1052partial message has been received so far).
597 1053
598In the more complex case, you want to queue multiple callbacks. In this 1054In the more complex case, you want to queue multiple callbacks. In this
599case, AnyEvent::Handle will call the first queued callback each time new 1055case, AnyEvent::Handle will call the first queued callback each time new
600data arrives (also the first time it is queued) and removes it when it has 1056data arrives (also the first time it is queued) and removes it when it has
601done its job (see C<push_read>, below). 1057done its job (see C<push_read>, below).
619 # handle xml 1075 # handle xml
620 }); 1076 });
621 }); 1077 });
622 }); 1078 });
623 1079
624Example 2: Implement a client for a protocol that replies either with 1080Example 2: Implement a client for a protocol that replies either with "OK"
625"OK" and another line or "ERROR" for one request, and 64 bytes for the 1081and another line or "ERROR" for the first request that is sent, and 64
626second request. Due tot he availability of a full queue, we can just 1082bytes for the second request. Due to the availability of a queue, we can
627pipeline sending both requests and manipulate the queue as necessary in 1083just pipeline sending both requests and manipulate the queue as necessary
628the callbacks: 1084in the callbacks.
629 1085
630 # request one 1086When the first callback is called and sees an "OK" response, it will
1087C<unshift> another line-read. This line-read will be queued I<before> the
108864-byte chunk callback.
1089
1090 # request one, returns either "OK + extra line" or "ERROR"
631 $handle->push_write ("request 1\015\012"); 1091 $handle->push_write ("request 1\015\012");
632 1092
633 # we expect "ERROR" or "OK" as response, so push a line read 1093 # we expect "ERROR" or "OK" as response, so push a line read
634 $handle->push_read (line => sub { 1094 $handle->push_read (line => sub {
635 # if we got an "OK", we have to _prepend_ another line, 1095 # if we got an "OK", we have to _prepend_ another line,
642 ... 1102 ...
643 }); 1103 });
644 } 1104 }
645 }); 1105 });
646 1106
647 # request two 1107 # request two, simply returns 64 octets
648 $handle->push_write ("request 2\015\012"); 1108 $handle->push_write ("request 2\015\012");
649 1109
650 # simply read 64 bytes, always 1110 # simply read 64 bytes, always
651 $handle->push_read (chunk => 64, sub { 1111 $handle->push_read (chunk => 64, sub {
652 my $response = $_[1]; 1112 my $response = $_[1];
658=cut 1118=cut
659 1119
660sub _drain_rbuf { 1120sub _drain_rbuf {
661 my ($self) = @_; 1121 my ($self) = @_;
662 1122
1123 # avoid recursion
1124 return if $self->{_skip_drain_rbuf};
663 local $self->{_in_drain} = 1; 1125 local $self->{_skip_drain_rbuf} = 1;
664
665 if (
666 defined $self->{rbuf_max}
667 && $self->{rbuf_max} < length $self->{rbuf}
668 ) {
669 return $self->_error (&Errno::ENOSPC, 1);
670 }
671 1126
672 while () { 1127 while () {
673 no strict 'refs'; 1128 # we need to use a separate tls read buffer, as we must not receive data while
1129 # we are draining the buffer, and this can only happen with TLS.
1130 $self->{rbuf} .= delete $self->{_tls_rbuf}
1131 if exists $self->{_tls_rbuf};
674 1132
675 my $len = length $self->{rbuf}; 1133 my $len = length $self->{rbuf};
676 1134
677 if (my $cb = shift @{ $self->{_queue} }) { 1135 if (my $cb = shift @{ $self->{_queue} }) {
678 unless ($cb->($self)) { 1136 unless ($cb->($self)) {
679 if ($self->{_eof}) { 1137 # no progress can be made
680 # no progress can be made (not enough data and no data forthcoming) 1138 # (not enough data and no data forthcoming)
681 $self->_error (&Errno::EPIPE, 1), last; 1139 $self->_error (Errno::EPIPE, 1), return
682 } 1140 if $self->{_eof};
683 1141
684 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
685 last; 1143 last;
686 } 1144 }
687 } elsif ($self->{on_read}) { 1145 } elsif ($self->{on_read}) {
694 && !@{ $self->{_queue} } # and the queue is still empty 1152 && !@{ $self->{_queue} } # and the queue is still empty
695 && $self->{on_read} # but we still have on_read 1153 && $self->{on_read} # but we still have on_read
696 ) { 1154 ) {
697 # no further data will arrive 1155 # no further data will arrive
698 # so no progress can be made 1156 # so no progress can be made
699 $self->_error (&Errno::EPIPE, 1), last 1157 $self->_error (Errno::EPIPE, 1), return
700 if $self->{_eof}; 1158 if $self->{_eof};
701 1159
702 last; # more data might arrive 1160 last; # more data might arrive
703 } 1161 }
704 } else { 1162 } else {
705 # read side becomes idle 1163 # read side becomes idle
706 delete $self->{_rw}; 1164 delete $self->{_rw} unless $self->{tls};
707 last; 1165 last;
708 } 1166 }
709 } 1167 }
710 1168
1169 if ($self->{_eof}) {
1170 $self->{on_eof}
711 $self->{on_eof}($self) 1171 ? $self->{on_eof}($self)
712 if $self->{_eof} && $self->{on_eof}; 1172 : $self->_error (0, 1, "Unexpected end-of-file");
1173
1174 return;
1175 }
1176
1177 if (
1178 defined $self->{rbuf_max}
1179 && $self->{rbuf_max} < length $self->{rbuf}
1180 ) {
1181 $self->_error (Errno::ENOSPC, 1), return;
1182 }
713 1183
714 # may need to restart read watcher 1184 # may need to restart read watcher
715 unless ($self->{_rw}) { 1185 unless ($self->{_rw}) {
716 $self->start_read 1186 $self->start_read
717 if $self->{on_read} || @{ $self->{_queue} }; 1187 if $self->{on_read} || @{ $self->{_queue} };
728 1198
729sub on_read { 1199sub on_read {
730 my ($self, $cb) = @_; 1200 my ($self, $cb) = @_;
731 1201
732 $self->{on_read} = $cb; 1202 $self->{on_read} = $cb;
733 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1203 $self->_drain_rbuf if $cb;
734} 1204}
735 1205
736=item $handle->rbuf 1206=item $handle->rbuf
737 1207
738Returns the read buffer (as a modifiable lvalue). 1208Returns the read buffer (as a modifiable lvalue).
739 1209
740You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1210You can access the read buffer directly as the C<< ->{rbuf} >>
741you want. 1211member, if you want. However, the only operation allowed on the
1212read buffer (apart from looking at it) is removing data from its
1213beginning. Otherwise modifying or appending to it is not allowed and will
1214lead to hard-to-track-down bugs.
742 1215
743NOTE: The read buffer should only be used or modified if the C<on_read>, 1216NOTE: The read buffer should only be used or modified if the C<on_read>,
744C<push_read> or C<unshift_read> methods are used. The other read methods 1217C<push_read> or C<unshift_read> methods are used. The other read methods
745automatically manage the read buffer. 1218automatically manage the read buffer.
746 1219
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1260 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
788 ->($self, $cb, @_); 1261 ->($self, $cb, @_);
789 } 1262 }
790 1263
791 push @{ $self->{_queue} }, $cb; 1264 push @{ $self->{_queue} }, $cb;
792 $self->_drain_rbuf unless $self->{_in_drain}; 1265 $self->_drain_rbuf;
793} 1266}
794 1267
795sub unshift_read { 1268sub unshift_read {
796 my $self = shift; 1269 my $self = shift;
797 my $cb = pop; 1270 my $cb = pop;
801 1274
802 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1275 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
803 ->($self, $cb, @_); 1276 ->($self, $cb, @_);
804 } 1277 }
805 1278
806
807 unshift @{ $self->{_queue} }, $cb; 1279 unshift @{ $self->{_queue} }, $cb;
808 $self->_drain_rbuf unless $self->{_in_drain}; 1280 $self->_drain_rbuf;
809} 1281}
810 1282
811=item $handle->push_read (type => @args, $cb) 1283=item $handle->push_read (type => @args, $cb)
812 1284
813=item $handle->unshift_read (type => @args, $cb) 1285=item $handle->unshift_read (type => @args, $cb)
843 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, ""); 1315 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
844 1 1316 1
845 } 1317 }
846}; 1318};
847 1319
848# compatibility with older API
849sub push_read_chunk {
850 $_[0]->push_read (chunk => $_[1], $_[2]);
851}
852
853sub unshift_read_chunk {
854 $_[0]->unshift_read (chunk => $_[1], $_[2]);
855}
856
857=item line => [$eol, ]$cb->($handle, $line, $eol) 1320=item line => [$eol, ]$cb->($handle, $line, $eol)
858 1321
859The callback will be called only once a full line (including the end of 1322The callback will be called only once a full line (including the end of
860line marker, C<$eol>) has been read. This line (excluding the end of line 1323line marker, C<$eol>) has been read. This line (excluding the end of line
861marker) will be passed to the callback as second argument (C<$line>), and 1324marker) will be passed to the callback as second argument (C<$line>), and
876=cut 1339=cut
877 1340
878register_read_type line => sub { 1341register_read_type line => sub {
879 my ($self, $cb, $eol) = @_; 1342 my ($self, $cb, $eol) = @_;
880 1343
881 $eol = qr|(\015?\012)| if @_ < 3; 1344 if (@_ < 3) {
1345 # this is more than twice as fast as the generic code below
1346 sub {
1347 $_[0]{rbuf} =~ s/^([^\015\012]*)(\015?\012)// or return;
1348
1349 $cb->($_[0], $1, $2);
1350 1
1351 }
1352 } else {
882 $eol = quotemeta $eol unless ref $eol; 1353 $eol = quotemeta $eol unless ref $eol;
883 $eol = qr|^(.*?)($eol)|s; 1354 $eol = qr|^(.*?)($eol)|s;
884 1355
885 sub { 1356 sub {
886 $_[0]{rbuf} =~ s/$eol// or return; 1357 $_[0]{rbuf} =~ s/$eol// or return;
887 1358
888 $cb->($_[0], $1, $2); 1359 $cb->($_[0], $1, $2);
1360 1
889 1 1361 }
890 } 1362 }
891}; 1363};
892
893# compatibility with older API
894sub push_read_line {
895 my $self = shift;
896 $self->push_read (line => @_);
897}
898
899sub unshift_read_line {
900 my $self = shift;
901 $self->unshift_read (line => @_);
902}
903 1364
904=item regex => $accept[, $reject[, $skip], $cb->($handle, $data) 1365=item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
905 1366
906Makes a regex match against the regex object C<$accept> and returns 1367Makes a regex match against the regex object C<$accept> and returns
907everything up to and including the match. 1368everything up to and including the match.
957 return 1; 1418 return 1;
958 } 1419 }
959 1420
960 # reject 1421 # reject
961 if ($reject && $$rbuf =~ $reject) { 1422 if ($reject && $$rbuf =~ $reject) {
962 $self->_error (&Errno::EBADMSG); 1423 $self->_error (Errno::EBADMSG);
963 } 1424 }
964 1425
965 # skip 1426 # skip
966 if ($skip && $$rbuf =~ $skip) { 1427 if ($skip && $$rbuf =~ $skip) {
967 $data .= substr $$rbuf, 0, $+[0], ""; 1428 $data .= substr $$rbuf, 0, $+[0], "";
983 my ($self, $cb) = @_; 1444 my ($self, $cb) = @_;
984 1445
985 sub { 1446 sub {
986 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1447 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
987 if ($_[0]{rbuf} =~ /[^0-9]/) { 1448 if ($_[0]{rbuf} =~ /[^0-9]/) {
988 $self->_error (&Errno::EBADMSG); 1449 $self->_error (Errno::EBADMSG);
989 } 1450 }
990 return; 1451 return;
991 } 1452 }
992 1453
993 my $len = $1; 1454 my $len = $1;
996 my $string = $_[1]; 1457 my $string = $_[1];
997 $_[0]->unshift_read (chunk => 1, sub { 1458 $_[0]->unshift_read (chunk => 1, sub {
998 if ($_[1] eq ",") { 1459 if ($_[1] eq ",") {
999 $cb->($_[0], $string); 1460 $cb->($_[0], $string);
1000 } else { 1461 } else {
1001 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1002 } 1463 }
1003 }); 1464 });
1004 }); 1465 });
1005 1466
1006 1 1467 1
1012An octet string prefixed with an encoded length. The encoding C<$format> 1473An octet string prefixed with an encoded length. The encoding C<$format>
1013uses the same format as a Perl C<pack> format, but must specify a single 1474uses the same format as a Perl C<pack> format, but must specify a single
1014integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1475integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1015optional C<!>, C<< < >> or C<< > >> modifier). 1476optional C<!>, C<< < >> or C<< > >> modifier).
1016 1477
1017DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1478For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1479EPP uses a prefix of C<N> (4 octtes).
1018 1480
1019Example: read a block of data prefixed by its length in BER-encoded 1481Example: read a block of data prefixed by its length in BER-encoded
1020format (very efficient). 1482format (very efficient).
1021 1483
1022 $handle->push_read (packstring => "w", sub { 1484 $handle->push_read (packstring => "w", sub {
1028register_read_type packstring => sub { 1490register_read_type packstring => sub {
1029 my ($self, $cb, $format) = @_; 1491 my ($self, $cb, $format) = @_;
1030 1492
1031 sub { 1493 sub {
1032 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1494 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1033 defined (my $len = eval { unpack $format, $_[0]->{rbuf} }) 1495 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1034 or return; 1496 or return;
1035 1497
1498 $format = length pack $format, $len;
1499
1500 # bypass unshift if we already have the remaining chunk
1501 if ($format + $len <= length $_[0]{rbuf}) {
1502 my $data = substr $_[0]{rbuf}, $format, $len;
1503 substr $_[0]{rbuf}, 0, $format + $len, "";
1504 $cb->($_[0], $data);
1505 } else {
1036 # remove prefix 1506 # remove prefix
1037 substr $_[0]->{rbuf}, 0, (length pack $format, $len), ""; 1507 substr $_[0]{rbuf}, 0, $format, "";
1038 1508
1039 # read rest 1509 # read remaining chunk
1040 $_[0]->unshift_read (chunk => $len, $cb); 1510 $_[0]->unshift_read (chunk => $len, $cb);
1511 }
1041 1512
1042 1 1513 1
1043 } 1514 }
1044}; 1515};
1045 1516
1046=item json => $cb->($handle, $hash_or_arrayref) 1517=item json => $cb->($handle, $hash_or_arrayref)
1047 1518
1048Reads a JSON object or array, decodes it and passes it to the callback. 1519Reads a JSON object or array, decodes it and passes it to the
1520callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1049 1521
1050If a C<json> object was passed to the constructor, then that will be used 1522If a C<json> object was passed to the constructor, then that will be used
1051for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1523for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1052 1524
1053This read type uses the incremental parser available with JSON version 1525This read type uses the incremental parser available with JSON version
1062=cut 1534=cut
1063 1535
1064register_read_type json => sub { 1536register_read_type json => sub {
1065 my ($self, $cb) = @_; 1537 my ($self, $cb) = @_;
1066 1538
1067 require JSON; 1539 my $json = $self->{json} ||= json_coder;
1068 1540
1069 my $data; 1541 my $data;
1070 my $rbuf = \$self->{rbuf}; 1542 my $rbuf = \$self->{rbuf};
1071 1543
1072 my $json = $self->{json} ||= JSON->new->utf8;
1073
1074 sub { 1544 sub {
1075 my $ref = $json->incr_parse ($self->{rbuf}); 1545 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1076 1546
1077 if ($ref) { 1547 if ($ref) {
1078 $self->{rbuf} = $json->incr_text; 1548 $self->{rbuf} = $json->incr_text;
1079 $json->incr_text = ""; 1549 $json->incr_text = "";
1080 $cb->($self, $ref); 1550 $cb->($self, $ref);
1081 1551
1082 1 1552 1
1553 } elsif ($@) {
1554 # error case
1555 $json->incr_skip;
1556
1557 $self->{rbuf} = $json->incr_text;
1558 $json->incr_text = "";
1559
1560 $self->_error (Errno::EBADMSG);
1561
1562 ()
1083 } else { 1563 } else {
1084 $self->{rbuf} = ""; 1564 $self->{rbuf} = "";
1565
1085 () 1566 ()
1086 } 1567 }
1087 } 1568 }
1088}; 1569};
1089 1570
1102 1583
1103 require Storable; 1584 require Storable;
1104 1585
1105 sub { 1586 sub {
1106 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method 1587 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1107 defined (my $len = eval { unpack "w", $_[0]->{rbuf} }) 1588 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1108 or return; 1589 or return;
1109 1590
1591 my $format = length pack "w", $len;
1592
1593 # bypass unshift if we already have the remaining chunk
1594 if ($format + $len <= length $_[0]{rbuf}) {
1595 my $data = substr $_[0]{rbuf}, $format, $len;
1596 substr $_[0]{rbuf}, 0, $format + $len, "";
1597 $cb->($_[0], Storable::thaw ($data));
1598 } else {
1110 # remove prefix 1599 # remove prefix
1111 substr $_[0]->{rbuf}, 0, (length pack "w", $len), ""; 1600 substr $_[0]{rbuf}, 0, $format, "";
1112 1601
1113 # read rest 1602 # read remaining chunk
1114 $_[0]->unshift_read (chunk => $len, sub { 1603 $_[0]->unshift_read (chunk => $len, sub {
1115 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1604 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1116 $cb->($_[0], $ref); 1605 $cb->($_[0], $ref);
1117 } else { 1606 } else {
1118 $self->_error (&Errno::EBADMSG); 1607 $self->_error (Errno::EBADMSG);
1608 }
1119 } 1609 });
1120 }); 1610 }
1611
1612 1
1121 } 1613 }
1122}; 1614};
1123 1615
1124=back 1616=back
1125 1617
1155Note that AnyEvent::Handle will automatically C<start_read> for you when 1647Note that AnyEvent::Handle will automatically C<start_read> for you when
1156you change the C<on_read> callback or push/unshift a read callback, and it 1648you change the C<on_read> callback or push/unshift a read callback, and it
1157will automatically C<stop_read> for you when neither C<on_read> is set nor 1649will automatically C<stop_read> for you when neither C<on_read> is set nor
1158there are any read requests in the queue. 1650there are any read requests in the queue.
1159 1651
1652These methods will have no effect when in TLS mode (as TLS doesn't support
1653half-duplex connections).
1654
1160=cut 1655=cut
1161 1656
1162sub stop_read { 1657sub stop_read {
1163 my ($self) = @_; 1658 my ($self) = @_;
1164 1659
1165 delete $self->{_rw}; 1660 delete $self->{_rw} unless $self->{tls};
1166} 1661}
1167 1662
1168sub start_read { 1663sub start_read {
1169 my ($self) = @_; 1664 my ($self) = @_;
1170 1665
1171 unless ($self->{_rw} || $self->{_eof}) { 1666 unless ($self->{_rw} || $self->{_eof}) {
1172 Scalar::Util::weaken $self; 1667 Scalar::Util::weaken $self;
1173 1668
1174 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1669 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1175 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1670 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1176 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1671 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1177 1672
1178 if ($len > 0) { 1673 if ($len > 0) {
1179 $self->{_activity} = AnyEvent->now; 1674 $self->{_activity} = $self->{_ractivity} = AE::now;
1180 1675
1181 $self->{filter_r} 1676 if ($self->{tls}) {
1182 ? $self->{filter_r}($self, $rbuf) 1677 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1183 : $self->{_in_drain} || $self->_drain_rbuf; 1678
1679 &_dotls ($self);
1680 } else {
1681 $self->_drain_rbuf;
1682 }
1184 1683
1185 } elsif (defined $len) { 1684 } elsif (defined $len) {
1186 delete $self->{_rw}; 1685 delete $self->{_rw};
1187 $self->{_eof} = 1; 1686 $self->{_eof} = 1;
1188 $self->_drain_rbuf unless $self->{_in_drain}; 1687 $self->_drain_rbuf;
1189 1688
1190 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1689 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1191 return $self->_error ($!, 1); 1690 return $self->_error ($!, 1);
1192 } 1691 }
1193 }); 1692 };
1194 } 1693 }
1195} 1694}
1196 1695
1696our $ERROR_SYSCALL;
1697our $ERROR_WANT_READ;
1698
1699sub _tls_error {
1700 my ($self, $err) = @_;
1701
1702 return $self->_error ($!, 1)
1703 if $err == Net::SSLeay::ERROR_SYSCALL ();
1704
1705 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1706
1707 # reduce error string to look less scary
1708 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1709
1710 if ($self->{_on_starttls}) {
1711 (delete $self->{_on_starttls})->($self, undef, $err);
1712 &_freetls;
1713 } else {
1714 &_freetls;
1715 $self->_error (Errno::EPROTO, 1, $err);
1716 }
1717}
1718
1719# poll the write BIO and send the data if applicable
1720# also decode read data if possible
1721# this is basiclaly our TLS state machine
1722# more efficient implementations are possible with openssl,
1723# but not with the buggy and incomplete Net::SSLeay.
1197sub _dotls { 1724sub _dotls {
1198 my ($self) = @_; 1725 my ($self) = @_;
1199 1726
1200 my $buf; 1727 my $tmp;
1201 1728
1202 if (length $self->{_tls_wbuf}) { 1729 if (length $self->{_tls_wbuf}) {
1203 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1730 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1204 substr $self->{_tls_wbuf}, 0, $len, ""; 1731 substr $self->{_tls_wbuf}, 0, $tmp, "";
1205 } 1732 }
1206 }
1207 1733
1734 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1735 return $self->_tls_error ($tmp)
1736 if $tmp != $ERROR_WANT_READ
1737 && ($tmp != $ERROR_SYSCALL || $!);
1738 }
1739
1740 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1741 unless (length $tmp) {
1742 $self->{_on_starttls}
1743 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1744 &_freetls;
1745
1746 if ($self->{on_stoptls}) {
1747 $self->{on_stoptls}($self);
1748 return;
1749 } else {
1750 # let's treat SSL-eof as we treat normal EOF
1751 delete $self->{_rw};
1752 $self->{_eof} = 1;
1753 }
1754 }
1755
1756 $self->{_tls_rbuf} .= $tmp;
1757 $self->_drain_rbuf;
1758 $self->{tls} or return; # tls session might have gone away in callback
1759 }
1760
1761 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1762 return $self->_tls_error ($tmp)
1763 if $tmp != $ERROR_WANT_READ
1764 && ($tmp != $ERROR_SYSCALL || $!);
1765
1208 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1766 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1209 $self->{wbuf} .= $buf; 1767 $self->{wbuf} .= $tmp;
1210 $self->_drain_wbuf; 1768 $self->_drain_wbuf;
1211 } 1769 }
1212 1770
1213 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1771 $self->{_on_starttls}
1214 if (length $buf) { 1772 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1215 $self->{rbuf} .= $buf; 1773 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1216 $self->_drain_rbuf unless $self->{_in_drain};
1217 } else {
1218 # let's treat SSL-eof as we treat normal EOF
1219 $self->{_eof} = 1;
1220 $self->_shutdown;
1221 return;
1222 }
1223 }
1224
1225 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1226
1227 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1228 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1229 return $self->_error ($!, 1);
1230 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1231 return $self->_error (&Errno::EIO, 1);
1232 }
1233
1234 # all others are fine for our purposes
1235 }
1236} 1774}
1237 1775
1238=item $handle->starttls ($tls[, $tls_ctx]) 1776=item $handle->starttls ($tls[, $tls_ctx])
1239 1777
1240Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1778Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1241object is created, you can also do that at a later time by calling 1779object is created, you can also do that at a later time by calling
1242C<starttls>. 1780C<starttls>.
1243 1781
1782Starting TLS is currently an asynchronous operation - when you push some
1783write data and then call C<< ->starttls >> then TLS negotiation will start
1784immediately, after which the queued write data is then sent.
1785
1244The first argument is the same as the C<tls> constructor argument (either 1786The first argument is the same as the C<tls> constructor argument (either
1245C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1787C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1246 1788
1247The second argument is the optional C<Net::SSLeay::CTX> object that is 1789The second argument is the optional C<AnyEvent::TLS> object that is used
1248used when AnyEvent::Handle has to create its own TLS connection object. 1790when AnyEvent::Handle has to create its own TLS connection object, or
1791a hash reference with C<< key => value >> pairs that will be used to
1792construct a new context.
1249 1793
1250The TLS connection object will end up in C<< $handle->{tls} >> after this 1794The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1251call and can be used or changed to your liking. Note that the handshake 1795context in C<< $handle->{tls_ctx} >> after this call and can be used or
1252might have already started when this function returns. 1796changed to your liking. Note that the handshake might have already started
1797when this function returns.
1253 1798
1799Due to bugs in OpenSSL, it might or might not be possible to do multiple
1800handshakes on the same stream. Best do not attempt to use the stream after
1801stopping TLS.
1802
1254=cut 1803=cut
1804
1805our %TLS_CACHE; #TODO not yet documented, should we?
1255 1806
1256sub starttls { 1807sub starttls {
1257 my ($self, $ssl, $ctx) = @_; 1808 my ($self, $tls, $ctx) = @_;
1258 1809
1259 $self->stoptls; 1810 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1811 if $self->{tls};
1260 1812
1261 if ($ssl eq "accept") { 1813 $self->{tls} = $tls;
1262 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1814 $self->{tls_ctx} = $ctx if @_ > 2;
1263 Net::SSLeay::set_accept_state ($ssl); 1815
1264 } elsif ($ssl eq "connect") { 1816 return unless $self->{fh};
1265 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817
1266 Net::SSLeay::set_connect_state ($ssl); 1818 require Net::SSLeay;
1819
1820 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1821 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1822
1823 $tls = delete $self->{tls};
1824 $ctx = $self->{tls_ctx};
1825
1826 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1827
1828 if ("HASH" eq ref $ctx) {
1829 require AnyEvent::TLS;
1830
1831 if ($ctx->{cache}) {
1832 my $key = $ctx+0;
1833 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1834 } else {
1835 $ctx = new AnyEvent::TLS %$ctx;
1836 }
1837 }
1267 } 1838
1268 1839 $self->{tls_ctx} = $ctx || TLS_CTX ();
1269 $self->{tls} = $ssl; 1840 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1270 1841
1271 # basically, this is deep magic (because SSL_read should have the same issues) 1842 # basically, this is deep magic (because SSL_read should have the same issues)
1272 # but the openssl maintainers basically said: "trust us, it just works". 1843 # but the openssl maintainers basically said: "trust us, it just works".
1273 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1844 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1274 # and mismaintained ssleay-module doesn't even offer them). 1845 # and mismaintained ssleay-module doesn't even offer them).
1275 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1846 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1847 #
1848 # in short: this is a mess.
1849 #
1850 # note that we do not try to keep the length constant between writes as we are required to do.
1851 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1852 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1853 # have identity issues in that area.
1276 Net::SSLeay::CTX_set_mode ($self->{tls}, 1854# Net::SSLeay::CTX_set_mode ($ssl,
1277 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1855# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1278 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1856# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1857 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1279 1858
1280 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1859 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1281 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1860 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1282 1861
1862 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1863
1283 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1864 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1284 1865
1285 $self->{filter_w} = sub { 1866 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1286 $_[0]{_tls_wbuf} .= ${$_[1]}; 1867 if $self->{on_starttls};
1287 &_dotls; 1868
1288 }; 1869 &_dotls; # need to trigger the initial handshake
1289 $self->{filter_r} = sub { 1870 $self->start_read; # make sure we actually do read
1290 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1291 &_dotls;
1292 };
1293} 1871}
1294 1872
1295=item $handle->stoptls 1873=item $handle->stoptls
1296 1874
1297Destroys the SSL connection, if any. Partial read or write data will be 1875Shuts down the SSL connection - this makes a proper EOF handshake by
1298lost. 1876sending a close notify to the other side, but since OpenSSL doesn't
1877support non-blocking shut downs, it is not guarenteed that you can re-use
1878the stream afterwards.
1299 1879
1300=cut 1880=cut
1301 1881
1302sub stoptls { 1882sub stoptls {
1303 my ($self) = @_; 1883 my ($self) = @_;
1304 1884
1305 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1885 if ($self->{tls}) {
1886 Net::SSLeay::shutdown ($self->{tls});
1306 1887
1307 delete $self->{_rbio}; 1888 &_dotls;
1308 delete $self->{_wbio}; 1889
1309 delete $self->{_tls_wbuf}; 1890# # we don't give a shit. no, we do, but we can't. no...#d#
1310 delete $self->{filter_r}; 1891# # we, we... have to use openssl :/#d#
1311 delete $self->{filter_w}; 1892# &_freetls;#d#
1893 }
1894}
1895
1896sub _freetls {
1897 my ($self) = @_;
1898
1899 return unless $self->{tls};
1900
1901 $self->{tls_ctx}->_put_session (delete $self->{tls})
1902 if $self->{tls} > 0;
1903
1904 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1312} 1905}
1313 1906
1314sub DESTROY { 1907sub DESTROY {
1315 my $self = shift; 1908 my ($self) = @_;
1316 1909
1317 $self->stoptls; 1910 &_freetls;
1318 1911
1319 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1912 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1320 1913
1321 if ($linger && length $self->{wbuf}) { 1914 if ($linger && length $self->{wbuf} && $self->{fh}) {
1322 my $fh = delete $self->{fh}; 1915 my $fh = delete $self->{fh};
1323 my $wbuf = delete $self->{wbuf}; 1916 my $wbuf = delete $self->{wbuf};
1324 1917
1325 my @linger; 1918 my @linger;
1326 1919
1327 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1920 push @linger, AE::io $fh, 1, sub {
1328 my $len = syswrite $fh, $wbuf, length $wbuf; 1921 my $len = syswrite $fh, $wbuf, length $wbuf;
1329 1922
1330 if ($len > 0) { 1923 if ($len > 0) {
1331 substr $wbuf, 0, $len, ""; 1924 substr $wbuf, 0, $len, "";
1332 } else { 1925 } else {
1333 @linger = (); # end 1926 @linger = (); # end
1334 } 1927 }
1335 }); 1928 };
1336 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1929 push @linger, AE::timer $linger, 0, sub {
1337 @linger = (); 1930 @linger = ();
1338 }); 1931 };
1339 } 1932 }
1933}
1934
1935=item $handle->destroy
1936
1937Shuts down the handle object as much as possible - this call ensures that
1938no further callbacks will be invoked and as many resources as possible
1939will be freed. Any method you will call on the handle object after
1940destroying it in this way will be silently ignored (and it will return the
1941empty list).
1942
1943Normally, you can just "forget" any references to an AnyEvent::Handle
1944object and it will simply shut down. This works in fatal error and EOF
1945callbacks, as well as code outside. It does I<NOT> work in a read or write
1946callback, so when you want to destroy the AnyEvent::Handle object from
1947within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1948that case.
1949
1950Destroying the handle object in this way has the advantage that callbacks
1951will be removed as well, so if those are the only reference holders (as
1952is common), then one doesn't need to do anything special to break any
1953reference cycles.
1954
1955The handle might still linger in the background and write out remaining
1956data, as specified by the C<linger> option, however.
1957
1958=cut
1959
1960sub destroy {
1961 my ($self) = @_;
1962
1963 $self->DESTROY;
1964 %$self = ();
1965 bless $self, "AnyEvent::Handle::destroyed";
1966}
1967
1968sub AnyEvent::Handle::destroyed::AUTOLOAD {
1969 #nop
1340} 1970}
1341 1971
1342=item AnyEvent::Handle::TLS_CTX 1972=item AnyEvent::Handle::TLS_CTX
1343 1973
1344This function creates and returns the Net::SSLeay::CTX object used by 1974This function creates and returns the AnyEvent::TLS object used by default
1345default for TLS mode. 1975for TLS mode.
1346 1976
1347The context is created like this: 1977The context is created by calling L<AnyEvent::TLS> without any arguments.
1348
1349 Net::SSLeay::load_error_strings;
1350 Net::SSLeay::SSLeay_add_ssl_algorithms;
1351 Net::SSLeay::randomize;
1352
1353 my $CTX = Net::SSLeay::CTX_new;
1354
1355 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1356 1978
1357=cut 1979=cut
1358 1980
1359our $TLS_CTX; 1981our $TLS_CTX;
1360 1982
1361sub TLS_CTX() { 1983sub TLS_CTX() {
1362 $TLS_CTX || do { 1984 $TLS_CTX ||= do {
1363 require Net::SSLeay; 1985 require AnyEvent::TLS;
1364 1986
1365 Net::SSLeay::load_error_strings (); 1987 new AnyEvent::TLS
1366 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1367 Net::SSLeay::randomize ();
1368
1369 $TLS_CTX = Net::SSLeay::CTX_new ();
1370
1371 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1372
1373 $TLS_CTX
1374 } 1988 }
1375} 1989}
1376 1990
1377=back 1991=back
1992
1993
1994=head1 NONFREQUENTLY ASKED QUESTIONS
1995
1996=over 4
1997
1998=item I C<undef> the AnyEvent::Handle reference inside my callback and
1999still get further invocations!
2000
2001That's because AnyEvent::Handle keeps a reference to itself when handling
2002read or write callbacks.
2003
2004It is only safe to "forget" the reference inside EOF or error callbacks,
2005from within all other callbacks, you need to explicitly call the C<<
2006->destroy >> method.
2007
2008=item I get different callback invocations in TLS mode/Why can't I pause
2009reading?
2010
2011Unlike, say, TCP, TLS connections do not consist of two independent
2012communication channels, one for each direction. Or put differently. The
2013read and write directions are not independent of each other: you cannot
2014write data unless you are also prepared to read, and vice versa.
2015
2016This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2017callback invocations when you are not expecting any read data - the reason
2018is that AnyEvent::Handle always reads in TLS mode.
2019
2020During the connection, you have to make sure that you always have a
2021non-empty read-queue, or an C<on_read> watcher. At the end of the
2022connection (or when you no longer want to use it) you can call the
2023C<destroy> method.
2024
2025=item How do I read data until the other side closes the connection?
2026
2027If you just want to read your data into a perl scalar, the easiest way
2028to achieve this is by setting an C<on_read> callback that does nothing,
2029clearing the C<on_eof> callback and in the C<on_error> callback, the data
2030will be in C<$_[0]{rbuf}>:
2031
2032 $handle->on_read (sub { });
2033 $handle->on_eof (undef);
2034 $handle->on_error (sub {
2035 my $data = delete $_[0]{rbuf};
2036 });
2037
2038The reason to use C<on_error> is that TCP connections, due to latencies
2039and packets loss, might get closed quite violently with an error, when in
2040fact, all data has been received.
2041
2042It is usually better to use acknowledgements when transferring data,
2043to make sure the other side hasn't just died and you got the data
2044intact. This is also one reason why so many internet protocols have an
2045explicit QUIT command.
2046
2047=item I don't want to destroy the handle too early - how do I wait until
2048all data has been written?
2049
2050After writing your last bits of data, set the C<on_drain> callback
2051and destroy the handle in there - with the default setting of
2052C<low_water_mark> this will be called precisely when all data has been
2053written to the socket:
2054
2055 $handle->push_write (...);
2056 $handle->on_drain (sub {
2057 warn "all data submitted to the kernel\n";
2058 undef $handle;
2059 });
2060
2061If you just want to queue some data and then signal EOF to the other side,
2062consider using C<< ->push_shutdown >> instead.
2063
2064=item I want to contact a TLS/SSL server, I don't care about security.
2065
2066If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2067simply connect to it and then create the AnyEvent::Handle with the C<tls>
2068parameter:
2069
2070 tcp_connect $host, $port, sub {
2071 my ($fh) = @_;
2072
2073 my $handle = new AnyEvent::Handle
2074 fh => $fh,
2075 tls => "connect",
2076 on_error => sub { ... };
2077
2078 $handle->push_write (...);
2079 };
2080
2081=item I want to contact a TLS/SSL server, I do care about security.
2082
2083Then you should additionally enable certificate verification, including
2084peername verification, if the protocol you use supports it (see
2085L<AnyEvent::TLS>, C<verify_peername>).
2086
2087E.g. for HTTPS:
2088
2089 tcp_connect $host, $port, sub {
2090 my ($fh) = @_;
2091
2092 my $handle = new AnyEvent::Handle
2093 fh => $fh,
2094 peername => $host,
2095 tls => "connect",
2096 tls_ctx => { verify => 1, verify_peername => "https" },
2097 ...
2098
2099Note that you must specify the hostname you connected to (or whatever
2100"peername" the protocol needs) as the C<peername> argument, otherwise no
2101peername verification will be done.
2102
2103The above will use the system-dependent default set of trusted CA
2104certificates. If you want to check against a specific CA, add the
2105C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2106
2107 tls_ctx => {
2108 verify => 1,
2109 verify_peername => "https",
2110 ca_file => "my-ca-cert.pem",
2111 },
2112
2113=item I want to create a TLS/SSL server, how do I do that?
2114
2115Well, you first need to get a server certificate and key. You have
2116three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2117self-signed certificate (cheap. check the search engine of your choice,
2118there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2119nice program for that purpose).
2120
2121Then create a file with your private key (in PEM format, see
2122L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2123file should then look like this:
2124
2125 -----BEGIN RSA PRIVATE KEY-----
2126 ...header data
2127 ... lots of base64'y-stuff
2128 -----END RSA PRIVATE KEY-----
2129
2130 -----BEGIN CERTIFICATE-----
2131 ... lots of base64'y-stuff
2132 -----END CERTIFICATE-----
2133
2134The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2135specify this file as C<cert_file>:
2136
2137 tcp_server undef, $port, sub {
2138 my ($fh) = @_;
2139
2140 my $handle = new AnyEvent::Handle
2141 fh => $fh,
2142 tls => "accept",
2143 tls_ctx => { cert_file => "my-server-keycert.pem" },
2144 ...
2145
2146When you have intermediate CA certificates that your clients might not
2147know about, just append them to the C<cert_file>.
2148
2149=back
2150
1378 2151
1379=head1 SUBCLASSING AnyEvent::Handle 2152=head1 SUBCLASSING AnyEvent::Handle
1380 2153
1381In many cases, you might want to subclass AnyEvent::Handle. 2154In many cases, you might want to subclass AnyEvent::Handle.
1382 2155
1386=over 4 2159=over 4
1387 2160
1388=item * all constructor arguments become object members. 2161=item * all constructor arguments become object members.
1389 2162
1390At least initially, when you pass a C<tls>-argument to the constructor it 2163At least initially, when you pass a C<tls>-argument to the constructor it
1391will end up in C<< $handle->{tls} >>. Those members might be changes or 2164will end up in C<< $handle->{tls} >>. Those members might be changed or
1392mutated later on (for example C<tls> will hold the TLS connection object). 2165mutated later on (for example C<tls> will hold the TLS connection object).
1393 2166
1394=item * other object member names are prefixed with an C<_>. 2167=item * other object member names are prefixed with an C<_>.
1395 2168
1396All object members not explicitly documented (internal use) are prefixed 2169All object members not explicitly documented (internal use) are prefixed

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines