ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
(Generate patch)

Comparing AnyEvent/lib/AnyEvent/Handle.pm (file contents):
Revision 1.86 by root, Thu Aug 21 20:41:16 2008 UTC vs.
Revision 1.183 by root, Thu Sep 3 12:45:35 2009 UTC

1package AnyEvent::Handle;
2
3no warnings;
4use strict qw(subs vars);
5
6use AnyEvent ();
7use AnyEvent::Util qw(WSAEWOULDBLOCK);
8use Scalar::Util ();
9use Carp ();
10use Fcntl ();
11use Errno qw(EAGAIN EINTR);
12
13=head1 NAME 1=head1 NAME
14 2
15AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent 3AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17=cut
18
19our $VERSION = 4.232;
20 4
21=head1 SYNOPSIS 5=head1 SYNOPSIS
22 6
23 use AnyEvent; 7 use AnyEvent;
24 use AnyEvent::Handle; 8 use AnyEvent::Handle;
25 9
26 my $cv = AnyEvent->condvar; 10 my $cv = AnyEvent->condvar;
27 11
28 my $handle = 12 my $hdl; $hdl = new AnyEvent::Handle
29 AnyEvent::Handle->new (
30 fh => \*STDIN, 13 fh => \*STDIN,
31 on_eof => sub { 14 on_error => sub {
32 $cv->broadcast; 15 my ($hdl, $fatal, $msg) = @_;
33 }, 16 warn "got error $msg\n";
17 $hdl->destroy;
18 $cv->send;
34 ); 19 );
35 20
36 # send some request line 21 # send some request line
37 $handle->push_write ("getinfo\015\012"); 22 $hdl->push_write ("getinfo\015\012");
38 23
39 # read the response line 24 # read the response line
40 $handle->push_read (line => sub { 25 $hdl->push_read (line => sub {
41 my ($handle, $line) = @_; 26 my ($hdl, $line) = @_;
42 warn "read line <$line>\n"; 27 warn "got line <$line>\n";
43 $cv->send; 28 $cv->send;
44 }); 29 });
45 30
46 $cv->recv; 31 $cv->recv;
47 32
48=head1 DESCRIPTION 33=head1 DESCRIPTION
49 34
50This module is a helper module to make it easier to do event-based I/O on 35This module is a helper module to make it easier to do event-based I/O on
51filehandles. For utility functions for doing non-blocking connects and accepts 36filehandles.
52on sockets see L<AnyEvent::Util>.
53 37
54The L<AnyEvent::Intro> tutorial contains some well-documented 38The L<AnyEvent::Intro> tutorial contains some well-documented
55AnyEvent::Handle examples. 39AnyEvent::Handle examples.
56 40
57In the following, when the documentation refers to of "bytes" then this 41In the following, when the documentation refers to of "bytes" then this
58means characters. As sysread and syswrite are used for all I/O, their 42means characters. As sysread and syswrite are used for all I/O, their
59treatment of characters applies to this module as well. 43treatment of characters applies to this module as well.
60 44
45At the very minimum, you should specify C<fh> or C<connect>, and the
46C<on_error> callback.
47
61All callbacks will be invoked with the handle object as their first 48All callbacks will be invoked with the handle object as their first
62argument. 49argument.
63 50
51=cut
52
53package AnyEvent::Handle;
54
55use Scalar::Util ();
56use List::Util ();
57use Carp ();
58use Errno qw(EAGAIN EINTR);
59
60use AnyEvent (); BEGIN { AnyEvent::common_sense }
61use AnyEvent::Util qw(WSAEWOULDBLOCK);
62
63our $VERSION = $AnyEvent::VERSION;
64
64=head1 METHODS 65=head1 METHODS
65 66
66=over 4 67=over 4
67 68
68=item B<new (%args)> 69=item $handle = B<new> AnyEvent::TLS fh => $filehandle, key => value...
69 70
70The constructor supports these arguments (all as key => value pairs). 71The constructor supports these arguments (all as C<< key => value >> pairs).
71 72
72=over 4 73=over 4
73 74
74=item fh => $filehandle [MANDATORY] 75=item fh => $filehandle [C<fh> or C<connect> MANDATORY]
75 76
76The filehandle this L<AnyEvent::Handle> object will operate on. 77The filehandle this L<AnyEvent::Handle> object will operate on.
77
78NOTE: The filehandle will be set to non-blocking mode (using 78NOTE: The filehandle will be set to non-blocking mode (using
79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in 79C<AnyEvent::Util::fh_nonblocking>) by the constructor and needs to stay in
80that mode. 80that mode.
81 81
82=item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
83
84Try to connect to the specified host and service (port), using
85C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
86default C<peername>.
87
88You have to specify either this parameter, or C<fh>, above.
89
90It is possible to push requests on the read and write queues, and modify
91properties of the stream, even while AnyEvent::Handle is connecting.
92
93When this parameter is specified, then the C<on_prepare>,
94C<on_connect_error> and C<on_connect> callbacks will be called under the
95appropriate circumstances:
96
97=over 4
98
82=item on_eof => $cb->($handle) 99=item on_prepare => $cb->($handle)
83 100
84Set the callback to be called when an end-of-file condition is detected, 101This (rarely used) callback is called before a new connection is
85i.e. in the case of a socket, when the other side has closed the 102attempted, but after the file handle has been created. It could be used to
86connection cleanly. 103prepare the file handle with parameters required for the actual connect
104(as opposed to settings that can be changed when the connection is already
105established).
87 106
88For sockets, this just means that the other side has stopped sending data, 107The return value of this callback should be the connect timeout value in
89you can still try to write data, and, in fact, one can return from the eof 108seconds (or C<0>, or C<undef>, or the empty list, to indicate the default
90callback and continue writing data, as only the read part has been shut 109timeout is to be used).
91down.
92 110
93While not mandatory, it is I<highly> recommended to set an eof callback, 111=item on_connect => $cb->($handle, $host, $port, $retry->())
94otherwise you might end up with a closed socket while you are still
95waiting for data.
96 112
97If an EOF condition has been detected but no C<on_eof> callback has been 113This callback is called when a connection has been successfully established.
98set, then a fatal error will be raised with C<$!> set to <0>.
99 114
115The actual numeric host and port (the socket peername) are passed as
116parameters, together with a retry callback.
117
118When, for some reason, the handle is not acceptable, then calling
119C<$retry> will continue with the next conenction target (in case of
120multi-homed hosts or SRV records there can be multiple connection
121endpoints). When it is called then the read and write queues, eof status,
122tls status and similar properties of the handle are being reset.
123
124In most cases, ignoring the C<$retry> parameter is the way to go.
125
126=item on_connect_error => $cb->($handle, $message)
127
128This callback is called when the conenction could not be
129established. C<$!> will contain the relevant error code, and C<$message> a
130message describing it (usually the same as C<"$!">).
131
132If this callback isn't specified, then C<on_error> will be called with a
133fatal error instead.
134
135=back
136
100=item on_error => $cb->($handle, $fatal) 137=item on_error => $cb->($handle, $fatal, $message)
101 138
102This is the error callback, which is called when, well, some error 139This is the error callback, which is called when, well, some error
103occured, such as not being able to resolve the hostname, failure to 140occured, such as not being able to resolve the hostname, failure to
104connect or a read error. 141connect or a read error.
105 142
106Some errors are fatal (which is indicated by C<$fatal> being true). On 143Some errors are fatal (which is indicated by C<$fatal> being true). On
107fatal errors the handle object will be shut down and will not be usable 144fatal errors the handle object will be destroyed (by a call to C<< ->
108(but you are free to look at the current C< ->rbuf >). Examples of fatal 145destroy >>) after invoking the error callback (which means you are free to
109errors are an EOF condition with active (but unsatisifable) read watchers 146examine the handle object). Examples of fatal errors are an EOF condition
110(C<EPIPE>) or I/O errors. 147with active (but unsatisifable) read watchers (C<EPIPE>) or I/O errors. In
148cases where the other side can close the connection at their will it is
149often easiest to not report C<EPIPE> errors in this callback.
150
151AnyEvent::Handle tries to find an appropriate error code for you to check
152against, but in some cases (TLS errors), this does not work well. It is
153recommended to always output the C<$message> argument in human-readable
154error messages (it's usually the same as C<"$!">).
111 155
112Non-fatal errors can be retried by simply returning, but it is recommended 156Non-fatal errors can be retried by simply returning, but it is recommended
113to simply ignore this parameter and instead abondon the handle object 157to simply ignore this parameter and instead abondon the handle object
114when this callback is invoked. Examples of non-fatal errors are timeouts 158when this callback is invoked. Examples of non-fatal errors are timeouts
115C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>). 159C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
116 160
117On callback entrance, the value of C<$!> contains the operating system 161On callback entrance, the value of C<$!> contains the operating system
118error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>). 162error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
163C<EPROTO>).
119 164
120While not mandatory, it is I<highly> recommended to set this callback, as 165While not mandatory, it is I<highly> recommended to set this callback, as
121you will not be notified of errors otherwise. The default simply calls 166you will not be notified of errors otherwise. The default simply calls
122C<croak>. 167C<croak>.
123 168
127and no read request is in the queue (unlike read queue callbacks, this 172and no read request is in the queue (unlike read queue callbacks, this
128callback will only be called when at least one octet of data is in the 173callback will only be called when at least one octet of data is in the
129read buffer). 174read buffer).
130 175
131To access (and remove data from) the read buffer, use the C<< ->rbuf >> 176To access (and remove data from) the read buffer, use the C<< ->rbuf >>
132method or access the C<$handle->{rbuf}> member directly. 177method or access the C<< $handle->{rbuf} >> member directly. Note that you
178must not enlarge or modify the read buffer, you can only remove data at
179the beginning from it.
133 180
134When an EOF condition is detected then AnyEvent::Handle will first try to 181When an EOF condition is detected then AnyEvent::Handle will first try to
135feed all the remaining data to the queued callbacks and C<on_read> before 182feed all the remaining data to the queued callbacks and C<on_read> before
136calling the C<on_eof> callback. If no progress can be made, then a fatal 183calling the C<on_eof> callback. If no progress can be made, then a fatal
137error will be raised (with C<$!> set to C<EPIPE>). 184error will be raised (with C<$!> set to C<EPIPE>).
185
186Note that, unlike requests in the read queue, an C<on_read> callback
187doesn't mean you I<require> some data: if there is an EOF and there
188are outstanding read requests then an error will be flagged. With an
189C<on_read> callback, the C<on_eof> callback will be invoked.
190
191=item on_eof => $cb->($handle)
192
193Set the callback to be called when an end-of-file condition is detected,
194i.e. in the case of a socket, when the other side has closed the
195connection cleanly, and there are no outstanding read requests in the
196queue (if there are read requests, then an EOF counts as an unexpected
197connection close and will be flagged as an error).
198
199For sockets, this just means that the other side has stopped sending data,
200you can still try to write data, and, in fact, one can return from the EOF
201callback and continue writing data, as only the read part has been shut
202down.
203
204If an EOF condition has been detected but no C<on_eof> callback has been
205set, then a fatal error will be raised with C<$!> set to <0>.
138 206
139=item on_drain => $cb->($handle) 207=item on_drain => $cb->($handle)
140 208
141This sets the callback that is called when the write buffer becomes empty 209This sets the callback that is called when the write buffer becomes empty
142(or when the callback is set and the buffer is empty already). 210(or when the callback is set and the buffer is empty already).
149memory and push it into the queue, but instead only read more data from 217memory and push it into the queue, but instead only read more data from
150the file when the write queue becomes empty. 218the file when the write queue becomes empty.
151 219
152=item timeout => $fractional_seconds 220=item timeout => $fractional_seconds
153 221
222=item rtimeout => $fractional_seconds
223
224=item wtimeout => $fractional_seconds
225
154If non-zero, then this enables an "inactivity" timeout: whenever this many 226If non-zero, then these enables an "inactivity" timeout: whenever this
155seconds pass without a successful read or write on the underlying file 227many seconds pass without a successful read or write on the underlying
156handle, the C<on_timeout> callback will be invoked (and if that one is 228file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
157missing, an C<ETIMEDOUT> error will be raised). 229will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
230error will be raised).
231
232There are three variants of the timeouts that work fully independent
233of each other, for both read and write, just read, and just write:
234C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
235C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
236C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
158 237
159Note that timeout processing is also active when you currently do not have 238Note that timeout processing is also active when you currently do not have
160any outstanding read or write requests: If you plan to keep the connection 239any outstanding read or write requests: If you plan to keep the connection
161idle then you should disable the timout temporarily or ignore the timeout 240idle then you should disable the timout temporarily or ignore the timeout
162in the C<on_timeout> callback. 241in the C<on_timeout> callback, in which case AnyEvent::Handle will simply
242restart the timeout.
163 243
164Zero (the default) disables this timeout. 244Zero (the default) disables this timeout.
165 245
166=item on_timeout => $cb->($handle) 246=item on_timeout => $cb->($handle)
167 247
171 251
172=item rbuf_max => <bytes> 252=item rbuf_max => <bytes>
173 253
174If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>) 254If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
175when the read buffer ever (strictly) exceeds this size. This is useful to 255when the read buffer ever (strictly) exceeds this size. This is useful to
176avoid denial-of-service attacks. 256avoid some forms of denial-of-service attacks.
177 257
178For example, a server accepting connections from untrusted sources should 258For example, a server accepting connections from untrusted sources should
179be configured to accept only so-and-so much data that it cannot act on 259be configured to accept only so-and-so much data that it cannot act on
180(for example, when expecting a line, an attacker could send an unlimited 260(for example, when expecting a line, an attacker could send an unlimited
181amount of data without a callback ever being called as long as the line 261amount of data without a callback ever being called as long as the line
182isn't finished). 262isn't finished).
183 263
184=item autocork => <boolean> 264=item autocork => <boolean>
185 265
186When disabled (the default), then C<push_write> will try to immediately 266When disabled (the default), then C<push_write> will try to immediately
187write the data to the handle if possible. This avoids having to register 267write the data to the handle, if possible. This avoids having to register
188a write watcher and wait for the next event loop iteration, but can be 268a write watcher and wait for the next event loop iteration, but can
189inefficient if you write multiple small chunks (this disadvantage is 269be inefficient if you write multiple small chunks (on the wire, this
190usually avoided by your kernel's nagle algorithm, see C<low_delay>). 270disadvantage is usually avoided by your kernel's nagle algorithm, see
271C<no_delay>, but this option can save costly syscalls).
191 272
192When enabled, then writes will always be queued till the next event loop 273When enabled, then writes will always be queued till the next event loop
193iteration. This is efficient when you do many small writes per iteration, 274iteration. This is efficient when you do many small writes per iteration,
194but less efficient when you do a single write only. 275but less efficient when you do a single write only per iteration (or when
276the write buffer often is full). It also increases write latency.
195 277
196=item no_delay => <boolean> 278=item no_delay => <boolean>
197 279
198When doing small writes on sockets, your operating system kernel might 280When doing small writes on sockets, your operating system kernel might
199wait a bit for more data before actually sending it out. This is called 281wait a bit for more data before actually sending it out. This is called
200the Nagle algorithm, and usually it is beneficial. 282the Nagle algorithm, and usually it is beneficial.
201 283
202In some situations you want as low a delay as possible, which cna be 284In some situations you want as low a delay as possible, which can be
203accomplishd by setting this option to true. 285accomplishd by setting this option to a true value.
204 286
205The default is your opertaing system's default behaviour, this option 287The default is your opertaing system's default behaviour (most likely
206explicitly enables or disables it, if possible. 288enabled), this option explicitly enables or disables it, if possible.
289
290=item keepalive => <boolean>
291
292Enables (default disable) the SO_KEEPALIVE option on the stream socket:
293normally, TCP connections have no time-out once established, so TCP
294conenctions, once established, can stay alive forever even when the other
295side has long gone. TCP keepalives are a cheap way to take down long-lived
296TCP connections whent he other side becomes unreachable. While the default
297is OS-dependent, TCP keepalives usually kick in after around two hours,
298and, if the other side doesn't reply, take down the TCP connection some 10
299to 15 minutes later.
300
301It is harmless to specify this option for file handles that do not support
302keepalives, and enabling it on connections that are potentially long-lived
303is usually a good idea.
304
305=item oobinline => <boolean>
306
307BSD majorly fucked up the implementation of TCP urgent data. The result
308is that almost no OS implements TCP according to the specs, and every OS
309implements it slightly differently.
310
311If you want to handle TCP urgent data, then setting this flag (the default
312is enabled) gives you the most portable way of getting urgent data, by
313putting it into the stream.
314
315Since BSD emulation of OOB data on top of TCP's urgent data can have
316security implications, AnyEvent::Handle sets this flag automatically
317unless explicitly specified.
207 318
208=item read_size => <bytes> 319=item read_size => <bytes>
209 320
210The default read block size (the amount of bytes this module will try to read 321The default read block size (the amount of bytes this module will
211during each (loop iteration). Default: C<8192>. 322try to read during each loop iteration, which affects memory
323requirements). Default: C<8192>.
212 324
213=item low_water_mark => <bytes> 325=item low_water_mark => <bytes>
214 326
215Sets the amount of bytes (default: C<0>) that make up an "empty" write 327Sets the amount of bytes (default: C<0>) that make up an "empty" write
216buffer: If the write reaches this size or gets even samller it is 328buffer: If the write reaches this size or gets even samller it is
217considered empty. 329considered empty.
218 330
331Sometimes it can be beneficial (for performance reasons) to add data to
332the write buffer before it is fully drained, but this is a rare case, as
333the operating system kernel usually buffers data as well, so the default
334is good in almost all cases.
335
219=item linger => <seconds> 336=item linger => <seconds>
220 337
221If non-zero (default: C<3600>), then the destructor of the 338If non-zero (default: C<3600>), then the destructor of the
222AnyEvent::Handle object will check wether there is still outstanding write 339AnyEvent::Handle object will check whether there is still outstanding
223data and will install a watcher that will write out this data. No errors 340write data and will install a watcher that will write this data to the
224will be reported (this mostly matches how the operating system treats 341socket. No errors will be reported (this mostly matches how the operating
225outstanding data at socket close time). 342system treats outstanding data at socket close time).
226 343
227This will not work for partial TLS data that could not yet been 344This will not work for partial TLS data that could not be encoded
228encoded. This data will be lost. 345yet. This data will be lost. Calling the C<stoptls> method in time might
346help.
347
348=item peername => $string
349
350A string used to identify the remote site - usually the DNS hostname
351(I<not> IDN!) used to create the connection, rarely the IP address.
352
353Apart from being useful in error messages, this string is also used in TLS
354peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
355verification will be skipped when C<peername> is not specified or
356C<undef>.
229 357
230=item tls => "accept" | "connect" | Net::SSLeay::SSL object 358=item tls => "accept" | "connect" | Net::SSLeay::SSL object
231 359
232When this parameter is given, it enables TLS (SSL) mode, that means 360When this parameter is given, it enables TLS (SSL) mode, that means
233AnyEvent will start a TLS handshake and will transparently encrypt/decrypt 361AnyEvent will start a TLS handshake as soon as the conenction has been
234data. 362established and will transparently encrypt/decrypt data afterwards.
363
364All TLS protocol errors will be signalled as C<EPROTO>, with an
365appropriate error message.
235 366
236TLS mode requires Net::SSLeay to be installed (it will be loaded 367TLS mode requires Net::SSLeay to be installed (it will be loaded
237automatically when you try to create a TLS handle). 368automatically when you try to create a TLS handle): this module doesn't
369have a dependency on that module, so if your module requires it, you have
370to add the dependency yourself.
238 371
239Unlike TCP, TLS has a server and client side: for the TLS server side, use 372Unlike TCP, TLS has a server and client side: for the TLS server side, use
240C<accept>, and for the TLS client side of a connection, use C<connect> 373C<accept>, and for the TLS client side of a connection, use C<connect>
241mode. 374mode.
242 375
243You can also provide your own TLS connection object, but you have 376You can also provide your own TLS connection object, but you have
244to make sure that you call either C<Net::SSLeay::set_connect_state> 377to make sure that you call either C<Net::SSLeay::set_connect_state>
245or C<Net::SSLeay::set_accept_state> on it before you pass it to 378or C<Net::SSLeay::set_accept_state> on it before you pass it to
246AnyEvent::Handle. 379AnyEvent::Handle. Also, this module will take ownership of this connection
380object.
247 381
382At some future point, AnyEvent::Handle might switch to another TLS
383implementation, then the option to use your own session object will go
384away.
385
386B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
387passing in the wrong integer will lead to certain crash. This most often
388happens when one uses a stylish C<< tls => 1 >> and is surprised about the
389segmentation fault.
390
248See the C<starttls> method for when need to start TLS negotiation later. 391See the C<< ->starttls >> method for when need to start TLS negotiation later.
249 392
250=item tls_ctx => $ssl_ctx 393=item tls_ctx => $anyevent_tls
251 394
252Use the given Net::SSLeay::CTX object to create the new TLS connection 395Use the given C<AnyEvent::TLS> object to create the new TLS connection
253(unless a connection object was specified directly). If this parameter is 396(unless a connection object was specified directly). If this parameter is
254missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>. 397missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
398
399Instead of an object, you can also specify a hash reference with C<< key
400=> value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
401new TLS context object.
402
403=item on_starttls => $cb->($handle, $success[, $error_message])
404
405This callback will be invoked when the TLS/SSL handshake has finished. If
406C<$success> is true, then the TLS handshake succeeded, otherwise it failed
407(C<on_stoptls> will not be called in this case).
408
409The session in C<< $handle->{tls} >> can still be examined in this
410callback, even when the handshake was not successful.
411
412TLS handshake failures will not cause C<on_error> to be invoked when this
413callback is in effect, instead, the error message will be passed to C<on_starttls>.
414
415Without this callback, handshake failures lead to C<on_error> being
416called, as normal.
417
418Note that you cannot call C<starttls> right again in this callback. If you
419need to do that, start an zero-second timer instead whose callback can
420then call C<< ->starttls >> again.
421
422=item on_stoptls => $cb->($handle)
423
424When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
425set, then it will be invoked after freeing the TLS session. If it is not,
426then a TLS shutdown condition will be treated like a normal EOF condition
427on the handle.
428
429The session in C<< $handle->{tls} >> can still be examined in this
430callback.
431
432This callback will only be called on TLS shutdowns, not when the
433underlying handle signals EOF.
255 434
256=item json => JSON or JSON::XS object 435=item json => JSON or JSON::XS object
257 436
258This is the json coder object used by the C<json> read and write types. 437This is the json coder object used by the C<json> read and write types.
259 438
262texts. 441texts.
263 442
264Note that you are responsible to depend on the JSON module if you want to 443Note that you are responsible to depend on the JSON module if you want to
265use this functionality, as AnyEvent does not have a dependency itself. 444use this functionality, as AnyEvent does not have a dependency itself.
266 445
267=item filter_r => $cb
268
269=item filter_w => $cb
270
271These exist, but are undocumented at this time.
272
273=back 446=back
274 447
275=cut 448=cut
276 449
277sub new { 450sub new {
278 my $class = shift; 451 my $class = shift;
279
280 my $self = bless { @_ }, $class; 452 my $self = bless { @_ }, $class;
281 453
282 $self->{fh} or Carp::croak "mandatory argument fh is missing"; 454 if ($self->{fh}) {
455 $self->_start;
456 return unless $self->{fh}; # could be gone by now
457
458 } elsif ($self->{connect}) {
459 require AnyEvent::Socket;
460
461 $self->{peername} = $self->{connect}[0]
462 unless exists $self->{peername};
463
464 $self->{_skip_drain_rbuf} = 1;
465
466 {
467 Scalar::Util::weaken (my $self = $self);
468
469 $self->{_connect} =
470 AnyEvent::Socket::tcp_connect (
471 $self->{connect}[0],
472 $self->{connect}[1],
473 sub {
474 my ($fh, $host, $port, $retry) = @_;
475
476 if ($fh) {
477 $self->{fh} = $fh;
478
479 delete $self->{_skip_drain_rbuf};
480 $self->_start;
481
482 $self->{on_connect}
483 and $self->{on_connect}($self, $host, $port, sub {
484 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
485 $self->{_skip_drain_rbuf} = 1;
486 &$retry;
487 });
488
489 } else {
490 if ($self->{on_connect_error}) {
491 $self->{on_connect_error}($self, "$!");
492 $self->destroy;
493 } else {
494 $self->_error ($!, 1);
495 }
496 }
497 },
498 sub {
499 local $self->{fh} = $_[0];
500
501 $self->{on_prepare}
502 ? $self->{on_prepare}->($self)
503 : ()
504 }
505 );
506 }
507
508 } else {
509 Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
510 }
511
512 $self
513}
514
515sub _start {
516 my ($self) = @_;
283 517
284 AnyEvent::Util::fh_nonblocking $self->{fh}, 1; 518 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
285 519
286 if ($self->{tls}) { 520 $self->{_activity} =
287 require Net::SSLeay; 521 $self->{_ractivity} =
522 $self->{_wactivity} = AE::now;
523
524 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
525 $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
526 $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
527
528 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
529 $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
530
531 $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
532
288 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx}); 533 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
289 } 534 if $self->{tls};
290 535
291 $self->{_activity} = AnyEvent->now;
292 $self->_timeout;
293
294 $self->on_drain (delete $self->{on_drain}) if exists $self->{on_drain}; 536 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
295 $self->no_delay (delete $self->{no_delay}) if exists $self->{no_delay};
296 537
297 $self->start_read 538 $self->start_read
298 if $self->{on_read}; 539 if $self->{on_read} || @{ $self->{_queue} };
299 540
300 $self 541 $self->_drain_wbuf;
301}
302
303sub _shutdown {
304 my ($self) = @_;
305
306 delete $self->{_tw};
307 delete $self->{_rw};
308 delete $self->{_ww};
309 delete $self->{fh};
310
311 $self->stoptls;
312
313 delete $self->{on_read};
314 delete $self->{_queue};
315} 542}
316 543
317sub _error { 544sub _error {
318 my ($self, $errno, $fatal) = @_; 545 my ($self, $errno, $fatal, $message) = @_;
319
320 $self->_shutdown
321 if $fatal;
322 546
323 $! = $errno; 547 $! = $errno;
548 $message ||= "$!";
324 549
325 if ($self->{on_error}) { 550 if ($self->{on_error}) {
326 $self->{on_error}($self, $fatal); 551 $self->{on_error}($self, $fatal, $message);
327 } else { 552 $self->destroy if $fatal;
553 } elsif ($self->{fh}) {
554 $self->destroy;
328 Carp::croak "AnyEvent::Handle uncaught error: $!"; 555 Carp::croak "AnyEvent::Handle uncaught error: $message";
329 } 556 }
330} 557}
331 558
332=item $fh = $handle->fh 559=item $fh = $handle->fh
333 560
334This method returns the file handle of the L<AnyEvent::Handle> object. 561This method returns the file handle used to create the L<AnyEvent::Handle> object.
335 562
336=cut 563=cut
337 564
338sub fh { $_[0]{fh} } 565sub fh { $_[0]{fh} }
339 566
357 $_[0]{on_eof} = $_[1]; 584 $_[0]{on_eof} = $_[1];
358} 585}
359 586
360=item $handle->on_timeout ($cb) 587=item $handle->on_timeout ($cb)
361 588
362Replace the current C<on_timeout> callback, or disables the callback 589=item $handle->on_rtimeout ($cb)
363(but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
364argument.
365 590
366=cut 591=item $handle->on_wtimeout ($cb)
367 592
368sub on_timeout { 593Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
369 $_[0]{on_timeout} = $_[1]; 594callback, or disables the callback (but not the timeout) if C<$cb> =
370} 595C<undef>. See the C<timeout> constructor argument and method.
596
597=cut
598
599# see below
371 600
372=item $handle->autocork ($boolean) 601=item $handle->autocork ($boolean)
373 602
374Enables or disables the current autocork behaviour (see C<autocork> 603Enables or disables the current autocork behaviour (see C<autocork>
375constructor argument). 604constructor argument). Changes will only take effect on the next write.
376 605
377=cut 606=cut
607
608sub autocork {
609 $_[0]{autocork} = $_[1];
610}
378 611
379=item $handle->no_delay ($boolean) 612=item $handle->no_delay ($boolean)
380 613
381Enables or disables the C<no_delay> setting (see constructor argument of 614Enables or disables the C<no_delay> setting (see constructor argument of
382the same name for details). 615the same name for details).
386sub no_delay { 619sub no_delay {
387 $_[0]{no_delay} = $_[1]; 620 $_[0]{no_delay} = $_[1];
388 621
389 eval { 622 eval {
390 local $SIG{__DIE__}; 623 local $SIG{__DIE__};
391 setsockopt $_[0]{fh}, &Socket::IPPROTO_TCP, &Socket::TCP_NODELAY, int $_[1]; 624 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
625 if $_[0]{fh};
392 }; 626 };
393} 627}
394 628
629=item $handle->keepalive ($boolean)
630
631Enables or disables the C<keepalive> setting (see constructor argument of
632the same name for details).
633
634=cut
635
636sub keepalive {
637 $_[0]{keepalive} = $_[1];
638
639 eval {
640 local $SIG{__DIE__};
641 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
642 if $_[0]{fh};
643 };
644}
645
646=item $handle->oobinline ($boolean)
647
648Enables or disables the C<oobinline> setting (see constructor argument of
649the same name for details).
650
651=cut
652
653sub oobinline {
654 $_[0]{oobinline} = $_[1];
655
656 eval {
657 local $SIG{__DIE__};
658 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
659 if $_[0]{fh};
660 };
661}
662
663=item $handle->keepalive ($boolean)
664
665Enables or disables the C<keepalive> setting (see constructor argument of
666the same name for details).
667
668=cut
669
670sub keepalive {
671 $_[0]{keepalive} = $_[1];
672
673 eval {
674 local $SIG{__DIE__};
675 setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
676 if $_[0]{fh};
677 };
678}
679
680=item $handle->on_starttls ($cb)
681
682Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
683
684=cut
685
686sub on_starttls {
687 $_[0]{on_starttls} = $_[1];
688}
689
690=item $handle->on_stoptls ($cb)
691
692Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
693
694=cut
695
696sub on_starttls {
697 $_[0]{on_stoptls} = $_[1];
698}
699
700=item $handle->rbuf_max ($max_octets)
701
702Configures the C<rbuf_max> setting (C<undef> disables it).
703
704=cut
705
706sub rbuf_max {
707 $_[0]{rbuf_max} = $_[1];
708}
709
395############################################################################# 710#############################################################################
396 711
397=item $handle->timeout ($seconds) 712=item $handle->timeout ($seconds)
398 713
714=item $handle->rtimeout ($seconds)
715
716=item $handle->wtimeout ($seconds)
717
399Configures (or disables) the inactivity timeout. 718Configures (or disables) the inactivity timeout.
400 719
401=cut 720=item $handle->timeout_reset
402 721
403sub timeout { 722=item $handle->rtimeout_reset
723
724=item $handle->wtimeout_reset
725
726Reset the activity timeout, as if data was received or sent.
727
728These methods are cheap to call.
729
730=cut
731
732for my $dir ("", "r", "w") {
733 my $timeout = "${dir}timeout";
734 my $tw = "_${dir}tw";
735 my $on_timeout = "on_${dir}timeout";
736 my $activity = "_${dir}activity";
737 my $cb;
738
739 *$on_timeout = sub {
740 $_[0]{$on_timeout} = $_[1];
741 };
742
743 *$timeout = sub {
404 my ($self, $timeout) = @_; 744 my ($self, $new_value) = @_;
405 745
406 $self->{timeout} = $timeout; 746 $self->{$timeout} = $new_value;
407 $self->_timeout; 747 delete $self->{$tw}; &$cb;
408} 748 };
409 749
750 *{"${dir}timeout_reset"} = sub {
751 $_[0]{$activity} = AE::now;
752 };
753
754 # main workhorse:
410# reset the timeout watcher, as neccessary 755 # reset the timeout watcher, as neccessary
411# also check for time-outs 756 # also check for time-outs
412sub _timeout { 757 $cb = sub {
413 my ($self) = @_; 758 my ($self) = @_;
414 759
415 if ($self->{timeout}) { 760 if ($self->{$timeout} && $self->{fh}) {
416 my $NOW = AnyEvent->now; 761 my $NOW = AE::now;
417 762
418 # when would the timeout trigger? 763 # when would the timeout trigger?
419 my $after = $self->{_activity} + $self->{timeout} - $NOW; 764 my $after = $self->{$activity} + $self->{$timeout} - $NOW;
420 765
421 # now or in the past already? 766 # now or in the past already?
422 if ($after <= 0) { 767 if ($after <= 0) {
423 $self->{_activity} = $NOW; 768 $self->{$activity} = $NOW;
424 769
425 if ($self->{on_timeout}) { 770 if ($self->{$on_timeout}) {
426 $self->{on_timeout}($self); 771 $self->{$on_timeout}($self);
427 } else { 772 } else {
428 $self->_error (&Errno::ETIMEDOUT); 773 $self->_error (Errno::ETIMEDOUT);
774 }
775
776 # callback could have changed timeout value, optimise
777 return unless $self->{$timeout};
778
779 # calculate new after
780 $after = $self->{$timeout};
429 } 781 }
430 782
431 # callback could have changed timeout value, optimise 783 Scalar::Util::weaken $self;
432 return unless $self->{timeout}; 784 return unless $self; # ->error could have destroyed $self
433 785
434 # calculate new after 786 $self->{$tw} ||= AE::timer $after, 0, sub {
435 $after = $self->{timeout}; 787 delete $self->{$tw};
788 $cb->($self);
789 };
790 } else {
791 delete $self->{$tw};
436 } 792 }
437
438 Scalar::Util::weaken $self;
439 return unless $self; # ->error could have destroyed $self
440
441 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
442 delete $self->{_tw};
443 $self->_timeout;
444 });
445 } else {
446 delete $self->{_tw};
447 } 793 }
448} 794}
449 795
450############################################################################# 796#############################################################################
451 797
475 my ($self, $cb) = @_; 821 my ($self, $cb) = @_;
476 822
477 $self->{on_drain} = $cb; 823 $self->{on_drain} = $cb;
478 824
479 $cb->($self) 825 $cb->($self)
480 if $cb && $self->{low_water_mark} >= length $self->{wbuf}; 826 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
481} 827}
482 828
483=item $handle->push_write ($data) 829=item $handle->push_write ($data)
484 830
485Queues the given scalar to be written. You can push as much data as you 831Queues the given scalar to be written. You can push as much data as you
496 Scalar::Util::weaken $self; 842 Scalar::Util::weaken $self;
497 843
498 my $cb = sub { 844 my $cb = sub {
499 my $len = syswrite $self->{fh}, $self->{wbuf}; 845 my $len = syswrite $self->{fh}, $self->{wbuf};
500 846
501 if ($len >= 0) { 847 if (defined $len) {
502 substr $self->{wbuf}, 0, $len, ""; 848 substr $self->{wbuf}, 0, $len, "";
503 849
504 $self->{_activity} = AnyEvent->now; 850 $self->{_activity} = $self->{_wactivity} = AE::now;
505 851
506 $self->{on_drain}($self) 852 $self->{on_drain}($self)
507 if $self->{low_water_mark} >= length $self->{wbuf} 853 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
508 && $self->{on_drain}; 854 && $self->{on_drain};
509 855
510 delete $self->{_ww} unless length $self->{wbuf}; 856 delete $self->{_ww} unless length $self->{wbuf};
511 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 857 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
512 $self->_error ($!, 1); 858 $self->_error ($!, 1);
515 861
516 # try to write data immediately 862 # try to write data immediately
517 $cb->() unless $self->{autocork}; 863 $cb->() unless $self->{autocork};
518 864
519 # if still data left in wbuf, we need to poll 865 # if still data left in wbuf, we need to poll
520 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb) 866 $self->{_ww} = AE::io $self->{fh}, 1, $cb
521 if length $self->{wbuf}; 867 if length $self->{wbuf};
522 }; 868 };
523} 869}
524 870
525our %WH; 871our %WH;
536 882
537 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write") 883 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
538 ->($self, @_); 884 ->($self, @_);
539 } 885 }
540 886
541 if ($self->{filter_w}) { 887 if ($self->{tls}) {
542 $self->{filter_w}($self, \$_[0]); 888 $self->{_tls_wbuf} .= $_[0];
889 &_dotls ($self) if $self->{fh};
543 } else { 890 } else {
544 $self->{wbuf} .= $_[0]; 891 $self->{wbuf} .= $_[0];
545 $self->_drain_wbuf; 892 $self->_drain_wbuf if $self->{fh};
546 } 893 }
547} 894}
548 895
549=item $handle->push_write (type => @args) 896=item $handle->push_write (type => @args)
550 897
564=cut 911=cut
565 912
566register_write_type netstring => sub { 913register_write_type netstring => sub {
567 my ($self, $string) = @_; 914 my ($self, $string) = @_;
568 915
569 sprintf "%d:%s,", (length $string), $string 916 (length $string) . ":$string,"
570}; 917};
571 918
572=item packstring => $format, $data 919=item packstring => $format, $data
573 920
574An octet string prefixed with an encoded length. The encoding C<$format> 921An octet string prefixed with an encoded length. The encoding C<$format>
614Other languages could read single lines terminated by a newline and pass 961Other languages could read single lines terminated by a newline and pass
615this line into their JSON decoder of choice. 962this line into their JSON decoder of choice.
616 963
617=cut 964=cut
618 965
966sub json_coder() {
967 eval { require JSON::XS; JSON::XS->new->utf8 }
968 || do { require JSON; JSON->new->utf8 }
969}
970
619register_write_type json => sub { 971register_write_type json => sub {
620 my ($self, $ref) = @_; 972 my ($self, $ref) = @_;
621 973
622 require JSON; 974 my $json = $self->{json} ||= json_coder;
623 975
624 $self->{json} ? $self->{json}->encode ($ref) 976 $json->encode ($ref)
625 : JSON::encode_json ($ref)
626}; 977};
627 978
628=item storable => $reference 979=item storable => $reference
629 980
630Freezes the given reference using L<Storable> and writes it to the 981Freezes the given reference using L<Storable> and writes it to the
639 990
640 pack "w/a*", Storable::nfreeze ($ref) 991 pack "w/a*", Storable::nfreeze ($ref)
641}; 992};
642 993
643=back 994=back
995
996=item $handle->push_shutdown
997
998Sometimes you know you want to close the socket after writing your data
999before it was actually written. One way to do that is to replace your
1000C<on_drain> handler by a callback that shuts down the socket (and set
1001C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1002replaces the C<on_drain> callback with:
1003
1004 sub { shutdown $_[0]{fh}, 1 } # for push_shutdown
1005
1006This simply shuts down the write side and signals an EOF condition to the
1007the peer.
1008
1009You can rely on the normal read queue and C<on_eof> handling
1010afterwards. This is the cleanest way to close a connection.
1011
1012=cut
1013
1014sub push_shutdown {
1015 my ($self) = @_;
1016
1017 delete $self->{low_water_mark};
1018 $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1019}
644 1020
645=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args) 1021=item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
646 1022
647This function (not method) lets you add your own types to C<push_write>. 1023This function (not method) lets you add your own types to C<push_write>.
648Whenever the given C<type> is used, C<push_write> will invoke the code 1024Whenever the given C<type> is used, C<push_write> will invoke the code
742=cut 1118=cut
743 1119
744sub _drain_rbuf { 1120sub _drain_rbuf {
745 my ($self) = @_; 1121 my ($self) = @_;
746 1122
1123 # avoid recursion
1124 return if $self->{_skip_drain_rbuf};
747 local $self->{_in_drain} = 1; 1125 local $self->{_skip_drain_rbuf} = 1;
748
749 if (
750 defined $self->{rbuf_max}
751 && $self->{rbuf_max} < length $self->{rbuf}
752 ) {
753 $self->_error (&Errno::ENOSPC, 1), return;
754 }
755 1126
756 while () { 1127 while () {
1128 # we need to use a separate tls read buffer, as we must not receive data while
1129 # we are draining the buffer, and this can only happen with TLS.
1130 $self->{rbuf} .= delete $self->{_tls_rbuf}
1131 if exists $self->{_tls_rbuf};
1132
757 my $len = length $self->{rbuf}; 1133 my $len = length $self->{rbuf};
758 1134
759 if (my $cb = shift @{ $self->{_queue} }) { 1135 if (my $cb = shift @{ $self->{_queue} }) {
760 unless ($cb->($self)) { 1136 unless ($cb->($self)) {
761 if ($self->{_eof}) { 1137 # no progress can be made
762 # no progress can be made (not enough data and no data forthcoming) 1138 # (not enough data and no data forthcoming)
763 $self->_error (&Errno::EPIPE, 1), return; 1139 $self->_error (Errno::EPIPE, 1), return
764 } 1140 if $self->{_eof};
765 1141
766 unshift @{ $self->{_queue} }, $cb; 1142 unshift @{ $self->{_queue} }, $cb;
767 last; 1143 last;
768 } 1144 }
769 } elsif ($self->{on_read}) { 1145 } elsif ($self->{on_read}) {
776 && !@{ $self->{_queue} } # and the queue is still empty 1152 && !@{ $self->{_queue} } # and the queue is still empty
777 && $self->{on_read} # but we still have on_read 1153 && $self->{on_read} # but we still have on_read
778 ) { 1154 ) {
779 # no further data will arrive 1155 # no further data will arrive
780 # so no progress can be made 1156 # so no progress can be made
781 $self->_error (&Errno::EPIPE, 1), return 1157 $self->_error (Errno::EPIPE, 1), return
782 if $self->{_eof}; 1158 if $self->{_eof};
783 1159
784 last; # more data might arrive 1160 last; # more data might arrive
785 } 1161 }
786 } else { 1162 } else {
787 # read side becomes idle 1163 # read side becomes idle
788 delete $self->{_rw}; 1164 delete $self->{_rw} unless $self->{tls};
789 last; 1165 last;
790 } 1166 }
791 } 1167 }
792 1168
793 if ($self->{_eof}) { 1169 if ($self->{_eof}) {
794 if ($self->{on_eof}) { 1170 $self->{on_eof}
795 $self->{on_eof}($self) 1171 ? $self->{on_eof}($self)
796 } else { 1172 : $self->_error (0, 1, "Unexpected end-of-file");
797 $self->_error (0, 1); 1173
798 } 1174 return;
1175 }
1176
1177 if (
1178 defined $self->{rbuf_max}
1179 && $self->{rbuf_max} < length $self->{rbuf}
1180 ) {
1181 $self->_error (Errno::ENOSPC, 1), return;
799 } 1182 }
800 1183
801 # may need to restart read watcher 1184 # may need to restart read watcher
802 unless ($self->{_rw}) { 1185 unless ($self->{_rw}) {
803 $self->start_read 1186 $self->start_read
815 1198
816sub on_read { 1199sub on_read {
817 my ($self, $cb) = @_; 1200 my ($self, $cb) = @_;
818 1201
819 $self->{on_read} = $cb; 1202 $self->{on_read} = $cb;
820 $self->_drain_rbuf if $cb && !$self->{_in_drain}; 1203 $self->_drain_rbuf if $cb;
821} 1204}
822 1205
823=item $handle->rbuf 1206=item $handle->rbuf
824 1207
825Returns the read buffer (as a modifiable lvalue). 1208Returns the read buffer (as a modifiable lvalue).
826 1209
827You can access the read buffer directly as the C<< ->{rbuf} >> member, if 1210You can access the read buffer directly as the C<< ->{rbuf} >>
828you want. 1211member, if you want. However, the only operation allowed on the
1212read buffer (apart from looking at it) is removing data from its
1213beginning. Otherwise modifying or appending to it is not allowed and will
1214lead to hard-to-track-down bugs.
829 1215
830NOTE: The read buffer should only be used or modified if the C<on_read>, 1216NOTE: The read buffer should only be used or modified if the C<on_read>,
831C<push_read> or C<unshift_read> methods are used. The other read methods 1217C<push_read> or C<unshift_read> methods are used. The other read methods
832automatically manage the read buffer. 1218automatically manage the read buffer.
833 1219
874 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read") 1260 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
875 ->($self, $cb, @_); 1261 ->($self, $cb, @_);
876 } 1262 }
877 1263
878 push @{ $self->{_queue} }, $cb; 1264 push @{ $self->{_queue} }, $cb;
879 $self->_drain_rbuf unless $self->{_in_drain}; 1265 $self->_drain_rbuf;
880} 1266}
881 1267
882sub unshift_read { 1268sub unshift_read {
883 my $self = shift; 1269 my $self = shift;
884 my $cb = pop; 1270 my $cb = pop;
888 1274
889 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read") 1275 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
890 ->($self, $cb, @_); 1276 ->($self, $cb, @_);
891 } 1277 }
892 1278
893
894 unshift @{ $self->{_queue} }, $cb; 1279 unshift @{ $self->{_queue} }, $cb;
895 $self->_drain_rbuf unless $self->{_in_drain}; 1280 $self->_drain_rbuf;
896} 1281}
897 1282
898=item $handle->push_read (type => @args, $cb) 1283=item $handle->push_read (type => @args, $cb)
899 1284
900=item $handle->unshift_read (type => @args, $cb) 1285=item $handle->unshift_read (type => @args, $cb)
1033 return 1; 1418 return 1;
1034 } 1419 }
1035 1420
1036 # reject 1421 # reject
1037 if ($reject && $$rbuf =~ $reject) { 1422 if ($reject && $$rbuf =~ $reject) {
1038 $self->_error (&Errno::EBADMSG); 1423 $self->_error (Errno::EBADMSG);
1039 } 1424 }
1040 1425
1041 # skip 1426 # skip
1042 if ($skip && $$rbuf =~ $skip) { 1427 if ($skip && $$rbuf =~ $skip) {
1043 $data .= substr $$rbuf, 0, $+[0], ""; 1428 $data .= substr $$rbuf, 0, $+[0], "";
1059 my ($self, $cb) = @_; 1444 my ($self, $cb) = @_;
1060 1445
1061 sub { 1446 sub {
1062 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) { 1447 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1063 if ($_[0]{rbuf} =~ /[^0-9]/) { 1448 if ($_[0]{rbuf} =~ /[^0-9]/) {
1064 $self->_error (&Errno::EBADMSG); 1449 $self->_error (Errno::EBADMSG);
1065 } 1450 }
1066 return; 1451 return;
1067 } 1452 }
1068 1453
1069 my $len = $1; 1454 my $len = $1;
1072 my $string = $_[1]; 1457 my $string = $_[1];
1073 $_[0]->unshift_read (chunk => 1, sub { 1458 $_[0]->unshift_read (chunk => 1, sub {
1074 if ($_[1] eq ",") { 1459 if ($_[1] eq ",") {
1075 $cb->($_[0], $string); 1460 $cb->($_[0], $string);
1076 } else { 1461 } else {
1077 $self->_error (&Errno::EBADMSG); 1462 $self->_error (Errno::EBADMSG);
1078 } 1463 }
1079 }); 1464 });
1080 }); 1465 });
1081 1466
1082 1 1467 1
1088An octet string prefixed with an encoded length. The encoding C<$format> 1473An octet string prefixed with an encoded length. The encoding C<$format>
1089uses the same format as a Perl C<pack> format, but must specify a single 1474uses the same format as a Perl C<pack> format, but must specify a single
1090integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an 1475integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1091optional C<!>, C<< < >> or C<< > >> modifier). 1476optional C<!>, C<< < >> or C<< > >> modifier).
1092 1477
1093DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>. 1478For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1479EPP uses a prefix of C<N> (4 octtes).
1094 1480
1095Example: read a block of data prefixed by its length in BER-encoded 1481Example: read a block of data prefixed by its length in BER-encoded
1096format (very efficient). 1482format (very efficient).
1097 1483
1098 $handle->push_read (packstring => "w", sub { 1484 $handle->push_read (packstring => "w", sub {
1128 } 1514 }
1129}; 1515};
1130 1516
1131=item json => $cb->($handle, $hash_or_arrayref) 1517=item json => $cb->($handle, $hash_or_arrayref)
1132 1518
1133Reads a JSON object or array, decodes it and passes it to the callback. 1519Reads a JSON object or array, decodes it and passes it to the
1520callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1134 1521
1135If a C<json> object was passed to the constructor, then that will be used 1522If a C<json> object was passed to the constructor, then that will be used
1136for the final decode, otherwise it will create a JSON coder expecting UTF-8. 1523for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1137 1524
1138This read type uses the incremental parser available with JSON version 1525This read type uses the incremental parser available with JSON version
1147=cut 1534=cut
1148 1535
1149register_read_type json => sub { 1536register_read_type json => sub {
1150 my ($self, $cb) = @_; 1537 my ($self, $cb) = @_;
1151 1538
1152 require JSON; 1539 my $json = $self->{json} ||= json_coder;
1153 1540
1154 my $data; 1541 my $data;
1155 my $rbuf = \$self->{rbuf}; 1542 my $rbuf = \$self->{rbuf};
1156 1543
1157 my $json = $self->{json} ||= JSON->new->utf8;
1158
1159 sub { 1544 sub {
1160 my $ref = $json->incr_parse ($self->{rbuf}); 1545 my $ref = eval { $json->incr_parse ($self->{rbuf}) };
1161 1546
1162 if ($ref) { 1547 if ($ref) {
1163 $self->{rbuf} = $json->incr_text; 1548 $self->{rbuf} = $json->incr_text;
1164 $json->incr_text = ""; 1549 $json->incr_text = "";
1165 $cb->($self, $ref); 1550 $cb->($self, $ref);
1166 1551
1167 1 1552 1
1553 } elsif ($@) {
1554 # error case
1555 $json->incr_skip;
1556
1557 $self->{rbuf} = $json->incr_text;
1558 $json->incr_text = "";
1559
1560 $self->_error (Errno::EBADMSG);
1561
1562 ()
1168 } else { 1563 } else {
1169 $self->{rbuf} = ""; 1564 $self->{rbuf} = "";
1565
1170 () 1566 ()
1171 } 1567 }
1172 } 1568 }
1173}; 1569};
1174 1570
1206 # read remaining chunk 1602 # read remaining chunk
1207 $_[0]->unshift_read (chunk => $len, sub { 1603 $_[0]->unshift_read (chunk => $len, sub {
1208 if (my $ref = eval { Storable::thaw ($_[1]) }) { 1604 if (my $ref = eval { Storable::thaw ($_[1]) }) {
1209 $cb->($_[0], $ref); 1605 $cb->($_[0], $ref);
1210 } else { 1606 } else {
1211 $self->_error (&Errno::EBADMSG); 1607 $self->_error (Errno::EBADMSG);
1212 } 1608 }
1213 }); 1609 });
1214 } 1610 }
1215 1611
1216 1 1612 1
1251Note that AnyEvent::Handle will automatically C<start_read> for you when 1647Note that AnyEvent::Handle will automatically C<start_read> for you when
1252you change the C<on_read> callback or push/unshift a read callback, and it 1648you change the C<on_read> callback or push/unshift a read callback, and it
1253will automatically C<stop_read> for you when neither C<on_read> is set nor 1649will automatically C<stop_read> for you when neither C<on_read> is set nor
1254there are any read requests in the queue. 1650there are any read requests in the queue.
1255 1651
1652These methods will have no effect when in TLS mode (as TLS doesn't support
1653half-duplex connections).
1654
1256=cut 1655=cut
1257 1656
1258sub stop_read { 1657sub stop_read {
1259 my ($self) = @_; 1658 my ($self) = @_;
1260 1659
1261 delete $self->{_rw}; 1660 delete $self->{_rw} unless $self->{tls};
1262} 1661}
1263 1662
1264sub start_read { 1663sub start_read {
1265 my ($self) = @_; 1664 my ($self) = @_;
1266 1665
1267 unless ($self->{_rw} || $self->{_eof}) { 1666 unless ($self->{_rw} || $self->{_eof}) {
1268 Scalar::Util::weaken $self; 1667 Scalar::Util::weaken $self;
1269 1668
1270 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub { 1669 $self->{_rw} = AE::io $self->{fh}, 0, sub {
1271 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf}; 1670 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
1272 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf; 1671 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1273 1672
1274 if ($len > 0) { 1673 if ($len > 0) {
1275 $self->{_activity} = AnyEvent->now; 1674 $self->{_activity} = $self->{_ractivity} = AE::now;
1276 1675
1277 $self->{filter_r} 1676 if ($self->{tls}) {
1278 ? $self->{filter_r}($self, $rbuf) 1677 Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
1279 : $self->{_in_drain} || $self->_drain_rbuf; 1678
1679 &_dotls ($self);
1680 } else {
1681 $self->_drain_rbuf;
1682 }
1280 1683
1281 } elsif (defined $len) { 1684 } elsif (defined $len) {
1282 delete $self->{_rw}; 1685 delete $self->{_rw};
1283 $self->{_eof} = 1; 1686 $self->{_eof} = 1;
1284 $self->_drain_rbuf unless $self->{_in_drain}; 1687 $self->_drain_rbuf;
1285 1688
1286 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) { 1689 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1287 return $self->_error ($!, 1); 1690 return $self->_error ($!, 1);
1288 } 1691 }
1289 }); 1692 };
1290 } 1693 }
1291} 1694}
1292 1695
1696our $ERROR_SYSCALL;
1697our $ERROR_WANT_READ;
1698
1699sub _tls_error {
1700 my ($self, $err) = @_;
1701
1702 return $self->_error ($!, 1)
1703 if $err == Net::SSLeay::ERROR_SYSCALL ();
1704
1705 my $err =Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
1706
1707 # reduce error string to look less scary
1708 $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
1709
1710 if ($self->{_on_starttls}) {
1711 (delete $self->{_on_starttls})->($self, undef, $err);
1712 &_freetls;
1713 } else {
1714 &_freetls;
1715 $self->_error (Errno::EPROTO, 1, $err);
1716 }
1717}
1718
1719# poll the write BIO and send the data if applicable
1720# also decode read data if possible
1721# this is basiclaly our TLS state machine
1722# more efficient implementations are possible with openssl,
1723# but not with the buggy and incomplete Net::SSLeay.
1293sub _dotls { 1724sub _dotls {
1294 my ($self) = @_; 1725 my ($self) = @_;
1295 1726
1296 my $buf; 1727 my $tmp;
1297 1728
1298 if (length $self->{_tls_wbuf}) { 1729 if (length $self->{_tls_wbuf}) {
1299 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) { 1730 while (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1300 substr $self->{_tls_wbuf}, 0, $len, ""; 1731 substr $self->{_tls_wbuf}, 0, $tmp, "";
1301 } 1732 }
1302 }
1303 1733
1734 $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
1735 return $self->_tls_error ($tmp)
1736 if $tmp != $ERROR_WANT_READ
1737 && ($tmp != $ERROR_SYSCALL || $!);
1738 }
1739
1740 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
1741 unless (length $tmp) {
1742 $self->{_on_starttls}
1743 and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
1744 &_freetls;
1745
1746 if ($self->{on_stoptls}) {
1747 $self->{on_stoptls}($self);
1748 return;
1749 } else {
1750 # let's treat SSL-eof as we treat normal EOF
1751 delete $self->{_rw};
1752 $self->{_eof} = 1;
1753 }
1754 }
1755
1756 $self->{_tls_rbuf} .= $tmp;
1757 $self->_drain_rbuf;
1758 $self->{tls} or return; # tls session might have gone away in callback
1759 }
1760
1761 $tmp = Net::SSLeay::get_error ($self->{tls}, -1);
1762 return $self->_tls_error ($tmp)
1763 if $tmp != $ERROR_WANT_READ
1764 && ($tmp != $ERROR_SYSCALL || $!);
1765
1304 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) { 1766 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1305 $self->{wbuf} .= $buf; 1767 $self->{wbuf} .= $tmp;
1306 $self->_drain_wbuf; 1768 $self->_drain_wbuf;
1307 } 1769 }
1308 1770
1309 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) { 1771 $self->{_on_starttls}
1310 if (length $buf) { 1772 and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
1311 $self->{rbuf} .= $buf; 1773 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
1312 $self->_drain_rbuf unless $self->{_in_drain};
1313 } else {
1314 # let's treat SSL-eof as we treat normal EOF
1315 $self->{_eof} = 1;
1316 $self->_shutdown;
1317 return;
1318 }
1319 }
1320
1321 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1322
1323 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1324 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1325 return $self->_error ($!, 1);
1326 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1327 return $self->_error (&Errno::EIO, 1);
1328 }
1329
1330 # all others are fine for our purposes
1331 }
1332} 1774}
1333 1775
1334=item $handle->starttls ($tls[, $tls_ctx]) 1776=item $handle->starttls ($tls[, $tls_ctx])
1335 1777
1336Instead of starting TLS negotiation immediately when the AnyEvent::Handle 1778Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1337object is created, you can also do that at a later time by calling 1779object is created, you can also do that at a later time by calling
1338C<starttls>. 1780C<starttls>.
1339 1781
1782Starting TLS is currently an asynchronous operation - when you push some
1783write data and then call C<< ->starttls >> then TLS negotiation will start
1784immediately, after which the queued write data is then sent.
1785
1340The first argument is the same as the C<tls> constructor argument (either 1786The first argument is the same as the C<tls> constructor argument (either
1341C<"connect">, C<"accept"> or an existing Net::SSLeay object). 1787C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1342 1788
1343The second argument is the optional C<Net::SSLeay::CTX> object that is 1789The second argument is the optional C<AnyEvent::TLS> object that is used
1344used when AnyEvent::Handle has to create its own TLS connection object. 1790when AnyEvent::Handle has to create its own TLS connection object, or
1791a hash reference with C<< key => value >> pairs that will be used to
1792construct a new context.
1345 1793
1346The TLS connection object will end up in C<< $handle->{tls} >> after this 1794The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
1347call and can be used or changed to your liking. Note that the handshake 1795context in C<< $handle->{tls_ctx} >> after this call and can be used or
1348might have already started when this function returns. 1796changed to your liking. Note that the handshake might have already started
1797when this function returns.
1349 1798
1799Due to bugs in OpenSSL, it might or might not be possible to do multiple
1800handshakes on the same stream. Best do not attempt to use the stream after
1801stopping TLS.
1802
1350=cut 1803=cut
1804
1805our %TLS_CACHE; #TODO not yet documented, should we?
1351 1806
1352sub starttls { 1807sub starttls {
1353 my ($self, $ssl, $ctx) = @_; 1808 my ($self, $tls, $ctx) = @_;
1354 1809
1355 $self->stoptls; 1810 Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
1811 if $self->{tls};
1356 1812
1357 if ($ssl eq "accept") { 1813 $self->{tls} = $tls;
1358 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1814 $self->{tls_ctx} = $ctx if @_ > 2;
1359 Net::SSLeay::set_accept_state ($ssl); 1815
1360 } elsif ($ssl eq "connect") { 1816 return unless $self->{fh};
1361 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ()); 1817
1362 Net::SSLeay::set_connect_state ($ssl); 1818 require Net::SSLeay;
1819
1820 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
1821 $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
1822
1823 $tls = delete $self->{tls};
1824 $ctx = $self->{tls_ctx};
1825
1826 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
1827
1828 if ("HASH" eq ref $ctx) {
1829 require AnyEvent::TLS;
1830
1831 if ($ctx->{cache}) {
1832 my $key = $ctx+0;
1833 $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
1834 } else {
1835 $ctx = new AnyEvent::TLS %$ctx;
1836 }
1837 }
1363 } 1838
1364 1839 $self->{tls_ctx} = $ctx || TLS_CTX ();
1365 $self->{tls} = $ssl; 1840 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
1366 1841
1367 # basically, this is deep magic (because SSL_read should have the same issues) 1842 # basically, this is deep magic (because SSL_read should have the same issues)
1368 # but the openssl maintainers basically said: "trust us, it just works". 1843 # but the openssl maintainers basically said: "trust us, it just works".
1369 # (unfortunately, we have to hardcode constants because the abysmally misdesigned 1844 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1370 # and mismaintained ssleay-module doesn't even offer them). 1845 # and mismaintained ssleay-module doesn't even offer them).
1371 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html 1846 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1847 #
1848 # in short: this is a mess.
1849 #
1850 # note that we do not try to keep the length constant between writes as we are required to do.
1851 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
1852 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
1853 # have identity issues in that area.
1372 Net::SSLeay::CTX_set_mode ($self->{tls}, 1854# Net::SSLeay::CTX_set_mode ($ssl,
1373 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1) 1855# (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1374 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2)); 1856# | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1857 Net::SSLeay::CTX_set_mode ($tls, 1|2);
1375 1858
1376 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1859 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1377 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ()); 1860 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1378 1861
1862 Net::SSLeay::BIO_write ($self->{_rbio}, delete $self->{rbuf});
1863
1379 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio}); 1864 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
1380 1865
1381 $self->{filter_w} = sub { 1866 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
1382 $_[0]{_tls_wbuf} .= ${$_[1]}; 1867 if $self->{on_starttls};
1383 &_dotls; 1868
1384 }; 1869 &_dotls; # need to trigger the initial handshake
1385 $self->{filter_r} = sub { 1870 $self->start_read; # make sure we actually do read
1386 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1387 &_dotls;
1388 };
1389} 1871}
1390 1872
1391=item $handle->stoptls 1873=item $handle->stoptls
1392 1874
1393Destroys the SSL connection, if any. Partial read or write data will be 1875Shuts down the SSL connection - this makes a proper EOF handshake by
1394lost. 1876sending a close notify to the other side, but since OpenSSL doesn't
1877support non-blocking shut downs, it is not guarenteed that you can re-use
1878the stream afterwards.
1395 1879
1396=cut 1880=cut
1397 1881
1398sub stoptls { 1882sub stoptls {
1399 my ($self) = @_; 1883 my ($self) = @_;
1400 1884
1401 Net::SSLeay::free (delete $self->{tls}) if $self->{tls}; 1885 if ($self->{tls}) {
1886 Net::SSLeay::shutdown ($self->{tls});
1402 1887
1403 delete $self->{_rbio}; 1888 &_dotls;
1404 delete $self->{_wbio}; 1889
1405 delete $self->{_tls_wbuf}; 1890# # we don't give a shit. no, we do, but we can't. no...#d#
1406 delete $self->{filter_r}; 1891# # we, we... have to use openssl :/#d#
1407 delete $self->{filter_w}; 1892# &_freetls;#d#
1893 }
1894}
1895
1896sub _freetls {
1897 my ($self) = @_;
1898
1899 return unless $self->{tls};
1900
1901 $self->{tls_ctx}->_put_session (delete $self->{tls})
1902 if $self->{tls} > 0;
1903
1904 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
1408} 1905}
1409 1906
1410sub DESTROY { 1907sub DESTROY {
1411 my $self = shift; 1908 my ($self) = @_;
1412 1909
1413 $self->stoptls; 1910 &_freetls;
1414 1911
1415 my $linger = exists $self->{linger} ? $self->{linger} : 3600; 1912 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1416 1913
1417 if ($linger && length $self->{wbuf}) { 1914 if ($linger && length $self->{wbuf} && $self->{fh}) {
1418 my $fh = delete $self->{fh}; 1915 my $fh = delete $self->{fh};
1419 my $wbuf = delete $self->{wbuf}; 1916 my $wbuf = delete $self->{wbuf};
1420 1917
1421 my @linger; 1918 my @linger;
1422 1919
1423 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub { 1920 push @linger, AE::io $fh, 1, sub {
1424 my $len = syswrite $fh, $wbuf, length $wbuf; 1921 my $len = syswrite $fh, $wbuf, length $wbuf;
1425 1922
1426 if ($len > 0) { 1923 if ($len > 0) {
1427 substr $wbuf, 0, $len, ""; 1924 substr $wbuf, 0, $len, "";
1428 } else { 1925 } else {
1429 @linger = (); # end 1926 @linger = (); # end
1430 } 1927 }
1431 }); 1928 };
1432 push @linger, AnyEvent->timer (after => $linger, cb => sub { 1929 push @linger, AE::timer $linger, 0, sub {
1433 @linger = (); 1930 @linger = ();
1434 }); 1931 };
1435 } 1932 }
1933}
1934
1935=item $handle->destroy
1936
1937Shuts down the handle object as much as possible - this call ensures that
1938no further callbacks will be invoked and as many resources as possible
1939will be freed. Any method you will call on the handle object after
1940destroying it in this way will be silently ignored (and it will return the
1941empty list).
1942
1943Normally, you can just "forget" any references to an AnyEvent::Handle
1944object and it will simply shut down. This works in fatal error and EOF
1945callbacks, as well as code outside. It does I<NOT> work in a read or write
1946callback, so when you want to destroy the AnyEvent::Handle object from
1947within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
1948that case.
1949
1950Destroying the handle object in this way has the advantage that callbacks
1951will be removed as well, so if those are the only reference holders (as
1952is common), then one doesn't need to do anything special to break any
1953reference cycles.
1954
1955The handle might still linger in the background and write out remaining
1956data, as specified by the C<linger> option, however.
1957
1958=cut
1959
1960sub destroy {
1961 my ($self) = @_;
1962
1963 $self->DESTROY;
1964 %$self = ();
1965 bless $self, "AnyEvent::Handle::destroyed";
1966}
1967
1968sub AnyEvent::Handle::destroyed::AUTOLOAD {
1969 #nop
1436} 1970}
1437 1971
1438=item AnyEvent::Handle::TLS_CTX 1972=item AnyEvent::Handle::TLS_CTX
1439 1973
1440This function creates and returns the Net::SSLeay::CTX object used by 1974This function creates and returns the AnyEvent::TLS object used by default
1441default for TLS mode. 1975for TLS mode.
1442 1976
1443The context is created like this: 1977The context is created by calling L<AnyEvent::TLS> without any arguments.
1444
1445 Net::SSLeay::load_error_strings;
1446 Net::SSLeay::SSLeay_add_ssl_algorithms;
1447 Net::SSLeay::randomize;
1448
1449 my $CTX = Net::SSLeay::CTX_new;
1450
1451 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1452 1978
1453=cut 1979=cut
1454 1980
1455our $TLS_CTX; 1981our $TLS_CTX;
1456 1982
1457sub TLS_CTX() { 1983sub TLS_CTX() {
1458 $TLS_CTX || do { 1984 $TLS_CTX ||= do {
1459 require Net::SSLeay; 1985 require AnyEvent::TLS;
1460 1986
1461 Net::SSLeay::load_error_strings (); 1987 new AnyEvent::TLS
1462 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1463 Net::SSLeay::randomize ();
1464
1465 $TLS_CTX = Net::SSLeay::CTX_new ();
1466
1467 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1468
1469 $TLS_CTX
1470 } 1988 }
1471} 1989}
1472 1990
1473=back 1991=back
1992
1993
1994=head1 NONFREQUENTLY ASKED QUESTIONS
1995
1996=over 4
1997
1998=item I C<undef> the AnyEvent::Handle reference inside my callback and
1999still get further invocations!
2000
2001That's because AnyEvent::Handle keeps a reference to itself when handling
2002read or write callbacks.
2003
2004It is only safe to "forget" the reference inside EOF or error callbacks,
2005from within all other callbacks, you need to explicitly call the C<<
2006->destroy >> method.
2007
2008=item I get different callback invocations in TLS mode/Why can't I pause
2009reading?
2010
2011Unlike, say, TCP, TLS connections do not consist of two independent
2012communication channels, one for each direction. Or put differently. The
2013read and write directions are not independent of each other: you cannot
2014write data unless you are also prepared to read, and vice versa.
2015
2016This can mean than, in TLS mode, you might get C<on_error> or C<on_eof>
2017callback invocations when you are not expecting any read data - the reason
2018is that AnyEvent::Handle always reads in TLS mode.
2019
2020During the connection, you have to make sure that you always have a
2021non-empty read-queue, or an C<on_read> watcher. At the end of the
2022connection (or when you no longer want to use it) you can call the
2023C<destroy> method.
2024
2025=item How do I read data until the other side closes the connection?
2026
2027If you just want to read your data into a perl scalar, the easiest way
2028to achieve this is by setting an C<on_read> callback that does nothing,
2029clearing the C<on_eof> callback and in the C<on_error> callback, the data
2030will be in C<$_[0]{rbuf}>:
2031
2032 $handle->on_read (sub { });
2033 $handle->on_eof (undef);
2034 $handle->on_error (sub {
2035 my $data = delete $_[0]{rbuf};
2036 });
2037
2038The reason to use C<on_error> is that TCP connections, due to latencies
2039and packets loss, might get closed quite violently with an error, when in
2040fact, all data has been received.
2041
2042It is usually better to use acknowledgements when transferring data,
2043to make sure the other side hasn't just died and you got the data
2044intact. This is also one reason why so many internet protocols have an
2045explicit QUIT command.
2046
2047=item I don't want to destroy the handle too early - how do I wait until
2048all data has been written?
2049
2050After writing your last bits of data, set the C<on_drain> callback
2051and destroy the handle in there - with the default setting of
2052C<low_water_mark> this will be called precisely when all data has been
2053written to the socket:
2054
2055 $handle->push_write (...);
2056 $handle->on_drain (sub {
2057 warn "all data submitted to the kernel\n";
2058 undef $handle;
2059 });
2060
2061If you just want to queue some data and then signal EOF to the other side,
2062consider using C<< ->push_shutdown >> instead.
2063
2064=item I want to contact a TLS/SSL server, I don't care about security.
2065
2066If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2067simply connect to it and then create the AnyEvent::Handle with the C<tls>
2068parameter:
2069
2070 tcp_connect $host, $port, sub {
2071 my ($fh) = @_;
2072
2073 my $handle = new AnyEvent::Handle
2074 fh => $fh,
2075 tls => "connect",
2076 on_error => sub { ... };
2077
2078 $handle->push_write (...);
2079 };
2080
2081=item I want to contact a TLS/SSL server, I do care about security.
2082
2083Then you should additionally enable certificate verification, including
2084peername verification, if the protocol you use supports it (see
2085L<AnyEvent::TLS>, C<verify_peername>).
2086
2087E.g. for HTTPS:
2088
2089 tcp_connect $host, $port, sub {
2090 my ($fh) = @_;
2091
2092 my $handle = new AnyEvent::Handle
2093 fh => $fh,
2094 peername => $host,
2095 tls => "connect",
2096 tls_ctx => { verify => 1, verify_peername => "https" },
2097 ...
2098
2099Note that you must specify the hostname you connected to (or whatever
2100"peername" the protocol needs) as the C<peername> argument, otherwise no
2101peername verification will be done.
2102
2103The above will use the system-dependent default set of trusted CA
2104certificates. If you want to check against a specific CA, add the
2105C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2106
2107 tls_ctx => {
2108 verify => 1,
2109 verify_peername => "https",
2110 ca_file => "my-ca-cert.pem",
2111 },
2112
2113=item I want to create a TLS/SSL server, how do I do that?
2114
2115Well, you first need to get a server certificate and key. You have
2116three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2117self-signed certificate (cheap. check the search engine of your choice,
2118there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2119nice program for that purpose).
2120
2121Then create a file with your private key (in PEM format, see
2122L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2123file should then look like this:
2124
2125 -----BEGIN RSA PRIVATE KEY-----
2126 ...header data
2127 ... lots of base64'y-stuff
2128 -----END RSA PRIVATE KEY-----
2129
2130 -----BEGIN CERTIFICATE-----
2131 ... lots of base64'y-stuff
2132 -----END CERTIFICATE-----
2133
2134The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2135specify this file as C<cert_file>:
2136
2137 tcp_server undef, $port, sub {
2138 my ($fh) = @_;
2139
2140 my $handle = new AnyEvent::Handle
2141 fh => $fh,
2142 tls => "accept",
2143 tls_ctx => { cert_file => "my-server-keycert.pem" },
2144 ...
2145
2146When you have intermediate CA certificates that your clients might not
2147know about, just append them to the C<cert_file>.
2148
2149=back
2150
1474 2151
1475=head1 SUBCLASSING AnyEvent::Handle 2152=head1 SUBCLASSING AnyEvent::Handle
1476 2153
1477In many cases, you might want to subclass AnyEvent::Handle. 2154In many cases, you might want to subclass AnyEvent::Handle.
1478 2155

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines